
Multiple Hypothesis Testing

• This session focuses on multiple hypothesis testing.

• A single null hypothesis might look like H0: the expected
blood pressures of mice in the control and treatment groups
are the same.

• We will now consider testing m null hypotheses,
H01, . . . ,H0m, where e.g. H0j: the expected values of the
jth biomarker among mice in the control and treatment
groups are equal.

• In this setting, we need to be careful to avoid incorrectly
rejecting too many null hypotheses, i.e. having too many
false positives.
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A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple “yes-or-no”
questions, such as:

• Is the true coefficient βj in a linear regression equal to zero?

• Does the expected blood pressure among mice in the
treatment group equal the expected blood pressure among
mice in the control group?

Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses

2. Construct the test statistic

3. Compute the p-value

4. Decide whether to reject the null hypothesis
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1. Define the Null and Alternative Hypotheses

• We divide the world into null and alternative hypotheses.

• The null hypothesis, H0, is the default state of belief about
the world. For instance:

1. The true coefficient βj equals zero.
2. There is no difference in the expected blood pressures.

• The alternative hypothesis, Ha, represents something
different and unexpected. For instance:

1. The true coefficient βj is non-zero.
2. There is a difference in the expected blood pressures.
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2. Construct the Test Statistic

• The test statistic summarizes the extent to which our data
are consistent with H0.

• Let µ̂t / µ̂c respectively denote the average blood pressure
for the nt / nc mice in the treatment and control groups.

• To test H0 : µt = µc, we use a two-sample t-statistic

T =
µ̂t − µ̂c

s
√

1
nt

+ 1
nc
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3. Compute the p-Value
• The p-value is the probability of observing a test statistic

at least as extreme as the observed statistic, under the
assumption that H0 is true.

• A small p-value provides evidence against H0.
• Suppose we compute T = 2.33 for our test of H0 : µt = µc.
• Under H0, T ∼ N(0, 1) for a two-sample t-statistic.
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• The p-value is 0.02 because, if H0 is true, we would only
see |T | this large 2% of the time.
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4. Decide Whether to Reject H0, Part 1

• A small p-value indicates that such a large value of the test
statistic is unlikely to occur under H0.

• So, a small p-value provides evidence against H0.

• If the p-value is sufficiently small, then we will want to
reject H0 (and, therefore, make a potential “discovery”).

• But how small is small enough? To answer this, we need to
understand the Type I error.
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4. Decide Whether to Reject H0, Part 2
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4. Decide Whether to Reject H0, Part 3

• The Type I error rate is the probability of making a Type I
error.

• We want to ensure a small Type I error rate.

• If we only reject H0 when the p-value is less than α, then
the Type I error rate will be at most α.

• So, we reject H0 when the p-value falls below some α: often
we choose α to equal 0.05 or 0.01 or 0.001.
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Multiple Testing

• Now suppose that we wish to test m null hypotheses,
H01, . . . ,H0m.

• Can we simply reject all null hypotheses for which the
corresponding p-value falls below (say) 0.01?

• If we reject all null hypotheses for which the p-value falls
below 0.01, then how many Type I errors will we make?
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A Thought Experiment

• Suppose that we flip a fair coin ten times, and we wish to
test H0: the coin is fair.

• We’ll probably get approximately the same number of heads
and tails.

• The p-value probably won’t be small. We do not reject H0.

• But what if we flip 1,024 fair coins ten times each?
• We’d expect one coin (on average) to come up all tails.
• The p-value for the null hypothesis that this particular coin

is fair is less than 0.002!
• So we would conclude it is not fair, i.e. we reject H0, even

though it’s a fair coin.

• If we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!

14 / 38



A Thought Experiment

• Suppose that we flip a fair coin ten times, and we wish to
test H0: the coin is fair.
• We’ll probably get approximately the same number of heads

and tails.
• The p-value probably won’t be small. We do not reject H0.

• But what if we flip 1,024 fair coins ten times each?
• We’d expect one coin (on average) to come up all tails.
• The p-value for the null hypothesis that this particular coin

is fair is less than 0.002!
• So we would conclude it is not fair, i.e. we reject H0, even

though it’s a fair coin.

• If we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!

14 / 38



A Thought Experiment

• Suppose that we flip a fair coin ten times, and we wish to
test H0: the coin is fair.
• We’ll probably get approximately the same number of heads

and tails.
• The p-value probably won’t be small. We do not reject H0.

• But what if we flip 1,024 fair coins ten times each?

• We’d expect one coin (on average) to come up all tails.
• The p-value for the null hypothesis that this particular coin

is fair is less than 0.002!
• So we would conclude it is not fair, i.e. we reject H0, even

though it’s a fair coin.

• If we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!

14 / 38



A Thought Experiment

• Suppose that we flip a fair coin ten times, and we wish to
test H0: the coin is fair.
• We’ll probably get approximately the same number of heads

and tails.
• The p-value probably won’t be small. We do not reject H0.

• But what if we flip 1,024 fair coins ten times each?
• We’d expect one coin (on average) to come up all tails.

• The p-value for the null hypothesis that this particular coin
is fair is less than 0.002!

• So we would conclude it is not fair, i.e. we reject H0, even
though it’s a fair coin.

• If we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!

14 / 38



A Thought Experiment

• Suppose that we flip a fair coin ten times, and we wish to
test H0: the coin is fair.
• We’ll probably get approximately the same number of heads

and tails.
• The p-value probably won’t be small. We do not reject H0.

• But what if we flip 1,024 fair coins ten times each?
• We’d expect one coin (on average) to come up all tails.
• The p-value for the null hypothesis that this particular coin

is fair is less than 0.002!
• So we would conclude it is not fair, i.e. we reject H0, even

though it’s a fair coin.

• If we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!

14 / 38



A Thought Experiment

• Suppose that we flip a fair coin ten times, and we wish to
test H0: the coin is fair.
• We’ll probably get approximately the same number of heads

and tails.
• The p-value probably won’t be small. We do not reject H0.

• But what if we flip 1,024 fair coins ten times each?
• We’d expect one coin (on average) to come up all tails.
• The p-value for the null hypothesis that this particular coin

is fair is less than 0.002!
• So we would conclude it is not fair, i.e. we reject H0, even

though it’s a fair coin.

• If we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!

14 / 38



Multiple Testing: Even XKCD Weighs In

https://xkcd.com/882/

15 / 38
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The Challenge of Multiple Testing

• Suppose we test H01, . . . ,H0m, all of which are true, and
reject any null hypothesis with a p-value below 0.01.

• Then we expect to falsely reject approximately 0.01×m
null hypotheses.

• If m = 10,000, then we expect to falsely reject 100 null
hypotheses by chance!

• That’s a lot of Type I errors, i.e. false positives!
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The Family-Wise Error Rate

• The family-wise error rate (FWER) is the probability of
making at least one Type I error when conducting m
hypothesis tests.

• FWER = Pr(V ≥ 1)

H0 is True H0 is False Total
Reject H0 V S R
Do Not Reject H0 U W m−R
Total m0 m−m0 m
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Challenges in Controlling the Family-Wise Error Rate

FWER = 1− Pr(do not falsely reject any null hypotheses)

= 1− Pr
(⋂m

j=1 {do not falsely reject H0j}
)
.

If the tests are independent and all H0j are true then

FWER = 1−
m∏
j=1

(1− α) = 1− (1− α)m.
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The Bonferroni Correction

FWER = Pr(falsely reject at least one null hypothesis)

= Pr(∪mj=1Aj)

≤
m∑
j=1

Pr(Aj)

where Aj is the event that we falsely reject the jth null
hypothesis.

• If we only reject hypotheses when the p-value is less than
α/m, then

FWER ≤
m∑
j=1

Pr(Aj) ≤
m∑
j=1

α

m
= m× α

m
= α,

because Pr(Aj) ≤ α/m.
• This is the Bonferroni Correction: to control FWER at

level α, reject any null hypothesis with p-value below α/m.
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Fund Manager Data

Manager Mean, x̄ s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

• H0j: the jth manager’s expected excess return equals zero.

• If we reject H0j if the p-value is less than α = 0.05, then we
will conclude that the first and third managers have
significantly non-zero excess returns.

• However, we have tested multiple hypotheses, so the
FWER is greater than 0.05.
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Fund Manager Data with Bonferroni Correction

Manager Mean, x̄ s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

• Using a Bonferroni correction, we reject for p-values less
than α/m = 0.05/5 = 0.01.

• Consequently, we will reject the null hypothesis only for
the first manager.

• Now the FWER is at most 0.05.
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Holm’s Method for Controlling the FWER

1. Compute p-values, p1, . . . , pm, for the m null hypotheses
H01, . . . ,H0m.

2. Order the m p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m).

3. Define

L = min

{
j : p(j) >

α

m+ 1− j

}
.

4. Reject all null hypotheses H0j for which pj < p(L).

• Holm’s method controls the FWER at level α.
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Holm’s Method on the Fund Manager Data

Manager Mean, x̄ s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

• The ordered p-values are p(1) = 0.006, p(2) = 0.012,
p(3) = 0.601, p(4) = 0.756 and p(5) = 0.918.

• The Holm procedure rejects the first two null hypotheses,
because
• p(1) = 0.006 < 0.05/(5 + 1− 1) = 0.0100
• p(2) = 0.012 < 0.05/(5 + 1− 2) = 0.0125,
• p(3) = 0.601 > 0.05/(5 + 1− 3) = 0.0167.

• Holm rejects H0 for the first and third managers, but
Bonferroni only rejects H0 for the first manager.
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A Comparison with m = 10 p-values
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• Aim to control FWER at 0.05.

• p-values below the black horizontal line are rejected by
Bonferroni.

• p-values below the blue line are rejected by Holm.

• Holm and Bonferroni make the same conclusion on the
black points, but only Holm rejects for the red point.
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A More Extreme Example
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• Now five hypotheses are rejected by Holm but not by
Bonferroni ....

• .... even though both control FWER at 0.05.
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Holm or Bonferroni?

• Bonferroni is simple ... reject any null hypothesis with a
p-value below α/m.

• Holm is slightly more complicated, but it will lead to more
rejections while controlling FWER!!

• So, Holm is a better choice!
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Other Methods

• There are lots of specialized approaches to control FWER.

• For example:
• Tukey’s Method: for pairwise comparisons of the difference

in expected means among a number of groups.
• Scheffé’s Method: for testing arbitrary linear combinations

of a set of expected means, e.g.

H0 :
1

2
(µ1 + µ3) =

1

3
(µ2 + µ4 + µ5) .

• Bonferroni and Holm are general procedures that will work
in most settings. However, in certain special cases,
methods such as Tukey and Scheffé can give better results:
i.e. more rejections while maintaining FWER control.
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The False Discovery Rate

• Back to this table:
H0 is True H0 is False Total

Reject H0 V S R
Do Not Reject H0 U W m−R
Total m0 m−m0 m

• The FWER rate focuses on controlling Pr(V > 1), i.e., the
probability of falsely rejecting any null hypothesis.

• This is a tough ask when m is large! It will cause us to be
super conservative (i.e. to very rarely reject).

• Instead, we can control the false discovery rate:

FDR = E(V/R).
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Intuition Behind the False Discovery Rate

FDR = E

(
V

R

)
= E

(
number of false rejections

total number of rejections

)

• A scientist conducts a hypothesis test on each of
m = 20, 000 drug candidates.

• She wants to identify a smaller set of promising candidates
to investigate further.

• She wants reassurance that this smaller set is really
“promising”, i.e. not too many falsely rejected H0’s.

• FWER controls Pr(at least one false rejection).

• FDR controls the fraction of candidates in the smaller set
that are really false rejections. This is what she needs!
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Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.

2. Compute p-values p1, . . . , pm for the null hypotheses
H01, . . . ,H0m.

3. Order the p-values so that p(1) ≤ p(2) ≤ . . . ≤ p(m).

4. Define L = max
{
j : p(j) < qj/m

}
.

5. Reject all null hypotheses H0j for which pj ≤ p(L).

Then, FDR ≤ q.
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A Comparison of FDR Versus FWER, Part 1

• Here, p-values for
m = 2, 000 null hypotheses
are displayed.

• To control FWER at level
α = 0.1 with Bonferroni:
reject hypotheses below
green line. (No rejections!)

• To control FDR at level
q = 0.1 with
Benjamini-Hochberg: reject
hypotheses shown in blue.
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A Comparison of FDR Versus FWER, Part 2

• Consider m = 5 p-values from the Fund data:
p1 = 0.006, p2 = 0.918, p3 = 0.012, p4 = 0.601, p5 = 0.756.

• Then p(1) = 0.006, p(2) = 0.012, p(3) = 0.601, p(4) = 0.756,
and p(5) = 0.918.

• To control FDR at level q = 0.05 using
Benjamini-Hochberg:
• Notice that p(1) < 0.05/5, p(2) < 2× 0.05/5,
p(3) > 3× 0.05/5, p(4) > 4× 0.05/5, and p(5) > 5× 0.05/5.

• So, we reject H01 and H03.

• To control FWER at level α = 0.05 using Bonferroni:
• We reject any null hypothesis for which the p-value is less

than 0.05/5.
• So, we reject only H01.
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Re-Sampling Approaches

• So far, we have assumed that we want to test some null
hypothesis H0 with some test statistic T , and that we know
(or can assume) the distribution of T under H0.

• This allows us to compute the p-value.
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T=2.33

• What if this theoretical null distribution is unknown?
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A Re-Sampling Approach for a Two-Sample t-Test,
Part 1

• Suppose we want to test H0 : E(X) = E(Y ) versus
Ha : E(X) 6= E(Y ), using nX independent observations
from X and nY independent observations from Y .

• The two-sample t-statistic takes the form

T =
µ̂X − µ̂Y

s
√

1/nX + 1/nY
.

• If nX and nY are large, then T approximately follows a
N(0, 1) distribution under H0.

• If nX and nY are small, then we don’t know the theoretical
null distribution of T .

• Let’s take a permutation or re-sampling approach....
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A Re-Sampling Approach for a Two-Sample t-Test,
Part 2

1. Compute the two-sample t-statistic T on the original data
x1, . . . , xnX and y1, . . . , ynY .

2. For b = 1, . . . , B (where B is a large number, like 1, 000):

2.1 Randomly shuffle the nx + nY observations.
2.2 Call the first nX shuffled observations x∗1, . . . , x

∗
nX

and call
the remaining observations y∗1 , . . . , y

∗
nY

.
2.3 Compute a two-sample t-statistic on the shuffled data, and

call it T ∗b.

3. The p-value is given by∑B
b=1 1(|T ∗b|≥|T |)

B
.
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Application to Gene Expression Data, Part 1

Null Distribution of Test Statistic for 11th Gene

−4 −2 0 2 4

0
10

0
20

0
30

0
40

0

T=−2.0936

Theoretical p-value is 0.041. Re-sampling p-value is 0.042.
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Application to Gene Expression Data, Part 2

Null Distribution of Test Statistic for 877th Gene
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T=−0.5696

Theoretical p-value is 0.571. Re-sampling p-value is 0.673.
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More on Re-Sampling Approaches

• Re-sampling approaches are useful if the theoretical null
distribution is unavailable, or requires stringent
assumptions. (So, they’re always useful!)

• An extension of the re-sampling approach to compute a
p-value can be used to control FDR.

• This example involved a two-sample t-test, but similar
approaches can be developed for other test statistics.
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