FIGURE 6.1. In each panel 100 pairs $x_i, y_i$ are generated at random from the blue curve with Gaussian errors: $Y = \sin(4X) + \varepsilon$, $X \sim U[0, 1]$, $\varepsilon \sim N(0, 1/3)$. In the left panel the green curve is the result of a 30-nearest-neighbor running-mean smoother. The red point is the fitted constant $\hat{f}(x_0)$, and the red circles indicate those observations contributing to the fit at $x_0$. The solid yellow region indicates the weights assigned to observations. In the right panel, the green curve is the kernel-weighted average, using an Epanechnikov kernel with (half) window width $\lambda = 0.2$. 
FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each has been calibrated to integrate to 1. The tri-cube kernel is compact and has two continuous derivatives at the boundary of its support, while the Epanechnikov kernel has none. The Gaussian kernel is continuously differentiable, but has infinite support.
**FIGURE 6.3.** The locally weighted average has bias problems at or near the boundaries of the domain. The true function is approximately linear here, but most of the observations in the neighborhood have a higher mean than the target point, so despite weighting, their mean will be biased upwards. By fitting a locally weighted linear regression (right panel), this bias is removed to first order.
FIGURE 6.4. The green points show the equivalent kernel $l_i(x_0)$ for local regression. These are the weights in $\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0)y_i$, plotted against their corresponding $x_i$. For display purposes, these have been rescaled, since in fact they sum to 1. Since the yellow shaded region is the (rescaled) equivalent kernel for the Nadaraya–Watson local average, we see how local regression automatically modifies the weighting kernel to correct for biases due to asymmetry in the smoothing window.
FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true function. Local quadratic fits tend to eliminate this bias.
**FIGURE 6.6.** The variances functions $||l(x)||^2$ for local constant, linear and quadratic regression, for a metric bandwidth ($\lambda = 0.2$) tri-cube kernel.
FIGURE 6.7. Equivalent kernels for a local linear regression smoother (tri-cube kernel; orange) and a smoothing spline (blue), with matching degrees of freedom. The vertical spikes indicates the target points.
FIGURE 6.8. The left panel shows three-dimensional data, where the response is the velocity measurements on a galaxy, and the two predictors record positions on the celestial sphere. The unusual “star”-shaped design indicates the way the measurements were made, and results in an extremely irregular boundary. The right panel shows the results of local linear regression smoothing in $\mathbb{R}^2$, using a nearest-neighbor window with 15% of the data.
FIGURE 6.9. Three-dimensional smoothing example. The response is (cube-root of) ozone concentration, and the three predictors are temperature, wind speed and radiation. The trellis display shows ozone as a function of radiation, conditioned on intervals of temperature and wind speed (indicated by darker green or orange shaded bars). Each panel contains about 40% of the range of each of the conditioned variables. The curve in each panel is a univariate local linear regression, fit
FIGURE 6.10. In each panel the aorta diameter is modeled as a linear function of age. The coefficients of this model vary with gender and depth down the aorta (left is near the top, right is low down). There is a clear trend in the coefficients of the linear model.
FIGURE 6.11. The intercept and slope of age as a function of distance down the aorta, separately for males and females. The yellow bands indicate one standard error.
**FIGURE 6.12.** Each plot shows the binary response CHD (coronary heart disease) as a function of a risk factor for the South African heart disease data. For each plot we have computed the fitted prevalence of CHD using a local linear logistic regression model. The unexpected increase in the prevalence of CHD at the lower ends of the ranges is because these are retrospective data, and some of the subjects had already undergone treatment to reduce their blood pressure and weight. The shaded region in the plot indicates an estimated pointwise standard error band.
FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the CHD group). The density estimate at each point is the average contribution from each of the kernels at that point. We have scaled the kernels down by a factor of 10 to make the graph readable.
**FIGURE 6.14.** The left panel shows the two separate density estimates for systolic blood pressure in the CHD versus no-CHD groups, using a Gaussian kernel density estimate in each. The right panel shows the estimated posterior probabilities for CHD, using (6.25).
FIGURE 6.15. The population class densities may have interesting structure (left) that disappears when the posterior probabilities are formed (right).
FIGURE 6.16. Gaussian radial basis functions in $\mathbb{R}$ with fixed width can leave holes (top panel). Renormalized Gaussian radial basis functions avoid this problem, and produce basis functions similar in some respects to $B$-splines.
FIGURE 6.17. Application of mixtures to the heart disease risk-factor study. (Top row:) Histograms of Age for the no CHD and CHD groups separately, and combined. (Bottom row:) estimated component densities from a Gaussian mixture model, (bottom left, bottom middle); (bottom right:) Estimated component densities (blue and orange) along with the estimated mixture density (green). The orange density has a very large standard deviation, and approximates a uniform density.