Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.
If we cannot, we get creative in two ways:
e We soften what we mean by “separates”, and

e We enrich and enlarge the feature space so that separation
is possible.



What is a Hyperplane?

A hyperplane in p dimensions is a flat affine subspace of
dimension p — 1.

In general the equation for a hyperplane has the form

Bo+ B1 X1+ feXo+ ...+ BpXp =0

In p = 2 dimensions a hyperplane is a line.

If By = 0, the hyperplane goes through the origin,
otherwise not.

The vector § = (f1, B2, -+, Bp) is called the normal vector
— it points in a direction orthogonal to the surface of a
hyperplane.
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Hyperplane in 2 Dimensions
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Separating Hyperplanes

o If f(X) =00+ X1+ -+ BpX,, then f(X) > 0 for points on
one side of the hyperplane, and f(X) < 0 for points on the other.

e If we code the colored points as Y; = +1 for blue, say, and
Y; = —1 for mauve, then if ¥; - f(X;) > 0 for all ¢, f(X) =0
defines a separating hyperplane.
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Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

Constrained optimization problem

maximize M
Bo,B1s--,Bp

P
subject to Zﬁf =1,

j=1
Yi(Bo + Brzin + .. + Bpzip) > M
forall i=1,...,N.

-1 0 1 2 3
Xy

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package 1071 solves
this problem efficiently



Non-separable Data

The data on the left are
not separable by a linear
boundary.

This is often the case,
unless NV < p.



Noisy Data

Xi X1

Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.



Support Vector Classifier

P
maximize M subject to E ]2— ,
B0osB1se-,Bpr€1s--1€n

Yi(Bo + Brwi1 + Patiz + ... + 5p5€zp) M(1—¢),

n
>0, > 6<C,

=1



(' is a regularization parameter
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Linear boundary can fail

Sometime a linear bound-
ary simply won’t work,
no matter what value of

C.

The example on the left
is such a case.

What to do?
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Feature Expansion

e Enlarge the space of features by including transformations;
e.g. X?2, X3, X1Xo, X1X2,.... Hence go from a
p-dimensional space to a M > p dimensional space.

e Fit a support-vector classifier in the enlarged space.

e This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X7, X2, X;X>) instead of
just (X1, X5). Then the decision boundary would be of the form

Bo + B X1 + BoXo + B3 X7 + BaX5 + B X1 X2 =0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).



Cubic Polynomials

Here we wuse a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space

Bo+B1X1+B2Xo+B3 X +B1X24+Bs X1 Xo+B6 X3+ 7 X5+ 8 X1 X2+ Lo X X2 =0
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Nonlinearities and Kernels

e Polynomials (especially high-dimensional ones) get wild
rather fast.

e There is a more elegant and controlled way to introduce
nonlinearities in support-vector classifiers — through the
use of kernels.

e Before we discuss these, we must understand the role of
wmmner products in support-vector classifiers.



Inner products and support vectors

(@i, i) g TyjTy;  — inner product between vectors

e The linear support vector classifier can be represented as

f(x) = Bo+ Z a{x,z;) — n parameters

e To estimate the parameters aq, ..., a, and 8y, all we need
are the (g) inner products (z;, x;) between all pairs of
training observations.

It turns out that most of the &; can be zero:
=Bo+ Y dilw, )
€S
S is the support set of indices i such that &; > 0. [sce slide §]



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zpy)= |1+ Z:U”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!
Try it forp =2 and d = 2.

e The solution has the form

BO“’ZOQ $-Tz

€S



X

Radial Kernel

(zij — zi15)°).
1

K(z;,xy) = exp(—y

J

p

fla) = Bo+ ) 6K (x,24)
€S

Implicit feature space;

very high dimensional.

Controls  variance by
squashing down most
| dimensions severely
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Example: Heart Data
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ROC curve is obtained by changing the threshold 0 to threshold
tin f(X) > t, and recording false positive and true positive
rates as t varies. Here we see ROC curves on training data.
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Example continued: Heart Test Data
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SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM

classifiers fk (z), k=1,...,K; each class versus
the rest. Classify z* to the class for which f(z*)
is largest.

OVO One versus One. Fit all (12{) pairwise classifiers
fre(x). Classify 2* to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.



Support Vector versus Logistic Regression?

With f(X) = fo+ /1 X1 + ... + BpX, can rephrase
support-vector classifier optimization as

P
mlmmlze Z max l/zf(%)] + A Z BJQ
j=1

B0;B15-+,8p

 Dgetcnegressontoss|  T'his has the form

loss plus penalty.

The loss is known as the
hinge loss.

Very similar to “loss” in
logistic regression (negative
log-likelihood).

Loss
4
|

Yi(Bo + Brxin + ..+ Byaiy)
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Which to use: SVM or Logistic Regression

When classes are (nearly) separable, SVM does better than
LR. So does LDA.

When not, LR (with ridge penalty) and SVM very similar.
If you wish to estimate probabilities, LR is the choice.

For nonlinear boundaries, kernel SVMs are popular. Can
use kernels with LR and LDA as well, but computations
are more expensive.



