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Multiple Hypothesis Testing

This session focuses on multiple hypothesis testing.

A single null hypothesis might look like Hy: the expected
blood pressures of mice in the control and treatment groups
are the same.

We will now consider testing m null hypotheses,
Hos,...,Hop, where e.g. Hy;: the expected values of the
" biomarker among mice in the control and treatment
groups are equal.

In this setting, we need to be careful to avoid incorrectly
rejecting too many null hypotheses, i.e. having too many
false positives.
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A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple “yes-or-no”
questions, such as:

e [s the true coefficient 3; in a linear regression equal to zero?

® Does the expected blood pressure among mice in the
treatment group equal the expected blood pressure among
mice in the control group?
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1. Define the Null and Alternative Hypotheses

e We divide the world into null and alternative hypotheses.

® The null hypothesis, Hy, is the default state of belief about
the world. For instance:

1. The true coefficient ; equals zero.
2. There is no difference in the expected blood pressures.
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1. Define the Null and Alternative Hypotheses

e We divide the world into null and alternative hypotheses.

® The null hypothesis, Hy, is the default state of belief about
the world. For instance:

1. The true coefficient ; equals zero.
2. There is no difference in the expected blood pressures.

® The alternative hypothesis, H,, represents something
different and unexpected. For instance:

1. The true coefficient ; is non-zero.
2. There is a difference in the expected blood pressures.
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2. Construct the Test Statistic

® The test statistic summarizes the extent to which our data
are consistent with Hy.
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2. Construct the Test Statistic

® The test statistic summarizes the extent to which our data
are consistent with Hy.

® Let fi; / fic respectively denote the average blood pressure
for the ny / n. mice in the treatment and control groups.

e To test Hp : uy = e, we use a two-sample t-statistic

Ht — e
1 4 1
ne ' ne

T:
S
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3. Compute the p-Value

® The p-value is the probability of observing a test statistic
at least as extreme as the observed statistic, under the
assumption that Hy is true.
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3. Compute the p-Value
The p-value is the probability of observing a test statistic
at least as extreme as the observed statistic, under the
assumption that Hy is true.
® A small p-value provides evidence against Hy.

Under Hy, T ~ N(0,1) for a two-sample ¢-statistic.

b
o
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® The p-value is 0.02 because, if Hy is true, we would only
see |T'| this large 2% of the time.

Suppose we compute T = 2.33 for our test of Hy : iy = pic-
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4. Decide Whether to Reject Hy, Part 1

e A small p-value indicates that such a large value of the test
statistic is unlikely to occur under Hj.
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4. Decide Whether to Reject Hy, Part 1

A small p-value indicates that such a large value of the test
statistic is unlikely to occur under Hj.

So, a small p-value provides evidence against Hy.

If the p-value is sufficiently small, then we will want to
reject Hy (and, therefore, make a potential “discovery”).

But how small is small enough? To answer this, we need to
understand the Type I error.
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4. Decide Whether to Reject H, Part 2

Truth
H, H,

Reject Hy
Do Not Reject Hy

Type I Error Correct

Decision Correct Type II Error
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|The null hypothesis holds, and we rejected it!|
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4. Decide Whether to Reject Hy, Part 3

® The Type I error rate is the probability of making a Type I
error.

® We want to ensure a small Type I error rate.
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4. Decide Whether to Reject Hy, Part 3

The Type I error rate is the probability of making a Type I
error.

We want to ensure a small Type I error rate.

If we only reject Hy when the p-value is less than «, then
the Type I error rate will be at most .

So, we reject Hy when the p-value falls below some a: often
we choose a to equal 0.05 or 0.01 or 0.001.
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Multiple Testing

® Now suppose that we wish to test m null hypotheses,
HOl, ceey Hom.

13 /38



Multiple Testing

® Now suppose that we wish to test m null hypotheses,
HOl, ceey Hom.

® Can we simply reject all null hypotheses for which the
corresponding p-value falls below (say) 0.017

13 /38



Multiple Testing

® Now suppose that we wish to test m null hypotheses,
HOl, .« e 7H0m.

® Can we simply reject all null hypotheses for which the
corresponding p-value falls below (say) 0.017

e [f we reject all null hypotheses for which the p-value falls
below 0.01, then how many Type I errors will we make?
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A Thought Experiment

® Suppose that we flip a fair coin ten times, and we wish to
test Hy: the coin is fair.
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A Thought Experiment

® Suppose that we flip a fair coin ten times, and we wish to
test Hy: the coin is fair.
® We'll probably get approximately the same number of heads
and tails.
® The p-value probably won’t be small. We do not reject Hy.
® But what if we flip 1,024 fair coins ten times each?
® We'd expect one coin (on average) to come up all tails.
® The p-value for the null hypothesis that this particular coin
is fair is less than 0.002!
® So we would conclude it is not fair, i.e. we reject Hy, even
though it’s a fair coin.
o [f we test a lot of hypotheses, we are almost certain to get
one very small p-value by chance!
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Multiple Testing:

Even XKCD Weighs In
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The Challenge of Multiple Testing

® Suppose we test Hoq, ..., Hon, all of which are true, and
reject any null hypothesis with a p-value below 0.01.
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The Challenge of Multiple Testing

Suppose we test Hoq, ..., Homn, all of which are true, and
reject any null hypothesis with a p-value below 0.01.

Then we expect to falsely reject approximately 0.01 x m
null hypotheses.

If m = 10,000, then we expect to falsely reject 100 null
hypotheses by chance!

That’s a lot of Type I errors, i.e. false positives!
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The Family-Wise Error Rate

¢ The family-wise error rate (FWER) is the probability of
making at least one Type I error when conducting m
hypothesis tests.
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The Family-Wise Error Rate

¢ The family-wise error rate (FWER) is the probability of
making at least one Type I error when conducting m
hypothesis tests.

e FWER = Pr(V > 1)

Hy is True Hj is False | Total
Reject Hy 1% S R
Do Not Reject Hy U W m—R
Total mo m— myg m
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Challenges in Controlling the Family-Wise Error Rate

FWER = 1 — Pr(do not falsely reject any null hypotheses)
= 1-Pr (ﬂ;n:l {do not falsely reject Hoj}).

18 /38



Challenges in Controlling the Family-Wise Error Rate

FWER = 1 — Pr(do not falsely reject any null hypotheses)
= 1-Pr (ﬂ;n:l {do not falsely reject Hoj}).

If the tests are independent and all Hyp; are true then

FWERzl—ﬁ(l—a)zl—(l—a)m.
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Challenges in Controlling the Family-Wise Error Rate

FWER =

If the tests are independent and all Hyp; are true then

FWER=1- [0 -a)=1-(1-a)™

Family-Wise Error Rate

1 — Pr(do not falsely reject any null hypotheses)
1—Pr (ﬂ;ﬂzl {do not falsely reject Hoj})_

o
=

m

j=1

=005
a=0.01
a=0.001

T T
5 10 20 50 100 200

Number of Hypotheses
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The Bonferroni Correction

FWER = Pr(falsely reject at least one null hypothesis)
= Pr(UjL, 4j)

< Pr(4y)
j=1

where A; is the event that we falsely reject the jth null
hypothesis.
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The Bonferroni Correction

FWER = Pr(falsely reject at least one null hypothesis)
= Pr(UjL, 4j)

< Pr(4y)
j=1

where A; is the event that we falsely reject the jth null
hypothesis.
e If we only reject hypotheses when the p-value is less than
a/m, then
m m a
FWER < ) < — =
S N
J=1 J=1
because Pr(A4;) < a/m.
® This is the Bonferroni Correction: to control FWER at

level a, reject any null hypothesis with p-value below a/m.
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Fund Manager Data

Manager | Mean, £ s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756
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® Hy;: the jth manager’s expected excess return equals zero.

e If we reject Ho; if the p-value is less than a = 0.05, then we
will conclude that the first and third managers have
significantly non-zero excess returns.

20/38



Fund Manager Data

Manager | Mean, £ s t-statistic p-value
One 3.0 74 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

® Hy;: the jth manager’s expected excess return equals zero.

e If we reject Hy; if the p-value is less than o = 0.05, then we
will conclude that the first and third managers have
significantly non-zero excess returns.

e However, we have tested multiple hypotheses, so the
FWER is greater than 0.05.
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Fund Manager Data with Bonferroni Correction

Manager | Mean, £ s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

e Using a Bonferroni correction, we reject for p-values less

than oo/m = 0.05/5 = 0.01.
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Manager | Mean, £ s t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

e Using a Bonferroni correction, we reject for p-values less
than oo/m = 0.05/5 = 0.01.

® Consequently, we will reject the null hypothesis only for
the first manager.

e Now the FWER is at most 0.05.
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Holm’s Method for Controlling the FWER
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Holm’s Method for Controlling the FWER

. Compute p-values, p1, ..., Ppm, for the m null hypotheses
Hoi, ..., Hom.-

2. Order the m p-values so that p(1) < p) <+ < pry)-
3. Define

. . (6]

. Reject all null hypotheses Hy; for which p; < p(p).
Holm’s method controls the FWER at level a.
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Holm’s Method on the Fund Manager Data

Manager | Mean, * s t-statistic p-value
One 3.0 74 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

® The ordered p-values are p(;y = 0.006, p(2) = 0.012,
p(3) = 0.601, p4) = 0.756 and p(5) = 0.918.
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® The Holm procedure rejects the first two null hypotheses,

because

® pay = 0.006 < 0.05/(5+ 1 — 1) = 0.0100

® P2y = 0.012 < 0.05/(5 + 1 — 2) = 0.0125,
® p) = 0.601 > 0.05/(5 + 1 — 3) = 0.0167.
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® The ordered p-values are p(;y = 0.006, p(2) = 0.012,
p(3) = 0.601, p4) = 0.756 and p(5) = 0.918.

® The Holm procedure rejects the first two null hypotheses,

because

® pay = 0.006 < 0.05/(5+ 1 — 1) = 0.0100

® P2y = 0.012 < 0.05/(5 + 1 — 2) = 0.0125,

® p(z) = 0.601 > 0.05/(5 + 1 — 3) = 0.0167.

® Holm rejects Hy for the first and third managers, but
Bonferroni only rejects Hy for the first manager.
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A Comparison with m = 10 p-values

p-values (log scale)
1e-03

1le-07

T T T T T
2 4 6 8 10

Ordering of p-values

Aim to control FWER at 0.05.

p-values below the black horizontal line are rejected by
Bonferroni.

p-values below the blue line are rejected by Holm.

Holm and Bonferroni make the same conclusion on the
black points, but only Holm rejects for the red point.
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A More Extreme Example

p-values (log scale)
le-05 1e-03 1e-01

Ordering of p—values

e Now five hypotheses are rejected by Holm but not by
Bonferroni ....

e ... even though both control FWER at 0.05.

25 /38



Holm or Bonferroni?

e Bonferroni is simple ... reject any null hypothesis with a
p-value below a/m.

® Holm is slightly more complicated, but it will lead to more
rejections while controlling FWER!!

® So, Holm is a better choice!
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Other Methods

® There are lots of specialized approaches to control FWER.
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® There are lots of specialized approaches to control FWER.

® For example:
® Tukey’s Method: for pairwise comparisons of the difference
in expected means among a number of groups.
® Scheffé’s Method: for testing arbitrary linear combinations
of a set of expected means, e.g.

1 1
Ho:§(u1+/¢3):§(u2+u4+u5).

® Bonferroni and Holm are general procedures that will work
in most settings. However, in certain special cases,
methods such as Tukey and Scheffé can give better results:
i.e. more rejections while maintaining FWER control.
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The False Discovery Rate
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® The FWER rate focuses on controlling Pr(V > 1), i.e., the
probability of falsely rejecting any null hypothesis.

28 /38



The False Discovery Rate

e Back to this table:

Hy is True Hy is False | Total
Reject Hy % S R
Do Not Reject Hy U w m—R
Total mo m — my m

® The FWER rate focuses on controlling Pr(V > 1), i.e., the
probability of falsely rejecting any null hypothesis.

e This is a tough ask when m is large! It will cause us to be
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The False Discovery Rate

Back to this table:

Hy is True Hy is False | Total
Reject Hy % S R
Do Not Reject Hy U w m—R
Total mo m — my m

The FWER rate focuses on controlling Pr(V > 1), i.e., the
probability of falsely rejecting any null hypothesis.

This is a tough ask when m is large! It will cause us to be
super conservative (i.e. to very rarely reject).

Instead, we can control the false discovery rate:

FDR = E(V/R).

28 /38



Intuition Behind the False Discovery Rate

FDR = E K _E number of false ret]'ectl.ons
R total number of rejections
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Intuition Behind the False Discovery Rate

FDR = E K _E number of false ret]'ectl.ons
R total number of rejections

A scientist conducts a hypothesis test on each of
m = 20,000 drug candidates.

She wants to identify a smaller set of promising candidates
to investigate further.

She wants reassurance that this smaller set is really
“promising”, i.e. not too many falsely rejected Hy’s.

FWER controls Pr(at least one false rejection).

FDR controls the fraction of candidates in the smaller set
that are really false rejections. This is what she needs!
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Benjamini-Hochberg Procedure to Control FDR

1. Specify ¢, the level at which to control the FDR.

2. Compute p-values pq, ..., pm for the null hypotheses
HOl, “ e 713—0777‘.

3. Order the p-values so that pi;) < pp) < ... <pa)-
4. Define L = max {j : p(jy < qj/m}.
5. Reject all null hypotheses Ho; for which p; < p(z).

Then, FDR < q.

30/38
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P-Value

1e-01

1e-03

1e-05

A Comparison of FDR Versus FWER, Part 1

T L LI
1 5 50

Index

1
500

e Here, p-values for
m = 2,000 null hypotheses
are displayed.

® To control FWER at level
a = 0.1 with Bonferroni:
reject hypotheses below
green line. (No rejections!)

® To control FDR at level
q = 0.1 with
Benjamini-Hochberg: reject
hypotheses shown in blue.
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Consider m = 5 p-values from the Fund data:
p1 = 0.006, p2 = 0.918, p3 = 0.012, p4 = 0.601, p5 = 0.756.
Then p(1y = 0.006, p(a) = 0.012, p(3) = 0.601, p(4) = 0.756,
and p(5) = 0.918.
To control FDR at level ¢ = 0.05 using
Benjamini-Hochberg:

® Notice that p(;) < 0.05/5, pi2) < 2 x 0.05/5,

p3) > 3 X 0.05/5, Da) > 4 x 0.05/5, and Py > 5 X 0.05/5.

® So, we reject Hg; and Hpys.

To control FWER at level av = 0.05 using Bonferroni:

® We reject any null hypothesis for which the p-value is less
than 0.05/5.
® So, we reject only Hy;.
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® So far, we have assumed that we want to test some null
hypothesis Hy with some test statistic 7', and that we know
(or can assume) the distribution of T" under Hy.

® This allows us to compute the p-value.
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® This allows us to compute the p-value.

s
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N
[S]

Probability Density Function
0.1

0.0

e What if this theoretical null distribution is unknown?

Re-Sampling Approaches

T=2.33
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A Re-Sampling Approach for a Two-Sample t-Test,
Part 1

® Suppose we want to test Hyp : E(X) = E(Y) versus
H,: E(X)# E(Y), using nx independent observations
from X and ny independent observations from Y.

® The two-sample t-statistic takes the form
fx — iy

sv/1/nx + 1/ny
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A Re-Sampling Approach for a Two-Sample t-Test,
Part 1

® Suppose we want to test Hyp : E(X) = E(Y) versus
H,: E(X)# E(Y), using nx independent observations
from X and ny independent observations from Y.

® The two-sample t-statistic takes the form
_ fx — iy

sv/1/nx + 1/ny

e [f nx and ny are large, then T' approximately follows a
N(0,1) distribution under Hy.

® If ny and ny are small, then we don’t know the theoretical
null distribution of 7.

® Let’s take a permutation or re-sampling approach....

34/38



A Re-Sampling Approach for a Two-Sample t-Test,
Part 2

35/38



A Re-Sampling Approach for a Two-Sample t-Test,
Part 2

1. Compute the two-sample t-statistic 7' on the original data
T1y.- o3 Tny ad Y1,. .., Yny -

35/38



A Re-Sampling Approach for a Two-Sample t-Test,
Part 2

1. Compute the two-sample t-statistic 7' on the original data
T1y.- o3 Tny ad Y1,. .., Yny -
2. Forb=1,..., B (where B is a large number, like 1, 000):

35/38



A Re-Sampling Approach for a Two-Sample t-Test,
Part 2

1. Compute the two-sample t-statistic 7' on the original data
T1y.- o3 Tny ad Y1,. .., Yny -

2. Forb=1,..., B (where B is a large number, like 1, 000):
2.1 Randomly shuffle the n, + ny observations.

35/38



A Re-Sampling Approach for a Two-Sample t-Test,

Part 2

1. Compute the two-sample t-statistic 7' on the original data
T1y.- o3 Tny ad Y1,. .., Yny -

2. Forb=1,..., B (where B is a large number, like 1, 000):
2.1 Randomly shuffle the n, + ny observations.

2.2 Call the first nx shuffled observations z7,...,z;, and call
the remaining observations y7,...,y;. .

35/38



A Re-Sampling Approach for a Two-Sample t-Test,

Part 2

1. Compute the two-sample t-statistic 7' on the original data
T1y.- o3 Tny ad Y1,. .., Yny -

2. Forb=1,..., B (where B is a large number, like 1, 000):
2.1 Randomly shuffle the n, + ny observations.

2.2 Call the first nx shuffled observations z7,...,z;, and call
the remaining observations y7,...,y;. .

2.3 Compute a two-sample t-statistic on the shuffled data, and
call it T,

35/38



A Re-Sampling Approach for a Two-Sample t-Test,
Part 2

1. Compute the two-sample t-statistic 7' on the original data
T1y.- o3 Tny ad Y1,. .., Yny -

2. Forb=1,..., B (where B is a large number, like 1, 000):
2.1 Randomly shuffle the n, + ny observations.

2.2 Call the first nx shuffled observations z7,...,z;, and call
the remaining observations y7,...,y;. .

2.3 Compute a two-sample t-statistic on the shuffled data, and
call it T,

3. The p-value is given by

B
2 b=1 Lo 2T
0 .
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Application to Gene Expression Data, Part 1

1N

T=-2.0936

N

[ T T T 1
-4 -2 0 2 4

Null Distribution of Test Statistic for 11th Gene

Theoretical p-value is 0.041. Re-sampling p-value is 0.042.
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Application to Gene Expression Data, Part 2

/(\‘
A

[ T
-4 -2

T 1
2 4

Null Distribution of Test Statistic for 877th Gene

Theoretical p-value is 0.571. Re-sampling p-value is 0.673.

37/38



More on Re-Sampling Approaches

38/38



More on Re-Sampling Approaches

e Re-sampling approaches are useful if the theoretical null
distribution is unavailable, or requires stringent
assumptions. (So, they’re always useful!)

38 /38



More on Re-Sampling Approaches

e Re-sampling approaches are useful if the theoretical null
distribution is unavailable, or requires stringent
assumptions. (So, they’re always useful!)

® An extension of the re-sampling approach to compute a
p-value can be used to control FDR.

38 /38



More on Re-Sampling Approaches

e Re-sampling approaches are useful if the theoretical null
distribution is unavailable, or requires stringent
assumptions. (So, they’re always useful!)

® An extension of the re-sampling approach to compute a
p-value can be used to control FDR.

® This example involved a two-sample t-test, but similar
approaches can be developed for other test statistics.
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