Multiple Hypothesis Testing

- This session focuses on multiple hypothesis testing.

Multiple Hypothesis Testing

- This session focuses on multiple hypothesis testing.
- A single null hypothesis might look like H_{0} : the expected blood pressures of mice in the control and treatment groups are the same.

Multiple Hypothesis Testing

- This session focuses on multiple hypothesis testing.
- A single null hypothesis might look like H_{0} : the expected blood pressures of mice in the control and treatment groups are the same.
- We will now consider testing m null hypotheses, $H_{01}, \ldots, H_{0 m}$, where e.g. $H_{0 j}$: the expected values of the $j^{\text {th }}$ biomarker among mice in the control and treatment groups are equal.

Multiple Hypothesis Testing

- This session focuses on multiple hypothesis testing.
- A single null hypothesis might look like H_{0} : the expected blood pressures of mice in the control and treatment groups are the same.
- We will now consider testing m null hypotheses, $H_{01}, \ldots, H_{0 m}$, where e.g. $H_{0 j}$: the expected values of the $j^{\text {th }}$ biomarker among mice in the control and treatment groups are equal.
- In this setting, we need to be careful to avoid incorrectly rejecting too many null hypotheses, i.e. having too many false positives.

A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_{j} in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?

A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_{j} in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?
Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses

A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_{j} in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?
Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses
2. Construct the test statistic

A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_{j} in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?
Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses
2. Construct the test statistic

3 . Compute the p-value

A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple "yes-or-no" questions, such as:

- Is the true coefficient β_{j} in a linear regression equal to zero?
- Does the expected blood pressure among mice in the treatment group equal the expected blood pressure among mice in the control group?
Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses
2. Construct the test statistic
3. Compute the p-value
4. Decide whether to reject the null hypothesis

1. Define the Null and Alternative Hypotheses

- We divide the world into null and alternative hypotheses.
- The null hypothesis, H_{0}, is the default state of belief about the world. For instance:

1. The true coefficient β_{j} equals zero.
2. There is no difference in the expected blood pressures.

1. Define the Null and Alternative Hypotheses

- We divide the world into null and alternative hypotheses.
- The null hypothesis, H_{0}, is the default state of belief about the world. For instance:

1. The true coefficient β_{j} equals zero.
2. There is no difference in the expected blood pressures.

- The alternative hypothesis, H_{a}, represents something different and unexpected. For instance:

1. The true coefficient β_{j} is non-zero.
2. There is a difference in the expected blood pressures.

2. Construct the Test Statistic

- The test statistic summarizes the extent to which our data are consistent with H_{0}.

2. Construct the Test Statistic

- The test statistic summarizes the extent to which our data are consistent with H_{0}.
- Let $\hat{\mu}_{t} / \hat{\mu}_{c}$ respectively denote the average blood pressure for the n_{t} / n_{c} mice in the treatment and control groups.

2. Construct the Test Statistic

- The test statistic summarizes the extent to which our data are consistent with H_{0}.
- Let $\hat{\mu}_{t} / \hat{\mu}_{c}$ respectively denote the average blood pressure for the n_{t} / n_{c} mice in the treatment and control groups.
- To test $H_{0}: \mu_{t}=\mu_{c}$, we use a two-sample t-statistic

$$
T=\frac{\hat{\mu}_{t}-\hat{\mu}_{c}}{s \sqrt{\frac{1}{n_{t}}+\frac{1}{n_{c}}}}
$$

3. Compute the p-Value

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_{0} is true.

3. Compute the p-Value

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_{0} is true.
- A small p-value provides evidence against H_{0}.

3. Compute the p-Value

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_{0} is true.
- A small p-value provides evidence against H_{0}.
- Suppose we compute $T=2.33$ for our test of $H_{0}: \mu_{t}=\mu_{c}$.

3. Compute the p-Value

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_{0} is true.
- A small p-value provides evidence against H_{0}.
- Suppose we compute $T=2.33$ for our test of $H_{0}: \mu_{t}=\mu_{c}$.
- Under $H_{0}, T \sim N(0,1)$ for a two-sample t-statistic.

3. Compute the p-Value

- The p-value is the probability of observing a test statistic at least as extreme as the observed statistic, under the assumption that H_{0} is true.
- A small p-value provides evidence against H_{0}.
- Suppose we compute $T=2.33$ for our test of $H_{0}: \mu_{t}=\mu_{c}$.
- Under $H_{0}, T \sim N(0,1)$ for a two-sample t-statistic.

- The p-value is 0.02 because, if H_{0} is true, we would only see $|T|$ this large 2% of the time.

4. Decide Whether to Reject H_{0}, Part 1

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_{0}.

4. Decide Whether to Reject H_{0}, Part 1

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_{0}.
- So, a small p-value provides evidence against H_{0}.

4. Decide Whether to Reject H_{0}, Part 1

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_{0}.
- So, a small p-value provides evidence against H_{0}.
- If the p-value is sufficiently small, then we will want to reject H_{0} (and, therefore, make a potential "discovery").

4. Decide Whether to Reject H_{0}, Part 1

- A small p-value indicates that such a large value of the test statistic is unlikely to occur under H_{0}.
- So, a small p-value provides evidence against H_{0}.
- If the p-value is sufficiently small, then we will want to reject H_{0} (and, therefore, make a potential "discovery").
- But how small is small enough? To answer this, we need to understand the Type I error.

4. Decide Whether to Reject H_{0}, Part 2

		Truth	
		H_{0}	H_{a}
Decision	Reject H_{0} Do Not Reject H_{0}	Type I Error Correct	Correct Type II Error

4. Decide Whether to Reject H_{0}, Part 2

The null hypothesis holds, and we didn't reject it!			
		Truth	
		H_{0}	H_{a}
Decision	Reject H_{0} Do Not Reject H_{0}	Typl I Error	Correct
	Correct	Type II Error	

4. Decide Whether to Reject H_{0}, Part 2

4. Decide Whether to Reject H_{0}, Part 2

The null hypothesis doesn't hold, and we didn't reject it!

| Decision | Reject H_{0}
 Do Not Reject H_{0} | Type I Error |
| :--- | :--- | :---: | :---: | :---: |
| | Correct | |
| Type II Error | | |
| | | |

4. Decide Whether to Reject H_{0}, Part 2

4. Decide Whether to Reject H_{0}, Part 3

- The Type I error rate is the probability of making a Type I error.
- We want to ensure a small Type I error rate.

4. Decide Whether to Reject H_{0}, Part 3

- The Type I error rate is the probability of making a Type I error.
- We want to ensure a small Type I error rate.
- If we only reject H_{0} when the p-value is less than α, then the Type I error rate will be at most α.

4. Decide Whether to Reject H_{0}, Part 3

- The Type I error rate is the probability of making a Type I error.
- We want to ensure a small Type I error rate.
- If we only reject H_{0} when the p-value is less than α, then the Type I error rate will be at most α.
- So, we reject H_{0} when the p-value falls below some α : often we choose α to equal 0.05 or 0.01 or 0.001 .

Multiple Testing

- Now suppose that we wish to test m null hypotheses, $H_{01}, \ldots, H_{0 m}$.

Multiple Testing

- Now suppose that we wish to test m null hypotheses, $H_{01}, \ldots, H_{0 m}$.
- Can we simply reject all null hypotheses for which the corresponding p-value falls below (say) 0.01 ?

Multiple Testing

- Now suppose that we wish to test m null hypotheses, $H_{01}, \ldots, H_{0 m}$.
- Can we simply reject all null hypotheses for which the corresponding p-value falls below (say) 0.01 ?
- If we reject all null hypotheses for which the p-value falls below 0.01 , then how many Type I errors will we make?

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_{0} : the coin is fair.

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_{0} : the coin is fair.
- We'll probably get approximately the same number of heads and tails.
- The p-value probably won't be small. We do not reject H_{0}.

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_{0} : the coin is fair.
- We'll probably get approximately the same number of heads and tails.
- The p-value probably won't be small. We do not reject H_{0}.
- But what if we flip 1,024 fair coins ten times each?

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_{0} : the coin is fair.
- We'll probably get approximately the same number of heads and tails.
- The p-value probably won't be small. We do not reject H_{0}.
- But what if we flip 1,024 fair coins ten times each?
- We'd expect one coin (on average) to come up all tails.

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_{0} : the coin is fair.
- We'll probably get approximately the same number of heads and tails.
- The p-value probably won't be small. We do not reject H_{0}.
- But what if we flip 1,024 fair coins ten times each?
- We'd expect one coin (on average) to come up all tails.
- The p-value for the null hypothesis that this particular coin is fair is less than 0.002 !
- So we would conclude it is not fair, i.e. we reject H_{0}, even though it's a fair coin.

A Thought Experiment

- Suppose that we flip a fair coin ten times, and we wish to test H_{0} : the coin is fair.
- We'll probably get approximately the same number of heads and tails.
- The p-value probably won't be small. We do not reject H_{0}.
- But what if we flip 1,024 fair coins ten times each?
- We'd expect one coin (on average) to come up all tails.
- The p-value for the null hypothesis that this particular coin is fair is less than 0.002 !
- So we would conclude it is not fair, i.e. we reject H_{0}, even though it's a fair coin.
- If we test a lot of hypotheses, we are almost certain to get one very small p-value by chance!

Multiple Testing: Even XKCD Weighs In

https://xkcd.com/882/

The Challenge of Multiple Testing

- Suppose we test $H_{01}, \ldots, H_{0 m}$, all of which are true, and reject any null hypothesis with a p-value below 0.01 .

The Challenge of Multiple Testing

- Suppose we test $H_{01}, \ldots, H_{0 m}$, all of which are true, and reject any null hypothesis with a p-value below 0.01 .
- Then we expect to falsely reject approximately $0.01 \times m$ null hypotheses.

The Challenge of Multiple Testing

- Suppose we test $H_{01}, \ldots, H_{0 m}$, all of which are true, and reject any null hypothesis with a p-value below 0.01 .
- Then we expect to falsely reject approximately $0.01 \times m$ null hypotheses.
- If $m=10,000$, then we expect to falsely reject 100 null hypotheses by chance!

The Challenge of Multiple Testing

- Suppose we test $H_{01}, \ldots, H_{0 m}$, all of which are true, and reject any null hypothesis with a p-value below 0.01 .
- Then we expect to falsely reject approximately $0.01 \times m$ null hypotheses.
- If $m=10,000$, then we expect to falsely reject 100 null hypotheses by chance!
- That's a lot of Type I errors, i.e. false positives!

The Family-Wise Error Rate

- The family-wise error rate (FWER) is the probability of making at least one Type I error when conducting m hypothesis tests.

The Family-Wise Error Rate

- The family-wise error rate (FWER) is the probability of making at least one Type I error when conducting m hypothesis tests.
- FWER $=\operatorname{Pr}(V \geq 1)$

	H_{0} is True	H_{0} is False	Total
Reject H_{0}	V	S	R
Do Not Reject H_{0}	U	W	$m-R$
Total	m_{0}	$m-m_{0}$	m

Challenges in Controlling the Family-Wise Error Rate

$$
\begin{aligned}
\text { FWER } & =1-\operatorname{Pr}(\text { do not falsely reject any null hypotheses }) \\
& \left.=1-\operatorname{Pr}\left(\bigcap_{j=1}^{m} \text { do not falsely reject } H_{0 j}\right\}\right) .
\end{aligned}
$$

Challenges in Controlling the Family-Wise Error Rate

$$
\begin{aligned}
\text { FWER } & =1-\operatorname{Pr}(\text { do not falsely reject any null hypotheses }) \\
& =1-\operatorname{Pr}\left(\bigcap_{j=1}^{m}\left\{\text { do not falsely reject } H_{0 j}\right\}\right) .
\end{aligned}
$$

If the tests are independent and all $H_{0 j}$ are true then

$$
\mathrm{FWER}=1-\prod_{j=1}^{m}(1-\alpha)=1-(1-\alpha)^{m}
$$

Challenges in Controlling the Family-Wise Error Rate

FWER $=1-\operatorname{Pr}$ (do not falsely reject any null hypotheses) $=1-\operatorname{Pr}\left(\bigcap_{j=1}^{m}\left\{\right.\right.$ do not falsely reject $\left.\left.H_{0 j}\right\}\right)$.
If the tests are independent and all $H_{0 j}$ are true then

$$
\mathrm{FWER}=1-\prod_{j=1}^{m}(1-\alpha)=1-(1-\alpha)^{m}
$$

The Bonferroni Correction

FWER $=\operatorname{Pr}($ falsely reject at least one null hypothesis $)$

$$
\begin{aligned}
& =\operatorname{Pr}\left(\cup_{j=1}^{m} A_{j}\right) \\
& \leq \sum_{j=1}^{m} \operatorname{Pr}\left(A_{j}\right)
\end{aligned}
$$

where A_{j} is the event that we falsely reject the j th null hypothesis.

The Bonferroni Correction

FWER $=\operatorname{Pr}$ (falsely reject at least one null hypothesis)

$$
\begin{aligned}
& =\operatorname{Pr}\left(\cup_{j=1}^{m} A_{j}\right) \\
& \leq \sum_{j=1}^{m} \operatorname{Pr}\left(A_{j}\right)
\end{aligned}
$$

where A_{j} is the event that we falsely reject the j th null hypothesis.

- If we only reject hypotheses when the p-value is less than α / m, then

$$
\mathrm{FWER} \leq \sum_{j=1}^{m} \operatorname{Pr}\left(A_{j}\right) \leq \sum_{j=1}^{m} \frac{\alpha}{m}=m \times \frac{\alpha}{m}=\alpha
$$

because $\operatorname{Pr}\left(A_{j}\right) \leq \alpha / m$.

- This is the Bonferroni Correction: to control FWER at level α, reject any null hypothesis with p-value below α / m.

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- $H_{0 j}$: the jth manager's expected excess return equals zero.
- If we reject $H_{0 j}$ if the p-value is less than $\alpha=0.05$, then we will conclude that the first and third managers have significantly non-zero excess returns.

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- $H_{0 j}$: the jth manager's expected excess return equals zero.
- If we reject $H_{0 j}$ if the p-value is less than $\alpha=0.05$, then we will conclude that the first and third managers have significantly non-zero excess returns.
- However, we have tested multiple hypotheses, so the FWER is greater than 0.05 .

Fund Manager Data with Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- Using a Bonferroni correction, we reject for p-values less than $\alpha / m=0.05 / 5=0.01$.

Fund Manager Data with Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- Using a Bonferroni correction, we reject for p-values less than $\alpha / m=0.05 / 5=0.01$.
- Consequently, we will reject the null hypothesis only for the first manager.

Fund Manager Data with Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- Using a Bonferroni correction, we reject for p-values less than $\alpha / m=0.05 / 5=0.01$.
- Consequently, we will reject the null hypothesis only for the first manager.
- Now the FWER is at most 0.05.

Holm's Method for Controlling the FWER

Holm's Method for Controlling the FWER

1. Compute p-values, p_{1}, \ldots, p_{m}, for the m null hypotheses $H_{01}, \ldots, H_{0 m}$.

Holm's Method for Controlling the FWER

1. Compute p-values, p_{1}, \ldots, p_{m}, for the m null hypotheses $H_{01}, \ldots, H_{0 m}$.
2. Order the $m p$-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.

Holm's Method for Controlling the FWER

1. Compute p-values, p_{1}, \ldots, p_{m}, for the m null hypotheses $H_{01}, \ldots, H_{0 m}$.
2. Order the $m p$-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
3. Define

$$
L=\min \left\{j: p_{(j)}>\frac{\alpha}{m+1-j}\right\} .
$$

Holm's Method for Controlling the FWER

1. Compute p-values, p_{1}, \ldots, p_{m}, for the m null hypotheses $H_{01}, \ldots, H_{0 m}$.
2. Order the $m p$-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
3. Define

$$
L=\min \left\{j: p_{(j)}>\frac{\alpha}{m+1-j}\right\} .
$$

4. Reject all null hypotheses $H_{0 j}$ for which $p_{j}<p_{(L)}$.

Holm's Method for Controlling the FWER

1. Compute p-values, p_{1}, \ldots, p_{m}, for the m null hypotheses $H_{01}, \ldots, H_{0 m}$.
2. Order the $m p$-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
3. Define

$$
L=\min \left\{j: p_{(j)}>\frac{\alpha}{m+1-j}\right\} .
$$

4. Reject all null hypotheses $H_{0 j}$ for which $p_{j}<p_{(L)}$.

- Holm's method controls the FWER at level α.

Holm's Method on the Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- The ordered p-values are $p_{(1)}=0.006, p_{(2)}=0.012$, $p_{(3)}=0.601, p_{(4)}=0.756$ and $p_{(5)}=0.918$.

Holm's Method on the Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- The ordered p-values are $p_{(1)}=0.006, p_{(2)}=0.012$, $p_{(3)}=0.601, p_{(4)}=0.756$ and $p_{(5)}=0.918$.
- The Holm procedure rejects the first two null hypotheses, because
- $p_{(1)}=0.006<0.05 /(5+1-1)=0.0100$
- $p_{(2)}=0.012<0.05 /(5+1-2)=0.0125$,
- $p_{(3)}=0.601>0.05 /(5+1-3)=0.0167$.

Holm's Method on the Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- The ordered p-values are $p_{(1)}=0.006, p_{(2)}=0.012$, $p_{(3)}=0.601, p_{(4)}=0.756$ and $p_{(5)}=0.918$.
- The Holm procedure rejects the first two null hypotheses, because
- $p_{(1)}=0.006<0.05 /(5+1-1)=0.0100$
- $p_{(2)}=0.012<0.05 /(5+1-2)=0.0125$,
- $p_{(3)}=0.601>0.05 /(5+1-3)=0.0167$.
- Holm rejects H_{0} for the first and third managers, but Bonferroni only rejects H_{0} for the first manager.

A Comparison with $m=10 \mathrm{p}$-values

- Aim to control FWER at 0.05 .
- p-values below the black horizontal line are rejected by Bonferroni.
- p-values below the blue line are rejected by Holm.
- Holm and Bonferroni make the same conclusion on the black points, but only Holm rejects for the red point.

A More Extreme Example

- Now five hypotheses are rejected by Holm but not by Bonferroni
- even though both control FWER at 0.05.

Holm or Bonferroni?

- Bonferroni is simple ... reject any null hypothesis with a p-value below α / m.
- Holm is slightly more complicated, but it will lead to more rejections while controlling FWER!!
- So, Holm is a better choice!

Other Methods

- There are lots of specialized approaches to control FWER.

Other Methods

- There are lots of specialized approaches to control FWER.
- For example:
- Tukey's Method: for pairwise comparisons of the difference in expected means among a number of groups.

Other Methods

- There are lots of specialized approaches to control FWER.
- For example:
- Tukey's Method: for pairwise comparisons of the difference in expected means among a number of groups.
- Scheffé's Method: for testing arbitrary linear combinations of a set of expected means, e.g.

$$
H_{0}: \frac{1}{2}\left(\mu_{1}+\mu_{3}\right)=\frac{1}{3}\left(\mu_{2}+\mu_{4}+\mu_{5}\right) .
$$

Other Methods

- There are lots of specialized approaches to control FWER.
- For example:
- Tukey's Method: for pairwise comparisons of the difference in expected means among a number of groups.
- Scheffé's Method: for testing arbitrary linear combinations of a set of expected means, e.g.

$$
H_{0}: \frac{1}{2}\left(\mu_{1}+\mu_{3}\right)=\frac{1}{3}\left(\mu_{2}+\mu_{4}+\mu_{5}\right) .
$$

- Bonferroni and Holm are general procedures that will work in most settings. However, in certain special cases, methods such as Tukey and Scheffé can give better results: i.e. more rejections while maintaining FWER control.

The False Discovery Rate

The False Discovery Rate

- Back to this table:

	H_{0} is True	H_{0} is False	Total
Reject H_{0}	V	S	R
Do Not Reject H_{0}	U	W	$m-R$
Total	m_{0}	$m-m_{0}$	m

The False Discovery Rate

- Back to this table:

	H_{0} is True	H_{0} is False	Total
Reject H_{0}	V	S	R
Do Not Reject H_{0}	U	W	$m-R$
Total	m_{0}	$m-m_{0}$	m

- The FWER rate focuses on controlling $\operatorname{Pr}(V>1)$, i.e., the probability of falsely rejecting any null hypothesis.

The False Discovery Rate

- Back to this table:

	H_{0} is True	H_{0} is False	Total
Reject H_{0}	V	S	R
Do Not Reject H_{0}	U	W	$m-R$
Total	m_{0}	$m-m_{0}$	m

- The FWER rate focuses on controlling $\operatorname{Pr}(V>1)$, i.e., the probability of falsely rejecting any null hypothesis.
- This is a tough ask when m is large! It will cause us to be super conservative (i.e. to very rarely reject).

The False Discovery Rate

- Back to this table:

	H_{0} is True	H_{0} is False	Total
Reject H_{0}	V	S	R
Do Not Reject H_{0}	U	W	$m-R$
Total	m_{0}	$m-m_{0}$	m

- The FWER rate focuses on controlling $\operatorname{Pr}(V>1)$, i.e., the probability of falsely rejecting any null hypothesis.
- This is a tough ask when m is large! It will cause us to be super conservative (i.e. to very rarely reject).
- Instead, we can control the false discovery rate:

$$
\mathrm{FDR}=\mathrm{E}(V / R)
$$

Intuition Behind the False Discovery Rate

$$
\mathrm{FDR}=\mathrm{E}\left(\frac{V}{R}\right)=\mathrm{E}\left(\frac{\text { number of false rejections }}{\text { total number of rejections }}\right)
$$

Intuition Behind the False Discovery Rate

$$
\mathrm{FDR}=\mathrm{E}\left(\frac{V}{R}\right)=\mathrm{E}\left(\frac{\text { number of false rejections }}{\text { total number of rejections }}\right)
$$

- A scientist conducts a hypothesis test on each of $m=20,000$ drug candidates.

Intuition Behind the False Discovery Rate

$$
\mathrm{FDR}=\mathrm{E}\left(\frac{V}{R}\right)=\mathrm{E}\left(\frac{\text { number of false rejections }}{\text { total number of rejections }}\right)
$$

- A scientist conducts a hypothesis test on each of $m=20,000$ drug candidates.
- She wants to identify a smaller set of promising candidates to investigate further.

Intuition Behind the False Discovery Rate

$$
\mathrm{FDR}=\mathrm{E}\left(\frac{V}{R}\right)=\mathrm{E}\left(\frac{\text { number of false rejections }}{\text { total number of rejections }}\right)
$$

- A scientist conducts a hypothesis test on each of $m=20,000$ drug candidates.
- She wants to identify a smaller set of promising candidates to investigate further.
- She wants reassurance that this smaller set is really "promising", i.e. not too many falsely rejected H_{0} 's.

Intuition Behind the False Discovery Rate

$$
\mathrm{FDR}=\mathrm{E}\left(\frac{V}{R}\right)=\mathrm{E}\left(\frac{\text { number of false rejections }}{\text { total number of rejections }}\right)
$$

- A scientist conducts a hypothesis test on each of $m=20,000$ drug candidates.
- She wants to identify a smaller set of promising candidates to investigate further.
- She wants reassurance that this smaller set is really "promising", i.e. not too many falsely rejected H_{0} 's.
- FWER controls Pr (at least one false rejection).

Intuition Behind the False Discovery Rate

$$
\mathrm{FDR}=\mathrm{E}\left(\frac{V}{R}\right)=\mathrm{E}\left(\frac{\text { number of false rejections }}{\text { total number of rejections }}\right)
$$

- A scientist conducts a hypothesis test on each of $m=20,000$ drug candidates.
- She wants to identify a smaller set of promising candidates to investigate further.
- She wants reassurance that this smaller set is really "promising", i.e. not too many falsely rejected H_{0} 's.
- FWER controls Pr (at least one false rejection).
- FDR controls the fraction of candidates in the smaller set that are really false rejections. This is what she needs!

Benjamini-Hochberg Procedure to Control FDR

Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.

Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.
2. Compute p-values p_{1}, \ldots, p_{m} for the null hypotheses $H_{01}, \ldots, H_{0 m}$.

Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.
2. Compute p-values p_{1}, \ldots, p_{m} for the null hypotheses $H_{01}, \ldots, H_{0 m}$.
3. Order the p-values so that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$.

Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.
2. Compute p-values p_{1}, \ldots, p_{m} for the null hypotheses $H_{01}, \ldots, H_{0 m}$.
3. Order the p-values so that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$.
4. Define $L=\max \left\{j: p_{(j)}<q j / m\right\}$.

Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.
2. Compute p-values p_{1}, \ldots, p_{m} for the null hypotheses $H_{01}, \ldots, H_{0 m}$.
3. Order the p-values so that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$.
4. Define $L=\max \left\{j: p_{(j)}<q j / m\right\}$.
5. Reject all null hypotheses $H_{0 j}$ for which $p_{j} \leq p_{(L)}$.

Benjamini-Hochberg Procedure to Control FDR

1. Specify q, the level at which to control the FDR.
2. Compute p-values p_{1}, \ldots, p_{m} for the null hypotheses $H_{01}, \ldots, H_{0 m}$.
3. Order the p-values so that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$.
4. Define $L=\max \left\{j: p_{(j)}<q j / m\right\}$.
5. Reject all null hypotheses $H_{0 j}$ for which $p_{j} \leq p_{(L)}$.

Then, $\mathrm{FDR} \leq q$.

A Comparison of FDR Versus FWER, Part 1

A Comparison of FDR Versus FWER, Part 1

- Here, p-values for $m=2,000$ null hypotheses are displayed.

A Comparison of FDR Versus FWER, Part 1

- Here, p-values for $m=2,000$ null hypotheses are displayed.
- To control FWER at level $\alpha=0.1$ with Bonferroni: reject hypotheses below green line. (No rejections!)

A Comparison of FDR Versus FWER, Part 1

- Here, p-values for $m=2,000$ null hypotheses are displayed.
- To control FWER at level $\alpha=0.1$ with Bonferroni: reject hypotheses below green line. (No rejections!)
- To control FDR at level $q=0.1$ with
Benjamini-Hochberg: reject hypotheses shown in blue.

A Comparison of FDR Versus FWER, Part 2

A Comparison of FDR Versus FWER, Part 2

- Consider $m=5 p$-values from the Fund data:

$$
p_{1}=0.006, p_{2}=0.918, p_{3}=0.012, p_{4}=0.601, p_{5}=0.756
$$

A Comparison of FDR Versus FWER, Part 2

- Consider $m=5 p$-values from the Fund data: $p_{1}=0.006, p_{2}=0.918, p_{3}=0.012, p_{4}=0.601, p_{5}=0.756$.
- Then $p_{(1)}=0.006, p_{(2)}=0.012, p_{(3)}=0.601, p_{(4)}=0.756$, and $p_{(5)}=0.918$.

A Comparison of FDR Versus FWER, Part 2

- Consider $m=5 p$-values from the Fund data: $p_{1}=0.006, p_{2}=0.918, p_{3}=0.012, p_{4}=0.601, p_{5}=0.756$.
- Then $p_{(1)}=0.006, p_{(2)}=0.012, p_{(3)}=0.601, p_{(4)}=0.756$, and $p_{(5)}=0.918$.
- To control FDR at level $q=0.05$ using Benjamini-Hochberg:
- Notice that $p_{(1)}<0.05 / 5, p_{(2)}<2 \times 0.05 / 5$, $p_{(3)}>3 \times 0.05 / 5, p_{(4)}>4 \times 0.05 / 5$, and $p_{(5)}>5 \times 0.05 / 5$.
- So, we reject H_{01} and H_{03}.

A Comparison of FDR Versus FWER, Part 2

- Consider $m=5 p$-values from the Fund data: $p_{1}=0.006, p_{2}=0.918, p_{3}=0.012, p_{4}=0.601, p_{5}=0.756$.
- Then $p_{(1)}=0.006, p_{(2)}=0.012, p_{(3)}=0.601, p_{(4)}=0.756$, and $p_{(5)}=0.918$.
- To control FDR at level $q=0.05$ using Benjamini-Hochberg:
- Notice that $p_{(1)}<0.05 / 5, p_{(2)}<2 \times 0.05 / 5$, $p_{(3)}>3 \times 0.05 / 5, p_{(4)}>4 \times 0.05 / 5$, and $p_{(5)}>5 \times 0.05 / 5$.
- So, we reject H_{01} and H_{03}.
- To control FWER at level $\alpha=0.05$ using Bonferroni:
- We reject any null hypothesis for which the p-value is less than 0.05/5.
- So, we reject only H_{01}.

Re-Sampling Approaches

- So far, we have assumed that we want to test some null hypothesis H_{0} with some test statistic T, and that we know (or can assume) the distribution of T under H_{0}.
- This allows us to compute the p-value.

Re-Sampling Approaches

- So far, we have assumed that we want to test some null hypothesis H_{0} with some test statistic T, and that we know (or can assume) the distribution of T under H_{0}.
- This allows us to compute the p-value.

- What if this theoretical null distribution is unknown?

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 1- Suppose we want to test $H_{0}: E(X)=E(Y)$ versus $H_{a}: E(X) \neq E(Y)$, using n_{X} independent observations from X and n_{Y} independent observations from Y.
- The two-sample t-statistic takes the form

$$
T=\frac{\hat{\mu}_{X}-\hat{\mu}_{Y}}{s \sqrt{1 / n_{X}+1 / n_{Y}}}
$$

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 1- Suppose we want to test $H_{0}: E(X)=E(Y)$ versus $H_{a}: E(X) \neq E(Y)$, using n_{X} independent observations from X and n_{Y} independent observations from Y.
- The two-sample t-statistic takes the form

$$
T=\frac{\hat{\mu}_{X}-\hat{\mu}_{Y}}{s \sqrt{1 / n_{X}+1 / n_{Y}}}
$$

- If n_{X} and n_{Y} are large, then T approximately follows a $N(0,1)$ distribution under H_{0}.

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 1- Suppose we want to test $H_{0}: E(X)=E(Y)$ versus $H_{a}: E(X) \neq E(Y)$, using n_{X} independent observations from X and n_{Y} independent observations from Y.
- The two-sample t-statistic takes the form

$$
T=\frac{\hat{\mu}_{X}-\hat{\mu}_{Y}}{s \sqrt{1 / n_{X}+1 / n_{Y}}}
$$

- If n_{X} and n_{Y} are large, then T approximately follows a $N(0,1)$ distribution under H_{0}.
- If n_{X} and n_{Y} are small, then we don't know the theoretical null distribution of T.

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 1- Suppose we want to test $H_{0}: E(X)=E(Y)$ versus $H_{a}: E(X) \neq E(Y)$, using n_{X} independent observations from X and n_{Y} independent observations from Y.
- The two-sample t-statistic takes the form

$$
T=\frac{\hat{\mu}_{X}-\hat{\mu}_{Y}}{s \sqrt{1 / n_{X}+1 / n_{Y}}}
$$

- If n_{X} and n_{Y} are large, then T approximately follows a $N(0,1)$ distribution under H_{0}.
- If n_{X} and n_{Y} are small, then we don't know the theoretical null distribution of T.
- Let's take a permutation or re-sampling approach....

A Re-Sampling Approach for a Two-Sample t-Test, Part 2

A Re-Sampling Approach for a Two-Sample t-Test, Part 2

1. Compute the two-sample t-statistic T on the original data $x_{1}, \ldots, x_{n_{X}}$ and $y_{1}, \ldots, y_{n_{Y}}$.

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 21. Compute the two-sample t-statistic T on the original data $x_{1}, \ldots, x_{n_{X}}$ and $y_{1}, \ldots, y_{n_{Y}}$.
2. For $b=1, \ldots, B$ (where B is a large number, like 1,000):

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 21. Compute the two-sample t-statistic T on the original data $x_{1}, \ldots, x_{n_{X}}$ and $y_{1}, \ldots, y_{n_{Y}}$.
2. For $b=1, \ldots, B$ (where B is a large number, like 1,000): 2.1 Randomly shuffle the $n_{x}+n_{Y}$ observations.

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 21. Compute the two-sample t-statistic T on the original data $x_{1}, \ldots, x_{n_{X}}$ and $y_{1}, \ldots, y_{n_{Y}}$.
2. For $b=1, \ldots, B$ (where B is a large number, like 1,000):
2.1 Randomly shuffle the $n_{x}+n_{Y}$ observations.
2.2 Call the first n_{X} shuffled observations $x_{1}^{*}, \ldots, x_{n_{X}}^{*}$ and call the remaining observations $y_{1}^{*}, \ldots, y_{n_{Y}}^{*}$.

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 21. Compute the two-sample t-statistic T on the original data $x_{1}, \ldots, x_{n_{X}}$ and $y_{1}, \ldots, y_{n_{Y}}$.
2. For $b=1, \ldots, B$ (where B is a large number, like 1,000):
2.1 Randomly shuffle the $n_{x}+n_{Y}$ observations.
2.2 Call the first n_{X} shuffled observations $x_{1}^{*}, \ldots, x_{n_{X}}^{*}$ and call the remaining observations $y_{1}^{*}, \ldots, y_{n_{Y}}^{*}$.
2.3 Compute a two-sample t-statistic on the shuffled data, and call it $T^{* b}$.

A Re-Sampling Approach for a Two-Sample t-Test,

 Part 21. Compute the two-sample t-statistic T on the original data $x_{1}, \ldots, x_{n_{X}}$ and $y_{1}, \ldots, y_{n_{Y}}$.
2. For $b=1, \ldots, B$ (where B is a large number, like 1,000):
2.1 Randomly shuffle the $n_{x}+n_{Y}$ observations.
2.2 Call the first n_{X} shuffled observations $x_{1}^{*}, \ldots, x_{n_{X}}^{*}$ and call the remaining observations $y_{1}^{*}, \ldots, y_{n_{Y}}^{*}$.
2.3 Compute a two-sample t-statistic on the shuffled data, and call it $T^{* b}$.
3. The p-value is given by

$$
\frac{\sum_{b=1}^{B} 1_{\left(\left|T^{* b}\right| \geq|T|\right)}}{B}
$$

Application to Gene Expression Data, Part 1

Theoretical p-value is 0.041 . Re-sampling p-value is 0.042 .

Application to Gene Expression Data, Part 2

Theoretical p-value is 0.571 . Re-sampling p-value is 0.673 .

More on Re-Sampling Approaches

More on Re-Sampling Approaches

- Re-sampling approaches are useful if the theoretical null distribution is unavailable, or requires stringent assumptions. (So, they're always useful!)

More on Re-Sampling Approaches

- Re-sampling approaches are useful if the theoretical null distribution is unavailable, or requires stringent assumptions. (So, they're always useful!)
- An extension of the re-sampling approach to compute a p-value can be used to control FDR.

More on Re-Sampling Approaches

- Re-sampling approaches are useful if the theoretical null distribution is unavailable, or requires stringent assumptions. (So, they're always useful!)
- An extension of the re-sampling approach to compute a p-value can be used to control FDR.
- This example involved a two-sample t-test, but similar approaches can be developed for other test statistics.

