
Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.

If we cannot, we get creative in two ways:

• We soften what we mean by “separates”, and

• We enrich and enlarge the feature space so that separation
is possible.
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What is a Hyperplane?

• A hyperplane in p dimensions is a flat affine subspace of
dimension p− 1.

• In general the equation for a hyperplane has the form

β0 + β1X1 + β2X2 + . . .+ βpXp = 0

• In p = 2 dimensions a hyperplane is a line.

• If β0 = 0, the hyperplane goes through the origin,
otherwise not.

• The vector β = (β1, β2, · · · , βp) is called the normal vector
— it points in a direction orthogonal to the surface of a
hyperplane.
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Hyperplane in 2 Dimensions
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Separating Hyperplanes
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• If f(X) = β0 + β1X1 + · · ·+ βpXp, then f(X) > 0 for points on
one side of the hyperplane, and f(X) < 0 for points on the other.

• If we code the colored points as Yi = +1 for blue, say, and
Yi = −1 for mauve, then if Yi · f(Xi) > 0 for all i, f(X) = 0
defines a separating hyperplane.
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Maximal Margin Classifier
Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.
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Constrained optimization problem

maximize
β0,β1,...,βp

M

subject to

p∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + . . .+ βpxip) ≥M
for all i = 1, . . . , N.

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package e1071 solves
this problem efficiently
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Non-separable Data
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The data on the left are
not separable by a linear
boundary.

This is often the case,
unless N < p.
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Noisy Data
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Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.
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Support Vector Classifier
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maximize
β0,β1,...,βp,ε1,...,εn

M subject to

p∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M(1− εi),

εi ≥ 0,

n∑
i=1

εi ≤ C,
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C is a regularization parameter
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Linear boundary can fail
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Sometime a linear bound-
ary simply won’t work,
no matter what value of
C.

The example on the left
is such a case.

What to do?
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Feature Expansion

• Enlarge the space of features by including transformations;
e.g. X2

1 , X3
1 , X1X2, X1X

2
2 ,. . .. Hence go from a

p-dimensional space to a M > p dimensional space.

• Fit a support-vector classifier in the enlarged space.

• This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X
2
1 , X

2
2 , X1X2) instead of

just (X1, X2). Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 = 0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).
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Cubic Polynomials

Here we use a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space
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Nonlinearities and Kernels

• Polynomials (especially high-dimensional ones) get wild
rather fast.

• There is a more elegant and controlled way to introduce
nonlinearities in support-vector classifiers — through the
use of kernels.

• Before we discuss these, we must understand the role of
inner products in support-vector classifiers.
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Inner products and support vectors

〈xi, xi′〉 =

p∑
j=1

xijxi′j — inner product between vectors

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑
i=1

αi〈x, xi〉 — n parameters

• To estimate the parameters α1, . . . , αn and β0, all we need
are the

(
n
2

)
inner products 〈xi, xi′〉 between all pairs of

training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑
i∈S

α̂i〈x, xi〉

S is the support set of indices i such that α̂i > 0. [see slide 8]
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Kernels and Support Vector Machines

• If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

• Some special kernel functions can do this for us. E.g.

K(xi, xi′) =

1 +

p∑
j=1

xijxi′j

d

computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

Try it for p = 2 and d = 2.

• The solution has the form

f(x) = β0 +
∑
i∈S

α̂iK(x, xi).
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Radial Kernel

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2).
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f(x) = β0+
∑
i∈S

α̂iK(x, xi)

Implicit feature space;
very high dimensional.

Controls variance by
squashing down most
dimensions severely
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Example: Heart Data
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LDA

False positive rate
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ROC curve is obtained by changing the threshold 0 to threshold
t in f̂(X) > t, and recording false positive and true positive
rates as t varies. Here we see ROC curves on training data.
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Example continued: Heart Test Data
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SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.
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Support Vector versus Logistic Regression?
With f(X) = β0 + β1X1 + . . .+ βpXp can rephrase
support-vector classifier optimization as

minimize
β0,β1,...,βp


n∑
i=1

max [0, 1− yif(xi)] + λ

p∑
j=1

β2j


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SVM Loss

Logistic Regression Loss

yi(β0 + β1xi1 + . . . + βpxip)

This has the form
loss plus penalty.
The loss is known as the
hinge loss.
Very similar to “loss” in
logistic regression (negative
log-likelihood).
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Which to use: SVM or Logistic Regression

• When classes are (nearly) separable, SVM does better than
LR. So does LDA.

• When not, LR (with ridge penalty) and SVM very similar.

• If you wish to estimate probabilities, LR is the choice.

• For nonlinear boundaries, kernel SVMs are popular. Can
use kernels with LR and LDA as well, but computations
are more expensive.
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