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Abstract

Two Arrow–Debreu market games are formulated whose straightforward Nash equilibria

are Walrasian. Both have an auctioneer setting prices to maximize net sales value. In the

second an additional redistributive agency maximizes welfare through optimal lump-sum

transfers. In intertemporal economies, however, subgame imperfections can arise because

agents understand how current decisions such as those determining investment influence

either future prices (with finitely many agents), or future redistribution (even in continuum

economies). The latter observation undermines the second efficiency theorem of welfare

economics. Indeed, when the state of the economy affects future policy, it functions like a

“widespread externality.”



History as a Widespread Externality

1. Introduction

Among Kenneth Arrow’s many highly significant and widely cited contributions to

economic science are his path-breaking papers on the two fundamental efficiency theorems

of welfare economics (Arrow, 1951), on the role of securities in the allocation of risk-bearing

(Arrow, 1953, 1964), and the joint article with Gérard Debreu (Arrow and Debreu, 1954)

on the existence of general competitive or Walrasian equilibrium. There is also the joint

monograph by Arrow and Hahn (1971).1 Of these, the first article used what has since

become the standard definition of Walrasian equilibrium, possibly modified by lump-sum

redistribution of wealth, and related equilibrium to Pareto efficient allocations. The second

article served to define what it means to have a complete set of securities markets in a

sequence economy with uncertainty. The third paper proved existence of equilibrium under

what have since become almost standard assumptions. And the monograph with Frank

Hahn explores not only the main ideas in general competitive analysis, but also much of

the progress that had occurred in making it applicable to real economic phenomena.

An important feature of Arrow and Debreu (1954) is its conscious use of explicitly

game-theoretic ideas, previously found in the related paper by Debreu (1952) on his own.2

However, a generalization of the usual notion of a game is involved. For there is an auction-

eer whose strategy choice determines the price vector. Given this choice, agents are then

constrained to choose net trades within their budget sets. Thus the strategic choice of the

auctioneer limits the strategies that the other players are allowed to choose.

1 According to Intriligator (1987), the first three articles mentioned above had been cited re-
spectively 59, 264 (including references only to the French version that was published first), and
117 times during the period 1966–83; when ranked by their frequency of citation, that made them,
respectively, the twenty-sixth, eighth, and fifteenth items in Arrow’s list of publications. So, apart
from the second article, these are far from being the most frequently cited of Arrow’s works during
that period: the first ranked item, Social Choice and Individual Values, was cited no fewer than
1203 times, while the second ranked, Arrow and Hahn (1971), was cited 561 times during the same
period. This last figure may reflect the significance of Arrow’s work in general equilibrium theory
more accurately than the less frequent citations of the original articles. Indeed, these may have
become classics to the extent that they are not frequently cited, just as few modern physicists or
mathematicians bother to cite the works of Newton, even though many rely on ideas derived from
his work. Finally it should be added that Essays in the Theory of Risk-Bearing, which includes a
reprint of Arrow (1953, 1964), was also frequently cited.

2 It should be noted, however, that the (then) forthcoming paper by Arrow and Debreu was
cited as motivating the work reported in Debreu (1952).
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One minor task accomplished in the present paper is an easy modification of this gen-

eralized game so that it becomes a game in the usually accepted sense, with agents free

to choose strategies within a specified fixed strategy set that is independent of what other

players may choose. The important feature of the Arrow–Debreu market game presented

in Section 2 below is that agents are free to make demands that violate their budget con-

straints. But if they do so, then they will be reduced to autarky. This is evidently a

strong enough sanction to make budget constraints self-enforcing. So the game has a set of

slightly restricted “straightforward” Nash equilibria in which net trades satisfying the bud-

get constraints are announced by all agents, including even those who have zero net trade

in equilibrium and so would have nothing to lose by violating their budget constraint. It is

not surprising that the set of all such equilibria corresponds exactly to the set of Walrasian

equilibria, just as did the Nash equilibria of the generalized game which Arrow and Debreu

themselves considered.

In order to discuss the efficiency theorems of welfare economics, one should consider a

redistributive agency as an extra player, whose objective is to maximize some Paretian Berg-

son social welfare function. Then it is evidently necessary to consider Walrasian equilibria

relative to different possible systems of lump-sum wealth redistribution. For those expected

to pay lump-sum taxes, the threat of autarky may not suffice to make their budget con-

straints self-enforcing. Instead of a zero net trade, however, any arbitrary net trade within

the budget set will suffice to deter violations of the budget constraint. This is explained in

Section 3.

The main purpose of this paper, however, is not to present these trivial and not very

exciting results on true games whose straightforward Nash equilibria implement desirable

Walrasian equilibria. Rather, it is to point out some problems in applying the standard

Arrow–Debreu methodology to intertemporal economic models. The reason is that the

games formulated above raise the issue of what happens if markets cannot be prevented

from re-opening in later periods. And of what happens if a benevolent welfare maximizing

government cannot commit itself in advance not to make transfers at later dates. It will

turn out that the Nash equilibria which correspond to Walrasian equilibria can easily be

subgame imperfect, in the sense that they require incredible responses by the auctioneer

or redistributive agency to trading agents’ deviations from the equilibrium path (cf. Sel-
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ten, 1965, 1973, 1975). Nor do these subgame imperfections result from an artifice of the

particular game formulations set out in Sections 2 and 3: exactly the same imperfections

would arise in any other game whose Nash equilibrium outcomes were Walrasian equilibrium

allocations.

To substantiate these claims, the heart of the paper presents two simple models of

an intertemporal economy lasting for two periods. The first of these involves only two

agents, one of whom is a mine owner with the power to influence second period prices by

choosing how much of a single exhaustible resource stock to extract in the first period, and

how much to leave in the ground for later use as an input to production in the second

period. The two period market game in which re-opening markets is impossible has the

usual Walrasian equilibrium of an Arrow–Debreu economy. But if the mine owner believes

that markets cannot be prevented from re-opening in the second period, the only subgame

perfect equilibrium will involve higher extraction in the first period, but lower in the second

period, since that is the way for the mine owner to exercise monopoly power. Perversely,

this manipulation of the market economy makes the mine owner worse off. All this is

demonstrated in Section 4 below.

Evidently an economy with a continuum of negligibly small agents will not be subject

to such manipulation, even in subgame perfect equilibrium. When a redistributive agency

enters the economy, however, individual agents have the power to exploit its benevolence

in a dramatic fashion. Indeed, Section 5 considers a counterpart of the model in Section 4,

but with a continuum of agents and also a benevolent government. The essentially unique

subgame perfect equilibrium requires almost every mining firm to use up its entire resource

stock in the first period, leaving nothing to produce output in the second period. The

point is that optimal redistribution in the second period implies complete equality so that

the mean output from using all resource stocks in production is shared equally by all. Of

course, this destroys any incentive for mine owners to save by keeping some of their resource

stock for the second period. In fact, redistribution in the second period makes holding back

resource stock for the future an activity equivalent to the private provision of a public good,

or creation of a “widespread externality” in the sense of Hammond, Kaneko and Wooders

(1989), Kaneko and Wooders (1989). Such an externality affects everybody, and depends

on the distribution of individual decisions in the population, even though each individual
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has negligible influence upon its creation. As Section 5 also argues, the only policy remedies

which work are those recognizing that there really is a public good problem.

Of course, it could be argued that welfare maximizing lump-sum redistribution is im-

practical anyway. Indeed, I have elsewhere claimed that it is generally incentive incompati-

ble (Hammond, 1979, 1987), especially when small coalitions can manipulate the economic

system by exchanging goods on the side. But as Tesfatsion (1986) was careful to point out,

previous analyses of the “time inconsistency” or incredibility of public policy were usually

conducted in models where first best optimal policy was infeasible for one reason or another.

In her paper and the example of Section 5 below, this is emphatically not the case.

Nevertheless, the main lesson of Section 5 is that, even when it is instruments of more

realistic government policy which get affected by the current state or history of the economy,

as they surely should be, and if this state is influenced by individuals’ decisions, then

history becomes like a privately supplied public good or widespread externality. Of course,

the typical presumption is that any such externality or public good will be inefficiently

supplied. So the fact that government intervention in the economy will be desirable later

on provides a rationale for intervention now, in order to treat this public good problem.

This is the lesson that appears to remain valid in a wide range of circumstances.

One issue this discussion raises is whether general equilibrium theory has anything

interesting to say about public policy in intertemporal economies. And whether anything

valid remains from the many apparently interesting analyses offered in the past, especially

by macroeconomists. Many macroeconomic models, however, have contained only a sin-

gle “representative” agent, for whom there can never be any problems with public goods.

Indeed, one welcome feature of some recent work on endogenous growth is precisely that,

even though it often retains a continuum of identical representative agents, it does never-

theless allow public good problems to arise — though through technological externalities

rather than through policy reactions to economic states that are influenced by earlier private

decisions.

As for past work by microeconomists on intertemporal general equilibrium theory,

surprisingly little of the literature has sought to explain the scope for and influence of

public policy. There seem to have been problems enough anyway, including finding a role

for money, and understanding why markets are incomplete. Of course, many special models
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have been used to consider particular issues of intertemporal economic policy — pension

and social security systems, the appropriate social rate of discount on public investment

projects, the role of the national debt and its significance, the relative merits of income

versus expenditure taxes, etc. What remains lacking is any general framework as broad as

those that appear in Arrow (1951) and in Arrow and Debreu (1954), as well as in the static

analysis of the public sector due to Diamond and Mirrlees (1971). In other words, we lack

what is needed for a systematic general treatment of all relevant aspects of intertemporal

economic policy, and especially of how different policy instruments interact with each other.

Needless to say, this is a serious undertaking that has to be left for later work. Nevertheless,

the concluding Section 6 ventures a brief sketch of what the most important ingredients for

such a treatment are likely to be. It is claimed that the emphasis should turn away from

frameworks such as the famous complete contingent commodity model of Debreu (1959,

ch. 7), also discussed in Arrow and Hahn (1971, Section 5.6), which aims to determine the

entire future course of economic history all at one go. Instead the framework should be closer

to the well known Arrow (1953, 1964) model of a securities market, with the equilibrium

allocation being determined sequentially by looking one period ahead within each successive

period, or to the Hicksian theory of temporary equilibrium. An early modern discussion of

the latter can be found towards the end of the much less well known article Arrow (1971),

as well as in Arrow and Hahn (1971, Chapter 6).

Section 7 contains some brief concluding remarks.
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2. A First Simple Arrow-Debreu Market Game

2.1. Defining the Game

Consider an economy with a finite set of private agents I and a finite set of commodities G,

so that �G is the commodity space. Suppose that each agent i ∈ I has a set Xi ⊂ �G of

feasible net trades, and a utility function ui : Xi → � representing i’s preferences over net

trade vectors. Assume that the no trade or autarky vector 0 ∈ Xi for all i ∈ I, and that i’s

preferences are locally non-satiated — i.e., the utility function ui has no local maximum.

Let XI denote the Cartesian product
∏

i∈I Xi of the trading agents’ feasible sets.

Suppose too that there is an auctioneer, denoted by superscript A, whose role is to

clear markets by choosing a normalized commodity price vector p in the simplex

∆ := { p ∈ �G | pg ≥ 0 (g = 1 to G);
∑G

g=1
pg = 1 }.

The price vector p announced by the auctioneer will help to determine the net trade

vector ti ∈ Xi that each agent i ∈ I actually obtains from the economy as a function

ti(si, p) of i’s strategy choice si ∈ Xi, to be thought of as a net trade demand, as well as of

p. Specifically, it is assumed that

ti(si, p) =
{

si if p si ≤ 0;

0 otherwise.

Of course, this definition ensures that p ti(si, p) ≤ 0 for all p ∈ ∆ and all si ∈ Xi.

Agent i’s payoff as a function of the strategy profile (sI , p) is accordingly given by

vi(sI , p) := ui(ti(si, p)). Thus agents are allowed to have the net trade vectors they each

demand as long as these lie within their budget sets, but agents whose demands violate

their budget constraints are reduced to autarky.

The specification of the game will now be completed by defining the auctioneer’s payoff

function as vA(sI , p) := p
∑

i∈I si, which is just the value at prices p of the aggregate net

demand vector for all agents i ∈ I. Note that vA(sI , p) ≥ p
∑

i∈I ti(si, p); a sufficient

condition for equality is that all agents i ∈ I satisfy their budget constraints p si ≤ 0.

Finally, therefore, the market game is the collection

〈I ∪ {A},XI × ∆, 〈vh〉h∈I∪{A}〉

consisting of the set of players, their allowable strategies, and their payoff functions.
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2.2. Equivalence of Straightforward Nash and Walrasian Equilibria

Let us now consider some obvious properties of the best response ŝi in the market

game by an agent i ∈ I to any price vector p chosen by the auctioneer, and of the resulting

net trade vector t̂i := ti(ŝi, p). One has p ti(si, p) ≤ 0 and also ui(t̂i) ≥ ui(ti(si, p)) for all

si ∈ Xi. This implies that p t̂i ≤ 0. Also, for all si ∈ Xi that satisfy p si ≤ 0 one has

ti(si, p) = si and so ui(t̂i) ≥ ui(si). Thus each agent’s best response ŝi yields a net trade

vector t̂i = ti(ŝi, p) equal to a Walrasian net trade vector at the price vector p. Because of

local non-satiation it must also be true that p t̂i = 0.

In fact ŝi will equal t̂i except in the special case when t̂i = 0 because autarky happens

to be an optimal net trade for agent i at prices p; then ŝi could be zero or any net demand

vector satisfying p ŝi > 0. I shall limit attention to “straightforward” best responses, and

corresponding Nash equilibria, for which ŝi = 0 in this case.

It is now fairly easy to show that any straightforward Nash equilibrium of this game

gives rise to a Walrasian equilibrium of the exchange economy, and vice versa. For suppose

first that (x̂I , p̂) is a Walrasian equilibrium of the exchange economy. Since each agent’s

net demand vector x̂i must maximize ui(xi) subject to xi ∈ Xi and p̂ xi ≤ 0, it must be a

best response to p̂ in the market game. Since
∑

i∈I x̂i <−− 0 while p̂
∑

i∈I x̂i = 0, it is also

true that p̂
∑

i∈I x̂i ≥ p
∑

i∈I x̂i for all p ∈ ∆. Thus p̂ is a best response by the auctioneer

to the profile of net demands x̂I in the market game.

Conversely, suppose that (ŝI , p̂) is a straightforward Nash equilibrium of the market

game. Then we have already seen that each agent i’s strategy ŝi yields a Walrasian net

trade vector t̂i := ti(ŝi, p̂) = ŝi at the price vector p̂, and also that p̂ t̂i = 0 for all i ∈ I.

So, since p̂ is the auctioneer’s best response to the net demand profile ŝI , it must be true

that p
∑

i∈I t̂i ≤ p̂
∑

i∈I t̂i = 0 for all p ∈ ∆. This implies that
∑

i∈I t̂i <−− 0, and also

implies the “rule of free goods” according to which any good which is in excess supply in

equilibrium must have a zero price. In particular, (t̂I , p̂) must be a Walrasian equilibrium

of the exchange economy.
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3. A Market Game with Redistribution

In order that Arrow’s (1951) second fundamental efficiency theorem of welfare eco-

nomics should be valid for general Pareto efficient allocations in economies where not all

agents are identical, lump-sum redistribution of wealth must be allowed. Moreover, this

second theorem acquires most of its interest when applied to the maximum of any Paretian

Bergson social welfare function. Accordingly, a new market game will now be considered,

with an additional redistributive player R whose strategy is to choose any wealth distri-

bution function mI(·) : ∆ → �I with levels 〈mi(p)〉i∈I large enough to ensure that every

agent i ∈ I has a non-empty budget set Bi(p) := {xi ∈ Xi | p xi ≤ mi(p) } for all p ∈ ∆,

while also satisfying the obvious restriction that
∑

i∈I mi(p) = 0. Note that it is generally

impossible to ensure non-emptiness of each budget set Bi(p) unless each mi is allowed to

depend on p in this way.

The auctioneer and the trading agents will function in much the same way as they did

in the market game of Section 2. The only difference is that each net trade function ti(si, p)

must now be re-defined to include the function mi(·) as an extra argument, and also to

make the new budget constraint p xi ≤ mi(p) become self-enforcing. To this end, for each

i ∈ I and each p ∈ ∆ let x̄i(p) be any fixed net trade vector in the non-empty budget set

Bi(p), and then let the value of the new function be

ti(si, p, mi(·)) =

{
si if p si ≤ mi(p);

x̄i(p) otherwise.

The only remaining feature before the new market game

〈I ∪ {A, R },XI × ∆ × SR, 〈vh〉h∈I∪{A,R }〉

becomes fully specified is the redistributor’s payoff function vR. This is taken to be vR :=

W (〈ui(ti)〉i∈I) for some Paretian Bergson social welfare function W .

Arguing as in Section 2, given any equilibrium wealth distribution rule m̂I(·), define a

straightforward Nash equilibrium as one in which any agent i ∈ I who enjoys a net trade

vector no better than x̄i(p), and so has nothing to lose from violating the budget constraint

p si ≤ m̂i(p), in fact chooses to respect this constraint. Then the set of straightforward Nash

equilibria of this market game must give allocations that coincide with the set of Walrasian
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equilibria relative to this rule. Furthermore, suppose that the allocation x̂I maximizes the

welfare function W (〈ui(xi)〉i∈I) subject to the feasibility constraints xi ∈ Xi (all i ∈ I) and∑
i∈I xi <−−0, and that this optimal allocation can be achieved by facing each trader with the

budget constraint p̂ xi ≤ p̂ x̂i for a suitable price vector p̂ ∈ ∆ because Arrow’s (1951) second

efficiency theorem applies. Then at least one straightforward Nash equilibrium of this new

market game must yield an outcome of the form (x̂I , p̂, m̂I(·)), where the wealth distribution

functions satisfy m̂i(p) ≡ p x̂i for all i ∈ I and all p ∈ ∆. The reason is that trading

agents and the auctioneer are all choosing straightforward best responses as in Section

2, while the redistributor cannot possibly do better than reach the equilibrium first-best

allocation x̂I by adjusting the wealth distribution rule to achieve some other straightforward

equilibrium and so some other feasible allocation. On the other hand, in case there are

multiple Walrasian equilibria relative to the equilibrium wealth distribution rule m̂I(·), not

every straightforward Nash equilibrium need be a welfare optimum which maximizes W .

This is because, as Samuelson (1974) and Bryant (1994) point out, the trading agents and

the auctioneer could together steer the economy to a suboptimal equilibrium even after an

optimal wealth distribution rule has been set up. Of course, this alternative equilibrium

must be Pareto efficient, but the distribution of real wealth could still be suboptimal.

4. A Simple Economy with an Exhaustible Resource

4.1. The Model

Consider a simple economy which lasts for two periods (t = 1, 2) and in which there

are two agents. There are also three goods — one consumption good, the stock of a single

exhaustible resource, and labour. The first agent is a working miner who consumes ct

units of the consumption good and has an inelastic supply of nt units of labour in each

period t. This worker’s preferences for two period consumption streams are assumed to be

represented by the utility function

u(c1, c2) ≡ ln c1 + ln c2.

The second agent is the owner and manager of the mine, who uses the worker’s labour

in order to mine the resource whose initial stock is S0 at the beginning of period 1. In

each of the two periods, the quantity et of this resource is combined with �t units of labour
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in order to produce yt units of output of the single consumption good according to the

constant returns to scale Cobb–Douglas production function

yt = eγ
t �1−γ

t ,

where 0 < γ < 1. The mine owner’s consumption or dividend in period t is denoted by dt,

and his preferences for two period consumption streams are assumed to be represented by

the same utility function

v(d1, d2) ≡ ln d1 + ln d2.

4.2. Intertemporal Walrasian Equilibrium

The usual two period intertemporal Walrasian equilibrium in this economy occurs when

an “auctioneer” at the beginning of the first period sets prices for both periods in order

to clear all markets, knowing what the mine worker and mine owner will later supply and

demand for each possible price system which the auctioneer might choose. This Walrasian

equilibrium can be found by choosing a Pareto efficient allocation which maximizes the

welfare weighted sum

α u(c1, c2) + (1 − α) v(d1, d2)

for some suitable value of α satisfying 0 ≤ α ≤ 1. The relevant feasibility constraints are

ct + dt ≤ yt = eγ
t �1−γ

t and �t ≤ nt (t = 1, 2); e1 + e2 ≤ S0.

Introducing non-negative Lagrange multipliers pt for the shadow price of the consump-

tion good and wt for that of labour in period t (t = 1, 2), as well as ρ for the shadow price

of the resource stock, the relevant Lagrangean becomes

L ≡
∑2

t=1

[
α ln ct + (1 − α) ln dt − pt

(
ct + dt − eγ

t �1−γ
t

)
− wt (�t − nt)

]
− ρ (e1 + e2 − S0).

So the first order conditions for an optimum are the six equations

α

ct
=

1 − α

dt
= pt; pt (1 − γ) eγ

t �−γ
t = wt; pt γ eγ−1

t �1−γ
t = ρ (t = 1, 2)
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together with equality versions of the five inequality constraints that define a feasible allo-

cation. These first order conditions imply that

pt yt = pt (ct + dt) = α + (1 − α) = 1

and also that

wt nt = wt �t = (1 − γ) pt yt = (1 − γ); ρ et = γ pt yt = γ,

for each of the two periods t = 1, 2. The last equation implies that e1 = e2. The optimal

allocation is therefore

et = 1
2 S0; yt = ( 1

2 S0)γn1−γ
t ; ct = α yt; dt = (1 − α) yt

for each of the two periods t = 1, 2. The associated shadow prices are

pt = 1/yt; wt = (1 − γ)/nt; ρ = 2 γ/S0.

In order to achieve a Walrasian equilibrium, the welfare weight α should be chosen

so that both agents just satisfy their respective budget constraints. By Walras’ Law, it is

enough to look at either agent on his own. In fact it is easier to consider the mine worker,

whose Walrasian budget constraint

p1 c1 + p2 c2 = w1 n1 + w2 n2

is exactly satisfied in the case when α = 1 − γ. The intertemporal Walrasian equilibrium

therefore consists of the production plan and the price system given above, together with

the consumption allocation

ct = (1 − γ) yt; dt = γ yt

for each of the two periods t = 1, 2. Note that pt ct = wt nt in each of the two periods

separately. This implies that the mine worker neither saves nor borrows during the first

period. Because of aggregate budget balance, the mine owner does not save or borrow

either, so that there is no need for an asset market of any kind. The only form of saving in

the economy comes from the mine owner deciding not to exhaust his stock of the resource

all in one period. Finally, note for future reference that the mine owner’s utility in this

Walrasian equilibrium is given by

vW := 2 ln [γ( 1
2 S0)γ ] + (1 − γ) ln(n1 n2).
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4.3. Subgame Perfect Equilibrium

The above intertemporal Walrasian equilibrium was calculated on the presumption that

the “auctioneer” in the first period makes irreversible decisions regarding prices for both

periods. It is as though his plans were being submitted to the “umpire” whom von Neumann

and Morgenstern (1953) exploited as a device to help understand the normal rather than

the extensive form of a game. Their idea was that, in the normal form of a game, the umpire

carries out the players’ strategies on their behalf. Then there is no opportunity for changing

plans part way through the extensive form of a game, so subgame perfection is never an

issue. In fact von Neumann and Morgenstern claimed that considering only the normal

form would never lose any generality. Yet the work by Selten (1965, 1973, 1975) and many

successors, on subgame perfect equilibria in extensive form games that are not two-person

zero-sum, has made this claim completely untenable — at least for Nash equilibria, which

almost everybody now agrees need to be refined.3

So, in the Walrasian equilibrium model of an intertemporal economy, we must ask

whether the auctioneer’s initially planned prices will actually emerge later on, if such prices

are not irreversible commitments. In fact, for the model just considered, it turns out that

they will not, in case the mine owner chooses to leave a stock of the resource which differs

from the intertemporal equilibrium level S1 = 1
2S0 at the end of the first period. And if the

mine owner foresees this, he will want to exploit his power to affect market prices.

Indeed, consider a slightly different version of the above intertemporal economy in

which there are:

(a) first period markets for consumption, labour, and an Arrow security for delivering

consumption in the second period;

(b) second period markets for consumption and labour.

Suppose that trade takes place in an extensive game of complete information in which the

players are the auctioneer, the mine owner, and the mine worker, and the order of moves is

as follows:

(i) at the beginning of the first period the auctioneer sets prices for consumption and

labour in the first period, and for the Arrow security, in order to clear markets in full
3 Of course Arrow and Debreu wrote when Nash equilibrium was still a novel concept, long

before Selten’s fundamental work, and even longer before that work had its deserved impact.
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knowledge of what the mine owner and mine worker will supply and demand at each

possible price vector which he might set;

(ii) the mine owner and mine worker exchange contracts for first period labour supply, first

period consumption, and the Arrow security, taking the auctioneer’s price system as

given, and then execute the first period part of those contracts — that is, the mine

owner extracts as much as he wishes of his stock of the resource, hires what he wants

of the mine worker’s labour up to the limit of the worker’s supply, and then produces

output of which some is sold to the mine worker and the rest is consumed by the mine

owner — in addition, Arrow securities may be traded;

(iii) at the beginning of the second period, and fully aware of what has happened in the

first period, the auctioneer sets prices for consumption and labour in the second period

in order to clear markets after the Arrow security contracts have been honoured, in full

knowledge of what the mine owner and mine worker will supply and demand at each

possible price vector which he might set;

(iv) the mine owner and mine worker exchange contracts for second period labour supply

and consumption, taking both the auctioneer’s price system and the need to honour

the Arrow security contracts as given, and then execute those contracts.

Now, at the beginning of the second period of a two period economy, suppose that

the mine owner’s resource stock is S1. Suppose too that any Arrow security transactions

during the first period have the effect of adding a units net of conumption to the worker,

and b to the mine owner. Of course, it must be true that a + b = 0 in order to have the

Arrow security market clear in the first period. Then any Walrasian equilibrium in the

second period involves the auctioneer setting the real wage w2/p2 equal to (1 − γ)Sγ
1 n−γ

2 ,

which is the marginal product of labour. From this and the worker’s budget constraint

p2 c2 = w2 n2 + p2 a, it follows that

p2 (c2 − a) = w2 n2 = p2 (1 − γ)Sγ
1 n1−γ

2 = (1 − γ) p2 y2.

So the unique Walrasian equilibrium for the second period alone consists of the allocation

c2 = (1 − γ) Sγ
1 n1−γ

2 + a = (1 − γ) y2 + a; d2 = γ Sγ
1 n1−γ

2 + b = γ y2 + b
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and the price system defined by the real wage given above. Note how the equilibrium

allocation is a function of a, b, and S1.

Suppose that the worker and mine owner both understand this dependence, and use

their power to manipulate prices in the second period by means of suitable actions in the

first period. Then the worker will choose the variables c1 and a in order to maximize his

anticipated utility, which is

ln c1 + ln
[
(1 − γ) (S0 − e1)γ n1−γ

2 + a
]
≡ ln c1 + ln [(1 − γ) y2 + a] ,

subject to the budget constraint

p1 c1 + r a = w1 n1.

Here r denotes the price of the Arrow security.

Using λ to denote the shadow price associated with the worker’s budget constraint, the

first order conditions for utility maximization become

1
c1

= λ p1;
1

(1 − γ) (S0 − e1)γ n1−γ
2 + a

=
1

(1 − γ) y2 + a
= λ r.

After multiplying each side of the budget constraint by λ, while recognizing that it must

hold with equality, and then substituting from the above first order conditions, we obtain

λ w1 n1 = λ (p1 c1 + r a) = 2 − λ (1 − γ) r y2.

This implies that 1/λ = 1
2 [w1 n1 + (1 − γ) r y2]. So substituting for 1/λ back in the first

order conditions gives the worker’s expenditures

p1 c1 = 1
2 [w1 n1 + (1 − γ) r y2] ; r a = 1

2 [w1 n1 − (1 − γ) r y2]

on first period consumption and the Arrow security. These are functions of the first period

price vector (p1, w1, r), and also of future output y2 which depends on the mine owner’s

choice of e1. Notice that expenditure on present and on future consumption is determined

as in the linear expenditure system, but with (1−γ) r y2 already committed to expenditure

on second period consumption, in effect, and with w1 n1 as exogenous wage income.
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On the other hand, the mine owner will choose the variables d1, e1, �1 and b in order

to maximize his anticipated utility, which is

ln d1 + ln
[
γ (S0 − e1)γ n1−γ

2 + b
]
≡ ln d1 + ln(γ y2 + b),

subject to the budget constraint

p1 d1 + r b = p1 eγ
1 �1−γ

1 − w1 �1 = p1 y1 − w1 �1.

Using µ to denote the shadow price associated with the mine owner’s budget constraint,

the first order conditions for utility maximization become

1
d1

= µ p1;
1

γ (S0 − e1)γ n1−γ
2 + b

=
1

γ y2 + b
= µ r;

and
w1 = p1 (1 − γ) eγ

1 �−γ
1 = (1 − γ) p1 y1/�1;

γ2 (S0 − e1)γ−1 n1−γ
2

γ (S0 − e1)γ n1−γ
2 + b

= µ p1 γ eγ−1
1 �1−γ

1 .

After multiplying each side of the budget constraint by µ, while recognizing that it must

hold with equality, and then substituting from the above first order conditions, we obtain

µ (p1 y1 − w1 �1) = µ (p1 d1 + r b) = 2 − µ γ r y2.

This implies that 1/µ = 1
2 (p1 y1 − w1 �1 + γ r y2). So substituting for 1/µ back in the first

order conditions gives the mine owner’s conditional expenditures

p1 d1 = 1
2 (p1 y1 − w1 �1 + γ r y2); r b = 1

2 (p1 y1 − w1 �1 − γ r y2)

on consumption and the Arrow security. These are functions of the first period price vector

(p1, w1, r), of the labour input �1, and also of the output stream y1, y2 which depends on the

mine owner’s choice of e1. As with the mine worker, these functions represent an instance

of the linear expenditure system.

Now we impose the Arrow security market clearing condition a+ b = 0. It implies that

0 = 2 r (a + b) = w1 n1 − (1 − γ) r y2 + p1 y1 − w1 �1 − γ r y2 = p1 y1 − r y2

15



where the last equality comes from using the market clearing condition �1 = n1 in order

to simplify. Because w1 = p1 (1 − γ) y1/n1, it follows that equilibrium price ratios are

determined by the two equations

w1 n1 = (1 − γ) p1 y1 = (1 − γ) r y2.

This, however, implies that in any equilibrium the conditional demands are

c1 = (1 − γ) y1, a = 0; and d1 = γ y1, b = 0.

Thus asset markets play no rôle whatsoever in the equilibrium allocation.

Note too that

1/µ = 1
2 (p1 y1 − w1 �1 + γ r y2) = 1

2 [p1 y1 − (1 − γ) p1 y1 + γ p1 y1] = γ p1 y1.

So, because b = 0, the first order condition for the mine owner’s optimal choice of e1

simplifies to
γ

S0 − e1
= µ p1 γ eγ−1

1 �1−γ
1 =

µ p1 γ y1

e1
=

1
e1

,

which implies that e1 = S0/(1 + γ). This contrasts with the rate of extraction e1 =

1
2S0 which, as was shown previously, is required for any intertemporally Pareto efficient

allocation. In fact, since 0 < γ < 1, the mine owner who tries to exploit his monopoly power

always uses an amount of the resource stock which, from the point of view of intertemporal

Pareto efficiency, is too much in the first period, and too little in the second.

To complete the description of this new subgame perfect equilibrium in which the mine

owner exploits his market power, notice that

d1 = γ y1 = γ eγ
1 �1−γ

1 = γ

(
S0

1 + γ

)γ

n1−γ
1

and

c1 = (1 − γ) y1 = (1 − γ)
(

S0

1 + γ

)γ

n1−γ
1 .

The corresponding equilibrium real wage is then

w1

p1
=

c1

n1
= (1 − γ)

(
S0

1 + γ

)γ

n−γ
1 .
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So the remaining stock of the exhaustible resource at the beginning of the second period is

S1 = S0 − e1 = S0 −
S0

1 + γ
=

γ S0

1 + γ
.

The resulting equilibrium allocation in the second period is therefore

c2 = (1 − γ) y2 = (1 − γ)Sγ
1 �1−γ

2 = (1 − γ)
(

γ S0

1 + γ

)γ

n1−γ
2 ;

d2 = γ y2 = γ

(
γ S0

1 + γ

)γ

n1−γ
2 .

Finally, the mine owner’s utility from this subgame perfect equilibrium is

vP := ln d1 + ln d2 = ln
[
γ

(
S0

1 + γ

)γ

n1−γ
1

]
+ ln

[
γ

(
γ S0

1 + γ

)γ

n1−γ
2

]

= 2 ln
[
γ

(
S0

1 + γ

)γ]
+ ln

(
n1−γ

1 γγ n1−γ
2

)
.

Notice therefore that the mine owner’s utility net gain from this subgame perfect equi-

libium with monopoly power, vP − vW , is given by

2 ln
[
γ

(
S0

1 + γ

)γ]
+ ln

(
n1−γ

1 γγ n1−γ
2

)
− 2 ln [γ ( 1

2 S0)γ ] − (1 − γ) ln(n1 n2)

= − 2 γ ln(1 + γ) + γ ln γ + 2 γ ln 2 = γ ln
[

4 γ

(1 + γ)2

]

= γ ln
[
1 − (1 − γ)2

(1 + γ)2

]
< 0.

So the mine owner always loses in the end by being manipulative. At first this seems surpris-

ing, because one might think that the mine owner can always revert to the non-monopolistic

intertemporal Walrasian equilibrium simply by selecting the rate of exploitation of the nat-

ural resource e1 = 1
2 S0 which is appropriate for that equilibrium. This is false, however, for

the interesting reason that, in the first period of this subgame perfect monopolistic equi-

librium, the auctioneer foresees the mine owner’s manipulation and so sets prices in a way

which denies him the intertemporal Walrasian equilibrium stream of resource rents and so

of consumption.
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4.4. Continuum Economies

This fully worked out example is intended only to illustrate what is perhaps anyway

obvious: once agents foresee how market clearing prices in the future depend on their current

actions, they will wish to exploit their monopoly power over such future prices. This problem

does not arise, however, in continuum economies with each agent having negligible power

to influence future prices. So the next section of this paper will be concerned with such

economies. It will be shown how redistributive policies of the kind presumed in the second

efficiency theorem of welfare economics can nevertheless create new subgame perfection

problems of their own.

5. Redistribution in a Simple Continuum Economy

5.1. An Intertemporal Welfare Optimum

So consider now an economy with a continuum of identical workers and another contin-

uum of identical mine owners. Suppose that each worker and each mine owner are identical

to the worker and to the mine owner, respectively, in the two agent economy of Section 4

above. Suppose that the proportions of workers and of mine owners in the economy are µ

and 1 − µ respectively. Suppose too that the government of this economy chooses a sym-

metric allocation to all the workers and mine owners which maximizes the appropriately

weighted sum

W := µ (ln c1 + ln c2) + (1 − µ) (ln d1 + ln d2)

of the utilities of the typical worker and mine owner. The physical feasibility constraints

are that

µ ct + (1 − µ) dt ≤ (1 − µ) yt = (1 − µ) eγ
t �1−γ

t ; �t ≤ nt

for both time periods t = 1, 2, and that

e1 + e2 ≤ S0.

With shadow prices pt for consumption, wt for labour, and ρ for the exhaustible re-

source, the appropriate Lagrangean can be written as

L =
∑2

t=1
{µ ln ct + (1 − µ) ln dt − pt [µ ct + (1 − µ) dt − (1 − µ) eγ

t �1−γ
t ] − wt (�t − nt)}

− ρ (e1 + e2 − S0).
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So the first order conditions for an optimum include, for t = 1, 2, the equations

1
ct

= pt =
1
dt

; (1 − µ) pt
(1 − γ) yt

�t
= wt; (1 − µ) pt

γ yt

et
= ρ

Together with the resource constraint µ ct + (1 − µ) dt = (1 − µ) yt, the first two of these

equations imply that

(1 − µ) pt yt = µ pt ct + (1 − µ) pt dt = µ + (1 − µ) = 1.

So, since it must be true that �t = nt for any optimum, we also have

wt nt = 1 − γ; ρ et = γ.

From this and the constraints it follows that the welfare optimal allocation is given by

e1 = e2 = 1
2 S0; yt = ( 1

2 S0)γ n1−γ
t ; ct = dt = (1 − µ) yt.

This involves a perfectly egalitarian allocation of consumption. Moreover, half the stock of

the resource in every mine is used up in each of the two periods, as in Section 4.1.

Finally, this optimal allocation can be decentralized by means of markets in which

suitably normalized prices for consumption and labour in each of the two periods are the

Lagrange multipliers pt = 1/(1 − µ) yt and wt = (1 − γ)/nt which were found above.

5.2. Subgame Perfect Policy

This optimum effectively presumes that the government is commited to its redistri-

bution policy in advance, and that each mine owner also commits himself to keep half his

resource stock until the second period. If such commitments are impossible, however, a sub-

game imperfection arises. For suppose that the government bases its second period optimal

redistributive policy upon what the mine owners have already chosen in the first period. In

this economy, what consumption was in the first period is irrelevant to the second period

decisions. Indeed, the optimal second period policy involves maximizing the second period

welfare integral

W2 := µ

∫
ln c2 + (1 − µ)

∫
ln d2

subject to the resource constraints

y2 ≤ (1 − µ) eγ
2 �1−γ

2 ; e2 ≤ S1
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for each mine separately, and subject to the overall resource constraints

µ c̄2 + (1 − µ) d̄2 ≤ (1 − µ) ȳ2; (1 − µ) �̄2 ≤ µ n2.

Here c̄2 denotes the mean level of c2 among the population of mine workers, while d̄2, ȳ2,

and �̄2 denote the mean levels of d2, y2, and �2 respectively among the population of mine

owners. Note that asymmetric allocations are now being considered, as is appropriate when

issues of subgame perfection arise. Since all mine workers have identical exogenous supplies

of labour, there is no need to write n̄2.

Obviously it is optimal for all mine workers and all mine owners to have the same

consumption levels c2 = d2 = c̄2 = d̄2. Also, an optimal allocation of labour is one

that maximizes mean output
∫

eγ
2 �1−γ

2 per mine by equalizing labour’s marginal product

(1 − γ) eγ
2 �−γ

2 in each mine. Because e2 = S1 is required in (almost) every mine for mean

output to be maximized, for this special case labour should therefore be supplied to each

mine in proportion to its available resource stock S1. This implies that

�2 = µ S1 n2/(1 − µ) S̄1 = S1 �̄2/S̄1,

where S̄1 denotes the mean level of resource stock per mine, and �̄2 is the mean labour

supply per mine, which must equal µ n2/(1 − µ). So optimal output in each mine is

y2 = Sγ
1 [S1 �̄2/S̄1]1−γ = S1 (�̄2/S̄1)1−γ ,

which implies that optimal mean output per mine is ȳ2 = S̄γ
1 �̄1−γ

2 .

The welfare optimal distribution of this second period mean output is then given by

c2 = c̄2 = d2 = d̄2 = (1 − µ) ȳ2

for each mine worker and each mine owner respectively.

Note in particular how the allocation of consumption to each mine owner in the second

period is completely independent of how much resource stock he has available that period.

Not surprisingly therefore, each mine owner has every incentive to exhaust his resource

stock entirely in the first period, in case markets are used in an attempt to decentralize

the intertemporal optimal allocation. For with d2 fixed, each mine owner chooses �1 and
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e1 in the first period in order to maximize current consumption d1 subject to the budget

constraint

p1 d1 ≤ p1 y1 − w1 �1 = p1 eγ
1 �1−γ

1 − w1 �1

and the resource constraint e1 ≤ S0. The mine owner’s optimum clearly involves having

e1 = S0. After all, by exhausting his stock of the resource immediately, each mine owner can

maximize his first period resource rents without forfeiting any second period consumption.

So, if mine owners correctly foresee the optimal second period redistributive policy of the

government, then it is a dominant strategy for them all to exhaust their resource stocks

in the first period. This would imply that output must fall to zero in the second period,

yielding minus infinite utility for all agents.

Indeed, even if markets are not used to arrange net trade vectors in the first period,

in many cases it is still a dominant strategy for each mine owner to exhaust his resource

stock immediately. For instance, suppose that the prescribed net trade to some mine owner

consisted of a net payment of t1 units of consumption in exchange for receiving �1(> 0)

units of labour — i.e., the net trade vector is (−t1, �1). Then, by using e1 units of the

resource stock in the first period, the mine owner’s consumption stream would become

(d1, d2) = (eγ
1 �1−γ

1 − t1, d̄2),

where d̄2 is independent of his personal decisions. The corresponding utility is

v(d1, d2) = ln d1 + ln d̄2 = ln(eγ
1 �1−γ

1 − t1) + ln d̄2

which is clearly maximized by choosing e1 = S0. So this is indeed the dominant strategy

of each mine owner — or, to be more accurate, of each mine owner who is allowed to use a

positive amount of labour in the first period.
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5.3. A Market for the Resource Stock

Since resource stocks are being excessively exploited, a standard economists’ remedy

might be to create a market for them, just as it is often thought that excessive exploitation

of fishery stocks or of a common could be overcome through making those resources become

private property. Yet in fact such a policy is of no help here, and would actually create chaos

even in the first period. This is because every agent would want to take an indefinitely large

short position in the market for the resource stock during the first period, knowing that

this would have no bearing on the allocation of consumption in the second period. Indeed,

suppose that in the first period there were perfect markets for consumption, labour supply,

and the resource stock, with prices p1, w1, and r1 respectively. Let SO
1 and SW

1 denote the

net holdings of the resource stock at the end of the first period by the typical mine owner

and the typical mine worker respectively.

In this first period, each mine worker will choose his planned consumption stream c1,

c2, and his position SW
1 in the resource market in order to maximize utility u(c1, c2) ≡

ln c1 + ln c2 subject to the budget constraint

p1 c1 + r1 SW
1 ≤ w1 n1.

The mine worker also faces the constraint that c2 = c̄2, completely independent of what he

chooses in the first period, because of the government’s second period redistribution policy.

Then there is no optimal policy in the first period unless r1 = 0. For, since it must be true

that p1 > 0, the mine worker can make c1 arbitrarily large by having SW
1 → −∞ if r1 > 0,

and SW
1 → +∞ if r1 < 0.

The position of each mine owner is little different. Since second period consumption

d2 = d̄2 is not influenced at all by his decisions, he will choose d1, e1, �1, y1, and his position

SO
1 in the resource market in order to maximize utility v(d1, d2) ≡ ln d1 + ln d̄2 subject to

the production constraint y1 ≤ eγ
1 �1−γ

1 , the resource constraint e1 ≤ S0, and finally the first

period budget constraint

p1 d1 + r1 SO
1 ≤ y1 − w1 �1 + r1 (S0 − e1).

Once again there is no optimal policy unless r1 = 0. For, since it must be true that p1 > 0,

the typical mine owner can make d1 arbitrarily large by having SO
1 → −∞ if r1 > 0, and
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SO
1 → +∞ if r1 < 0.

So only if r1 = 0 can there be equilibrium in the resource market. But then, of

course, the resource market has no role to play. This implies that we are back with the

same equilibrium as before, with each mine owner choosing e1 = S0 and so exhausting the

resource stock in just the first period.

5.4. Remedial Policy

This disastrous outcome of total immediate exhaustion of the resource stock arises

because optimal redistributive policy in the second period has the effect of converting output

in the second period, and so the resource stock at the end of the first period, into a kind

of privately provided public good or widespread externality. No matter how much resource

stock any mine owner retains, his consumption in the second period is always the same.

This encourages mine owners to “ride free” by exhausting all their stocks in the first period,

in order to enjoy the largest possible resource rent.

Recognizing that a public good or externality problem has arisen suggests various

kinds of policy remedy. Obviously direct controls like rationing could work in principle,

with each mine owner being allowed to use no more than half his resource stock in the first

period. Alternatively, one could subsidize resource retention or penalize excessive resource

use. This could involve a subsidy s being imposed on each unit of resource saving, with

a corresponding tax rate s on each unit of excessive resource use. Specifically, each mine

owner is faced with the new first period budget constraint

p1 d1 ≤ p1 eγ
1 �1−γ

1 − w1 �1 + s ( 1
2S0 − e1)

as well as the earlier resource constraint e1 ≤ S0. The subsidy rate s will be set so that

each mine owner wants e1 to be at its efficient level of 1
2S0 when maximizing d1 subject

to this budget constraint. Bearing in mind that p1 = 1/(1 − µ) y1 is the price of output

and consumption in the first period which sustains an intertemporal optimum, this requires

that

s = p1 γ eγ−1
1 n1−γ

1 = γ p1 y1/e1 = γ/(1 − µ) y1 = 2 γ/(1 − µ)S0.

In effect, this amounts to having the government buy out the right to use each mine

in the first period for the sum of s · 1
2S0 = γ /(1− µ), which could be regarded as the value
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of that half of its total stock which will be depleted during the first period. Since in each

period mean resource rents per head of population are ρ et = γ, this also represents each

mine owner’s share of these rents. Thereafter each mine owner is allowed to lease back half

his mine in the first period in exchange for royalty payments at the rate s on each unit of

resource depletion.

It would not do, however, to have the government pay for the whole resource stock of

each mine, with a view to allowing each mine owner to save some of the proceeds in order to

finance his own second period consumption. This would not work because the government’s

optimal second period redistribution policy always ignores completely any asset holdings

held at the start of that period. So if there were some kind of perfect capital market on

which mine owners could save for future consumption, each of them would like not only

to spend immediately all the compensation paid by the government for using the mine,

but also to borrow indefinitely large sums in the first period knowing that these would be

repaid, in effect, by the government’s optimal redistribution program in the second period.

That is why, in the first period, the government should buy the right to use the resource

stock for the first period only. Trying to set up any kind of normal capital markets of the

kind which economists have become accustomed to advocating would be nothing short of

disastrous in this model.

6. Sequential Economic Policy Analysis

6.1. Subgame Imperfections

While formally correct, the fundamental efficiency theorems of welfare economics do

not explicitly consider the subgame perfection of a competitive market mechanism in an

intertemporal setting. With a small number of agents in a static economy, one can imagine

reaching competitive equilibrium through a game in which there is an omniscient auctioneer

who sets prices that clear all markets, and by allowing agents to trade as they wish at these

prices. In an intertemporal economy, however, unless there are many agents, or unless

there is complete separation between the economies in different periods, some individuals

will be able to manipulate equilibrium prices in the “subeconomies” which begin in later

periods. As the example of Section 4 shows, they can do this by adjusting their previous

investment plans or any other earlier economic decisions which affect preferences or feasible
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sets in the subeconomy. Thus, unlike for static economies, there are conceptual difficulties

in considering competitive market economies unless there is a continuum of agents whose

investment and other decisions have a negligible effect on later prices.

It is not really surprising that competition requires many agents. Rather, the surprise

is that, in a single period economy, it may be compatible with having only a few agents.

More deeply troubling, however, is the subgame imperfection that accompanies lump-sum

redistribution even in continuum economies. This is similar to a phenomenon noticed by

Tesfatsion (1986) in particular, though related to earlier work by Kydland and Prescott

(1977, 1980), Calvo (1978), Fischer (1980), and many others on the time inconsistency of

macroeconomic policy. In a static economy, and under the usual conditions ensuring the

validity of Arrow’s second efficiency theorem of welfare economics, a benevolent govern-

ment that wishes to maximize some Paretian Bergson social welfare function can do so by

instituting complete perfectly competitive markets along with an optimal redistribution of

income by means of lump-sum transfers. With many periods, however, such optimal re-

distribution in any subeconomy will typically depend upon the past decisions of economic

agents. If the benevolent welfare objective is sufficiently egalitarian, for instance, it will

mandate lump-sum taxes on those who have saved a lot in the past in order to finance

transfers to those who have left themselves with little or no wealth. Agents who understand

this dependence will see that their incentives to save, to invest, or to create future wealth

for themselves are all seriously blunted by the egalitarian redistributive policies which the

government will pursue later. The example of Section 5 illustrated this.

Of course, one may well object that the redistributive policy contemplated in that

example is clearly absurd precisely because it destroys all incentives to save, to invest, or

to conserve resource stocks. Nevertheless, that policy, as in Tesfatsion (1986), is just the

logical implication of the government’s first best welfare maximization in the second period

economy. The absurd policy of this example fulfils its purpose — namely, to show that

subgame imperfections arise even in standard first best welfare economics, when one tries

to apply it to simple intertemporal settings. This is true even for “perfect” markets, without

public goods, externalities, distortionary taxes, asymmetric information, or any other form

of “market failure”. The point is that the prospect of what will appear in the future to be

non-distortionary lump-sum redistribution actually functions now like “taxes on history”.
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Such taxes, of course, typically distort individual decisions to “supply history”. In this

simple example, “history” was just the distribution of resource stocks left in each mine at

the end of the first period.

This example, and the one in the previous section, do nothing to contradict the usual

Arrow–Debreu theory, even in an intertemporal setting. That theory remains valid when

trading plans, prices, and lump-sum transfers can all be fixed now , remaining unchanged

at all future times. Yet what is so special about “now”, which allows trading plans, prices,

and lump-sum transfers to be set at this time and then to remain fixed for ever thereafter?

Why are the trading plans, prices, and lump-sum transfers for the future not those that

were already set some time ago in the past? And, if changes to past plans are allowed now,

what will happen when a new “now” comes around a little while later? Do trading plans,

prices, and lump-sum transfers remain at the levels which are being planned now, or will

they respond to changed circumstances if individuals happen to deviate from their original

(Nash equilibrium) trading plans? Since changes in trading plans do induce changes in

the prices needed to maintain equilibrium, as considered in Section 4, or in the transfers

needed for distributive justice, as considered in Section 5, subgame imperfections cannot

just be assumed away. The Arrow–Debreu theory remains logically consistent, but its

plausibility as a description of an ideally functioning intertemporal economy disappears

almost completely.

6.2. Sequential Allocations

The above discussion points to the conclusion that, even in a simple two period sequence

economy, each period’s equilibrium prices and economic policy variables will typically all

depend upon the state of the economy at the beginning of the period. Here “state” is

to be understood in its Markovian sense, as a sufficient statistic for all the past history

of the economy, so that knowledge of the state is enough to know everything relevant

for the future of the economy. Recent work in general equilibrium theory has begun to

consider equilibrium Markov processes (see especially Duffie, Geanakoplos, Mas-Colell and

McLennan, 1994, as well as Stokey and Lucas with Prescott, 1989), but much remains to

be done. However, it seems to me that a great deal can still be learned from models with

finite horizons or even just two periods. These allow the technical problems of recursion

in general infinite horizon Markov processes to be avoided while an appropriate conceptual
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framework is still being formulated.

This dependence of policy variables and equilibrium prices on the current state of the

economy suggests the need for an approach to intertemporal economics rather different

from that of Irving Fisher (1907, 1930), Hicks (1946), and Debreu (1959). Their apparatus

of “dated commodities” or “dated contingent commodities” is reminiscent of “open loop”

policy in control theory, in that it specifies what will happen at each future date in a model

with certainty, and at each future “date-event” when there is uncertainty. The proposal here

is to consider instead the equivalent of “closed loop” policies, describing what single period

allocation will come about as a function of the state at the start of that period. We may call

these “sequential allocations”. Such a description of the outcome of the economic system is

more general because it allows consideration of what will happen off any equilibrium path

of our dynamic model. The discussion of Section 6.1 above points to the need for a richer

formulation of this kind.

Sequential allocations like this can be considered in a rather general stochastic overlap-

ping generations model with a continuum of agents having bounded lifetimes. Each agent

can be both a consumer and a producer. There can be both aggregate and idiosyncratic

uncertainty. Each agent can have a personal “history” or state described in part by personal

capital stocks. But the personal state can also include any other variables affecting prefer-

ences, consumption and production possibilities, etc. Then there will be a Markov process

determining the same agent’s personal history one period later, conditional on consumption,

production, labor supply, and other economic decisions in the current period. Such personal

state variables can capture the effects of age, health, family circumstances, education, etc.

Each agent’s idiosyncratic Markov process can also be affected by an aggregate state which

can represent the physical environment, together with aspects of the economic system, pub-

lic goods, etc. In fact, the “history” or state of the economy as a whole is described by this

systemic state variable, together with the entire frequency distribution of individual agents’

personal states in the population of all living agents. This will be called the “macro state”,

for obvious reasons.

Of course, there are some technical problems even in the formulation of such a model.

There will be a continuum of individuals who, conditional on the evolution of the macro

state, have personal states following stochastically independent Markov processes. In par-
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ticular, if we consider just one period, and neglect the macro state for a moment, there will

be a continuum of independent random variables describing the individuals’ personal states.

As Gale (1979), Feldman and Gilles (1985) and Judd (1985) in particular have pointed out,

this leads to non-measurable sample functions describing the empirical distribution in the

population.

In fact, this should not be surprising. An American taxpayer’s social security number

gives no information about that person’s height, and we can think of the function from social

security number to height as approximately the realization of a continuum of independent

random variables. The function is extremely irregular, and not measurable in the limit as

one goes to a continuum of individuals. Yet, the joint distribution of Americans’ social

security numbers and heights is no doubt rather close to the product of two independent

distributions — one a well defined distribution of social security numbers, and another of

people’s heights.

This suggests a simpler escape from the technical problem of non-measurability than

that presented by resorting to finitely additive charges (Feldman and Gilles, 1985), non-

standard analysis (Anderson, 1991, Section 5), or alternative integrals (Bewley, 1986). In-

stead of a fixed population of individual labels and then random personal states for each,

one can consider instead a joint distribution of both individual labels and personal states.

For large enough populations the strong law of large numbers applies and tells us that

frequency distributions will match probability distributions.

A similar construction based on joint distributions can be used for the continuum of

individual stochastic processes used in the model described informally here. The result is a

description of a sequence economy that appears to be immensely rich, capable of embracing

many dynamic phenomena. It is also a step toward generalizing the Arrow–Debreu model

so that it becomes a collection of interacting dynamic processes, rather than just a means

of allocating resources once and for all.
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6.3. Sequential Competitive Equilibria

Within the sequential model described above, it is then natural to think of a sequential

competitive equilibrium as a process specifying the price vector in each period as a function

of the macro state, and also specifying each agent’s allocation as a function of both the macro

state and the agent’s own personal state. This would be for an equilibrium without lump-

sum transfers. The second efficiency theorem, however, forces us to consider equilibria with

transfers. They will typically specify how much each agent is allowed to spend each period

on current goods and services, as a function of both the macro state and the personal state.

Note that such transfers can substitute for all financial markets (including those for credit,

futures, insurance, etc.) because such markets are no more than a device for reallocating

claims to current expenditure between agents in different time periods and contingently

upon different events. Where there are traded financial assets, their holdings should be

included in the description of each agent’s personal state. Then each agent will be faced

with a separate budget constraint for each period, and for each macro state and personal

state that could occur at the start of that period.

Sequential equilibria of this kind raise many issues. One obvious question concerns

their existence. Standard techniques should be able to prove existence of an equilibrium in

each subeconomy that depends only on the macro state at the beginning of the subeconomy.

It is by no means obvious, however, even in the two period case, that later equilibria can

be selected in a way that depends only on the macro state at the beginning of these later

subeconomies. Typically, therefore, it may be necessary to allow the entire history of

previous macro states to affect what equilibrium prices emerge in each subeconomy. Then

each macro state would have to be expanded to include within its description a complete

history of all previous macro states. Some reduction in the dimensionality of the relevant

state space may well be possible, however, as indeed the results of Duffie et al. (1988) for

infinite horizon models suggest.

The presence of transfers or of other instruments of government economic policy, and

their dependence on the macro state, is an important new feature of such sequential models.

In particular, the macro state includes the interpersonal distribution of personal states,

which in turn is affected by the distribution of individual agents’ consumption, saving,

investment, production and work decisions in all previous periods. As was remarked in
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Section 1, this makes the macro state into a kind of “widespread externality.” This is

the public good aspect of the macro state in intertemporal models mentioned in Section

6.1.

6.4. Sequential Policy Analysis

The example of Section 5 shows the need to consider more carefully how the depen-

dence of future government policy on past actions by agents affects those agents’ incentives.

However, it does also show how limited may be the ability of governments to pursue redis-

tributive programs, even in the absence of information failures and other obstacles to ideal

lump-sum redistribution. Issues of “time (in)consistency” or, more exactly, of subgame

(im)perfection, arise not only in macroeconomics and not only when there are “distor-

tionary” taxes or public goods — they are inherent in intertemporal models of an economic

system. More interestingly, perhaps, the above example also shows how any individual deci-

sion in an intertemporal economy has a public good aspect, because of the predicted reaction

of government policy to earlier decisions by individual agents. This vital feature seems to be

missing from all but a very few of the intertemporal models that have been used for policy

analysis, especially those used by microeconomists. For some of the exceptions, see Rogers

(1986), Staiger and Tabellini (1987), Klein (1987), Chari (1988), Stokey (1989, 1991), Karp

and Newbery (1989), Maskin and Newbery (1990), Bliss (1991). Macroeconomists, on the

other hand, are very familiar with the “Lucas critique” concerning the government’s policy

reactions (Lucas, 1976), but do not seem to have brought out all its public good aspects.

Another limitation of the literature on public finance is that much of it appears to

consider only rather inflexible policies. Examples include a permanent change in income

tax rates, a permanent and constant new tax on fuels which produce carbon dioxide when

burnt, a permanent and irreversible move toward freer trade or market integration, etc.

Yet sequential economies call out for sequential policies that depend upon the macro state.

Previous sections of this paper have considered sequential lump-sum redistribution. It is

natural for policy economists to consider sequential commodity and income taxes, sequen-

tial regulation of industry, sequential policies to combat pollution, etc. And for economic

theorists to consider sequential budget decentralizations of incentive compatible sequential

allocation mechanisms, and sequential rules for providing public goods.
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Indeed, sequential policies of this kind do play an important role in macroeconomic

discussion of issues like stabilization policy. It is surely time to embody them in microeco-

nomic policy models. In real economies, they are inevitable anyway. Even a government

which tries to ignore fluctuations in the macroeconomy, and maintains constant tax rates

and public expenditure programs regardless of the state of the business cycle, will find itself

balancing its finances and meeting its budget deficit with a countercyclical level of borrow-

ing. In other words, unless there is no uncertainty whatsoever, its borrowing policy at least

will be sequential, in the sense of depending upon the macro state.

This is a simple observation, yet it has profound implications. Following Sen (1972),

in Hammond (1986, 1990) the need for a balancing policy to accompany any public (or

private) sector project or tax reform was pointed out. The reason is that, unlike the

private sector which is usually modelled as balancing its finances optimally, the public

sector usually relies on unspecified tax or borrowing policies to meet any shortfall it may

experience. Yet these balancing policies are a crucial part of a project or tax reform —

indeed, in Hammond (1986) there are non-trivial cases where the only immediate effect of a

project is to generate a surplus for the government, which will then only benefit individuals

once it gets spent in some useful way (including the possibility of reducing existing tax

revenue requirements). This is the balancing part of the policy. And, as should be clear

from the argument of the previous paragraph, this balancing policy will have to depend

upon the macro state, as well as on the size of the increased deficit or surplus that has to

be balanced. A similar phenomenon applies in connection with the gains from increased

production efficiency, from trade liberalization, or from forming a customs union. To achieve

the Pareto improvements claimed in most textbooks, the gainers from such “supply-side”

policies have to pay lump-sum compensation to the losers — to those who have human

or physical capital invested irreversibly in industries which cease to be competitive, for

instance. This lump-sum compensation depends on what the individual’s net trade would

have been in the absence of a reform. In a sequential economy, there has to be something

equivalent to a lump-sum adjustment to each individual’s budget constraint in each period,

and for each macro and personal state in each period. Moreover, each such adjustment

depends on what the individual would have consumed and produced in that period, for

that macro and personal state. We are back with sequential lump-sum transfers.
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In the more realistic case where lump-sum compensation is impossible, Dixit and Nor-

man (1980, 1986) were still able to demonstrate the gains from trade, using commodity

(and income) tax adjustments to compensate losers. In the static model of Hammond and

Sempere (1995) we show how to generate Pareto improvements by instituting a total freeze

on consumer prices, wages, and dividends, combined with poll subsidies and perfectly flex-

ible tax rates. This leaves producer prices free to adjust so as to clear all markets. In a

sequential setting, the corresponding policy requires freezing consumer prices, wages and

dividends at levels they would have had, as functions of the macro state, in the absence of

any reform. Obviously there are enormous practical difficulties in determining what these

would have been, let alone in arranging the required freeze. This leads us to regard the

possibility of Pareto gains as largely illusory. Instead, one should be evaluating combina-

tions of sequential supply side policy reforms together with imperfect sequential policies

that lighten the burden on the most deserving losers.

In fact, there is no reason why only balancing or compensating policies should be

sequential. Public sector projects can often be improved by making them more responsive

to changes in the macro state — e.g., by concentrating projects for (re)constructing a

country’s infrastructure during periods when the economy would otherwise be in recession,

or by adapting the intensity of (re)training programs to the level of unemployment. The

same is true of tax policies, of course. Economic policy as a whole is almost inevitably

sequential; good economic policy will take into account the sequential nature of the economy;

models for evaluating policy must then also be sequential.

7. Concluding Remarks

The paper started by formulating two Arrow–Debreu market games whose straightforward

Nash equilibria are Walrasian. Both games had an auctioneer setting prices to maximize net

sales value. In the second an additional redistributive agency maximizes welfare through

optimal lump-sum transfers. In intertemporal economies, however, it was shown that sub-

game imperfections can arise because agents understand how current decisions such as those

determining investment influence either future prices (with finitely many agents), or future

redistribution (even in continuum economies). The latter observation undermines the sec-

ond efficiency theorem of welfare economics in sequential environments. Indeed, when the

32



state of the economy affects future policy, it functions like a “widespread externality.”

Finally, some readers may find it odd that I should contribute a piece to this volume

which points out some limitations of the Arrow–Debreu methodology. Yet my enjoyable

interaction with Kenneth Arrow over many years makes me keenly aware that nobody is

readier than he is to accept that there are such limitations, while also seeking to adapt the

Arrow–Debreu framework in order to overcome them. Unfortunately, limitations of space

and time prevent me from exploring here how an equilibrium theory of stochastic allocation

processes retains much of the formalism and essential insights of Arrow’s pioneering work

on the role of securities markets in a simple sequence economy, while at the same time

overcoming the subgame imperfections noticed in this contribution.
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