Support Vector Machines

Here we approach the two-class classification problem in a direct way:

```
We try and find a plane that separates the classes in feature space.
```

If we cannot, we get creative in two ways:

- We soften what we mean by "separates", and
- We enrich and enlarge the feature space so that separation is possible.

What is a Hyperplane?

- A hyperplane in p dimensions is a flat affine subspace of dimension $p-1$.
- In general the equation for a hyperplane has the form

$$
\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{p} X_{p}=0
$$

- In $p=2$ dimensions a hyperplane is a line.
- If $\beta_{0}=0$, the hyperplane goes through the origin, otherwise not.
- The vector $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{p}\right)$ is called the normal vector - it points in a direction orthogonal to the surface of a hyperplane.

Hyperplane in 2 Dimensions

Separating Hyperplanes

- If $f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}$, then $f(X)>0$ for points on one side of the hyperplane, and $f(X)<0$ for points on the other.
- If we code the colored points as $Y_{i}=+1$ for blue, say, and $Y_{i}=-1$ for mauve, then if $Y_{i} \cdot f\left(X_{i}\right)>0$ for all $i, f(X)=0$ defines a separating hyperplane.

Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes.

Constrained optimization problem

$$
\begin{aligned}
& \underset{\beta_{0}, \beta_{1}, \ldots, \beta_{p}}{\operatorname{maximize}} M \\
& \text { subject to } \sum_{j=1}^{p} \beta_{j}^{2}=1, \\
& y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}\right) \geq M \\
& \text { for all } i=1, \ldots, N .
\end{aligned}
$$

Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes.

Constrained optimization problem

$$
\begin{aligned}
& \underset{\beta_{0}, \beta_{1}, \ldots, \beta_{p}}{\operatorname{maximize}} M \\
& \text { subject to } \sum_{j=1}^{p} \beta_{j}^{2}=1, \\
& y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}\right) \geq M \\
& \text { for all } i=1, \ldots, N .
\end{aligned}
$$

This can be rephrased as a convex quadratic program, and solved efficiently. The function $\operatorname{svm}()$ in package e1071 solves this problem efficiently

Non-separable Data

The data on the left are not separable by a linear boundary.

This is often the case, unless $N<p$.

Noisy Data

Sometimes the data are separable, but noisy. This can lead to a poor solution for the maximal-margin classifier.

Noisy Data

Sometimes the data are separable, but noisy. This can lead to a poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.

Support Vector Classifier

$$
\begin{aligned}
& \underset{\beta_{0}, \beta_{1}, \ldots, \beta_{p}, \epsilon_{1}, \ldots, \epsilon_{n}}{\operatorname{maximize}} M \text { subject to } \sum_{j=1}^{p} \beta_{j}^{2}=1 \\
& y_{i}\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{p} x_{i p}\right) \geq M\left(1-\epsilon_{i}\right) \\
& \epsilon_{i} \geq 0, \quad \sum_{i=1}^{n} \epsilon_{i} \leq C
\end{aligned}
$$

C is a regularization parameter

Linear boundary can fail

Sometime a linear boundary simply won't work, no matter what value of C.

The example on the left is such a case.

What to do?

Feature Expansion

- Enlarge the space of features by including transformations; e.g. $X_{1}^{2}, X_{1}^{3}, X_{1} X_{2}, X_{1} X_{2}^{2}, \ldots$ Hence go from a p-dimensional space to a $M>p$ dimensional space.
- Fit a support-vector classifier in the enlarged space.
- This results in non-linear decision boundaries in the original space.

Feature Expansion

- Enlarge the space of features by including transformations; e.g. $X_{1}^{2}, X_{1}^{3}, X_{1} X_{2}, X_{1} X_{2}^{2}, \ldots$ Hence go from a p-dimensional space to a $M>p$ dimensional space.
- Fit a support-vector classifier in the enlarged space.
- This results in non-linear decision boundaries in the original space.

Example: Suppose we use $\left(X_{1}, X_{2}, X_{1}^{2}, X_{2}^{2}, X_{1} X_{2}\right)$ instead of just (X_{1}, X_{2}). Then the decision boundary would be of the form

$$
\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1}^{2}+\beta_{4} X_{2}^{2}+\beta_{5} X_{1} X_{2}=0
$$

This leads to nonlinear decision boundaries in the original space (quadratic conic sections).

Cubic Polynomials

Here we use a basis expansion of cubic polynomials

From 2 variables to 9
The support-vector classifier in the enlarged space solves the problem in the lower-dimensional space

Cubic Polynomials

Here we use a basis expansion of cubic polynomials

From 2 variables to 9
The support-vector classifier in the enlarged space solves the problem in the lower-dimensional space

$\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1}^{2}+\beta_{4} X_{2}^{2}+\beta_{5} X_{1} X_{2}+\beta_{6} X_{1}^{3}+\beta_{7} X_{2}^{3}+\beta_{8} X_{1} X_{2}^{2}+\beta_{9} X_{1}^{2} X_{2}=0$

Nonlinearities and Kernels

- Polynomials (especially high-dimensional ones) get wild rather fast.
- There is a more elegant and controlled way to introduce nonlinearities in support-vector classifiers - through the use of kernels.
- Before we discuss these, we must understand the role of inner products in support-vector classifiers.

Inner products and support vectors

$$
\left\langle x_{i}, x_{i^{\prime}}\right\rangle=\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j}-i n n e r \text { product between vectors }
$$

Inner products and support vectors

$$
\left\langle x_{i}, x_{i^{\prime}}\right\rangle=\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j} \quad-\text { inner product between vectors }
$$

- The linear support vector classifier can be represented as

$$
f(x)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i}\left\langle x, x_{i}\right\rangle \quad-n \text { parameters }
$$

Inner products and support vectors

$$
\left\langle x_{i}, x_{i^{\prime}}\right\rangle=\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j} \quad-\text { inner product between vectors }
$$

- The linear support vector classifier can be represented as

$$
f(x)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i}\left\langle x, x_{i}\right\rangle \quad-n \text { parameters }
$$

- To estimate the parameters $\alpha_{1}, \ldots, \alpha_{n}$ and β_{0}, all we need are the $\binom{n}{2}$ inner products $\left\langle x_{i}, x_{i^{\prime}}\right\rangle$ between all pairs of training observations.

Inner products and support vectors

$$
\left\langle x_{i}, x_{i^{\prime}}\right\rangle=\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j}
$$

- inner product between vectors
- The linear support vector classifier can be represented as

$$
f(x)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i}\left\langle x, x_{i}\right\rangle \quad-n \text { parameters }
$$

- To estimate the parameters $\alpha_{1}, \ldots, \alpha_{n}$ and β_{0}, all we need are the $\binom{n}{2}$ inner products $\left\langle x_{i}, x_{i^{\prime}}\right\rangle$ between all pairs of training observations.
It turns out that most of the $\hat{\alpha}_{i}$ can be zero:

$$
f(x)=\beta_{0}+\sum_{i \in \mathcal{S}} \hat{\alpha}_{i}\left\langle x, x_{i}\right\rangle
$$

\mathcal{S} is the support set of indices i such that $\hat{\alpha}_{i}>0$. [see slide 8]

Kernels and Support Vector Machines

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!

Kernels and Support Vector Machines

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!
- Some special kernel functions can do this for us. E.g.

$$
K\left(x_{i}, x_{i^{\prime}}\right)=\left(1+\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j}\right)^{d}
$$

computes the inner-products needed for d dimensional polynomials - $\binom{p+d}{d}$ basis functions!

Kernels and Support Vector Machines

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!
- Some special kernel functions can do this for us. E.g.

$$
K\left(x_{i}, x_{i^{\prime}}\right)=\left(1+\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j}\right)^{d}
$$

computes the inner-products needed for d dimensional polynomials - $\binom{p+d}{d}$ basis functions!

$$
\text { Try it for } p=2 \text { and } d=2 \text {. }
$$

Kernels and Support Vector Machines

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!
- Some special kernel functions can do this for us. E.g.

$$
K\left(x_{i}, x_{i^{\prime}}\right)=\left(1+\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j}\right)^{d}
$$

computes the inner-products needed for d dimensional polynomials - $\binom{p+d}{d}$ basis functions!

$$
\text { Try it for } p=2 \text { and } d=2 \text {. }
$$

- The solution has the form

$$
f(x)=\beta_{0}+\sum_{i \in \mathcal{S}} \hat{\alpha}_{i} K\left(x, x_{i}\right)
$$

Radial Kernel

$$
K\left(x_{i}, x_{i^{\prime}}\right)=\exp \left(-\gamma \sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}\right)
$$

$f(x)=\beta_{0}+\sum_{i \in \mathcal{S}} \hat{\alpha}_{i} K\left(x, x_{i}\right)$
Implicit feature space; very high dimensional.

Controls variance by squashing down most dimensions severely

Example: Heart Data

ROC curve is obtained by changing the threshold 0 to threshold t in $\hat{f}(X)>t$, and recording false positive and true positive rates as t varies. Here we see ROC curves on training data.

Example continued: Heart Test Data

SVMs: more than 2 classes?

The SVM as defined works for $K=2$ classes. What do we do if we have $K>2$ classes?

SVMs: more than 2 classes?

The SVM as defined works for $K=2$ classes. What do we do if we have $K>2$ classes?

OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_{k}(x), k=1, \ldots, K$; each class versus the rest. Classify x^{*} to the class for which $\hat{f}_{k}\left(x^{*}\right)$ is largest.

SVMs: more than 2 classes?

The SVM as defined works for $K=2$ classes. What do we do if we have $K>2$ classes?

OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_{k}(x), k=1, \ldots, K$; each class versus the rest. Classify x^{*} to the class for which $\hat{f}_{k}\left(x^{*}\right)$ is largest.
OVO One versus One. Fit all $\binom{K}{2}$ pairwise classifiers $\hat{f}_{k \ell}(x)$. Classify x^{*} to the class that wins the most pairwise competitions.

SVMs: more than 2 classes?

The SVM as defined works for $K=2$ classes. What do we do if we have $K>2$ classes?

OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_{k}(x), k=1, \ldots, K$; each class versus the rest. Classify x^{*} to the class for which $\hat{f}_{k}\left(x^{*}\right)$ is largest.
OVO One versus One. Fit all $\binom{K}{2}$ pairwise classifiers $\hat{f}_{k \ell}(x)$. Classify x^{*} to the class that wins the most pairwise competitions.
Which to choose? If K is not too large, use OVO.

Support Vector versus Logistic Regression?

 With $f(X)=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}$ can rephrase support-vector classifier optimization as$$
\underset{\beta_{0}, \beta_{1}, \ldots, \beta_{p}}{\operatorname{minimize}}\left\{\sum_{i=1}^{n} \max \left[0,1-y_{i} f\left(x_{i}\right)\right]+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right\}
$$

This has the form loss plus penalty. The loss is known as the hinge loss.
Very similar to "loss" in logistic regression (negative log-likelihood).

Which to use: SVM or Logistic Regression

- When classes are (nearly) separable, SVM does better than LR. So does LDA.
- When not, LR (with ridge penalty) and SVM very similar.
- If you wish to estimate probabilities, LR is the choice.
- For nonlinear boundaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but computations are more expensive.

