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Summary. We propose the elastic net, a new regularization and variable selection method. Real
world data and a simulation study show that the elastic net often outperforms the lasso, while
enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping
effect, where strongly correlated predictors tend to be in or out of the model together.The elastic
net is particularly useful when the number of predictors (p) is much bigger than the number of
observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the
p �n case. An algorithm called LARS-EN is proposed for computing elastic net regularization
paths efficiently, much like algorithm LARS does for the lasso.

Keywords: Grouping effect; LARS algorithm; Lasso; Penalization; p �n problem; Variable
selection

1. Introduction and motivation

We consider the usual linear regression model: given p predictors x1, . . . , xp, the response y is
predicted by

ŷ = β̂0 +x1β̂1 + . . . +xpβ̂p: .1/

A model fitting procedure produces the vector of coefficients β̂= .β̂0, . . . , β̂p/. For example, the
ordinary least squares (OLS) estimates are obtained by minimizing the residual sum of squares.
The criteria for evaluating the quality of a model will differ according to the circumstances.
Typically the following two aspects are important:

(a) accuracy of prediction on future data—it is difficult to defend a model that predicts
poorly;

(b) interpretation of the model—scientists prefer a simpler model because it puts more light
on the relationship between the response and covariates. Parsimony is especially an impor-
tant issue when the number of predictors is large.

It is well known that OLS often does poorly in both prediction and interpretation. Penaliza-
tion techniques have been proposed to improve OLS. For example, ridge regression (Hoerl and
Kennard, 1988) minimizes the residual sum of squares subject to a bound on the L2-norm of the
coefficients. As a continuous shrinkage method, ridge regression achieves its better prediction
performance through a bias–variance trade-off. However, ridge regression cannot produce a
parsimonious model, for it always keeps all the predictors in the model. Best subset selection in
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contrast produces a sparse model, but it is extremely variable because of its inherent discreteness,
as addressed by Breiman (1996).

A promising technique called the lasso was proposed by Tibshirani (1996). The lasso is a
penalized least squares method imposing an L1-penalty on the regression coefficients. Owing
to the nature of the L1-penalty, the lasso does both continuous shrinkage and automatic vari-
able selection simultaneously. Tibshirani (1996) and Fu (1998) compared the prediction per-
formance of the lasso, ridge and bridge regression (Frank and Friedman, 1993) and found
that none of them uniformly dominates the other two. However, as variable selection becomes
increasingly important in modern data analysis, the lasso is much more appealing owing to its
sparse representation.

Although the lasso has shown success in many situations, it has some limitations. Consider
the following three scenarios.

(a) In the p > n case, the lasso selects at most n variables before it saturates, because of the
nature of the convex optimization problem. This seems to be a limiting feature for a
variable selection method. Moreover, the lasso is not well defined unless the bound on
the L1-norm of the coefficients is smaller than a certain value.

(b) If there is a group of variables among which the pairwise correlations are very high, then
the lasso tends to select only one variable from the group and does not care which one is
selected. See Section 2.3.

(c) For usual n > p situations, if there are high correlations between predictors, it has been
empirically observed that the prediction performance of the lasso is dominated by ridge
regression (Tibshirani, 1996).

Scenarios (a) and (b) make the lasso an inappropriate variable selection method in some sit-
uations. We illustrate our points by considering the gene selection problem in microarray data
analysis. A typical microarray data set has many thousands of predictors (genes) and often
fewer than 100 samples. For those genes sharing the same biological ‘pathway’, the correlations
between them can be high (Segal and Conklin, 2003). We think of those genes as forming a
group. The ideal gene selection method should be able to do two things: eliminate the trivial
genes and automatically include whole groups into the model once one gene among them is
selected (‘grouped selection’). For this kind of p�n and grouped variables situation, the lasso
is not the ideal method, because it can only select at most n variables out of p candidates (Efron
et al., 2004), and it lacks the ability to reveal the grouping information. As for prediction per-
formance, scenario (c) is not rare in regression problems. So it is possible to strengthen further
the prediction power of the lasso.

Our goal is to find a new method that works as well as the lasso whenever the lasso does the
best, and can fix the problems that were highlighted above, i.e. it should mimic the ideal variable
selection method in scenarios (a) and (b), especially with microarray data, and it should deliver
better prediction performance than the lasso in scenario (c).

In this paper we propose a new regularization technique which we call the elastic net. Similar
to the lasso, the elastic net simultaneously does automatic variable selection and continuous
shrinkage, and it can select groups of correlated variables. It is like a stretchable fishing net that
retains ‘all the big fish’. Simulation studies and real data examples show that the elastic net often
outperforms the lasso in terms of prediction accuracy.

In Section 2 we define the naı̈ve elastic net, which is a penalized least squares method using a
novel elastic net penalty. We discuss the grouping effect that is caused by the elastic net penalty.
In Section 3, we show that this naı̈ve procedure tends to overshrink in regression problems. We
then introduce the elastic net, which corrects this problem. An efficient algorithm LARS-EN is
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proposed for computing the entire elastic net regularization paths with the computational effort
of a single OLS fit. Prostate cancer data are used to illustrate our methodology in Section 4,
and simulation results comparing the lasso and the elastic net are presented in Section 5.
Section 6 shows an application of the elastic net to classification and gene selection in a leukae-
mia microarray problem.

2. Naı̈ve elastic net

2.1. Definition
Suppose that the data set has n observations with p predictors. Let y = .y1, . . . , yn/T be the
response and X = .x1|. . . |xp/ be the model matrix, where xj = .x1j, . . . , xnj/T, j =1, . . . , p, are
the predictors. After a location and scale transformation, we can assume that the response is
centred and the predictors are standardized,

n∑
i=1

yi =0,
n∑

i=1
xij =0 and

n∑
i=1

x2
ij =1, for j =1, 2, . . . , p: .2/

For any fixed non-negative λ1 and λ2, we define the naı̈ve elastic net criterion

L.λ1, λ2, β/=|y −Xβ|2 +λ2|β|2 +λ1|β|1, .3/

where

|β|2 =
p∑

j=1
β2

j ,

|β|1 =
p∑

j=1
|βj|:

The naı̈ve elastic net estimator β̂ is the minimizer of equation (3):

β̂=arg min
β

{L.λ1, λ2, β/}: .4/

This procedure can be viewed as a penalized least squares method. Let α=λ2=.λ1 +λ2/; then
solving β̂ in equation (3) is equivalent to the optimization problem

β̂=arg min
β

|y −Xβ|2, subject to .1−α/ |β|1 +α |β|2 � t for some t: .5/

We call the function .1−α/ |β|1 +α |β|2 the elastic net penalty, which is a convex combination
of the lasso and ridge penalty. When α=1, the naı̈ve elastic net becomes simple ridge regression.
In this paper, we consider only α<1. For all α∈ [0, 1/, the elastic net penalty function is singular
(without first derivative) at 0 and it is strictly convex for all α>0, thus having the characteristics
of both the lasso and ridge regression. Note that the lasso penalty (α = 0) is convex but not
strictly convex. These arguments can be seen clearly from Fig. 1.

2.2. Solution
We now develop a method to solve the naı̈ve elastic net problem efficiently. It turns out that
minimizing equation (3) is equivalent to a lasso-type optimization problem. This fact implies
that the naı̈ve elastic net also enjoys the computational advantage of the lasso.



304 H. Zou and T. Hastie

β1

β2

Fig. 1. Two-dimensional contour plots (level 1) (� - � - � -, shape of the ridge penalty; - - - - - - -, contour of the
lasso penalty; , contour of the elastic net penalty with αD0:5): we see that singularities at the vertices
and the edges are strictly convex; the strength of convexity varies with α

Lemma 1. Given data set .y, X/ and .λ1, λ2/, define an artificial data set .yÅ, XÅ/ by

XÅ
.n+p/×p

= .1+λ2/−1=2
(

X√
λ2I

)
, yÅ

.n+p/ =
(

y
0

)
:

Let γ =λ1=
√

.1+λ2/ and βÅ =√
.1+λ2/β. Then the naı̈ve elastic net criterion can be written

as

L.γ, β/=L.γ, βÅ/= ∣∣yÅ −XÅβÅ∣∣2 +γ
∣∣βÅ∣∣

1:

Let

β̂
Å =arg min

β
Å

L{.γ, βÅ/};

then

β̂= 1√
.1+λ2/

β̂
Å
:

The proof is just simple algebra, which we omit. Lemma 1 says that we can transform the naı̈ve
elastic net problem into an equivalent lasso problem on augmented data. Note that the sample
size in the augmented problem is n+p and XÅ has rank p, which means that the naı̈ve elastic
net can potentially select all p predictors in all situations. This important property overcomes
the limitations of the lasso that were described in scenario (a). Lemma 1 also shows that the
naı̈ve elastic net can perform an automatic variable selection in a fashion similar to the lasso. In
the next section we show that the naı̈ve elastic net has the ability of selecting ‘grouped’ variables,
a property that is not shared by the lasso.
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β̂

β

Fig. 2. Exact solutions for the lasso (- - - - - - - ), ridge regression (� - � - � -) and the naı̈ve elastic net ( )
in an orthogonal design (. . . . . . ., OLS): the shrinkage parameters are λ1 D2 and λ2 D1

In the case of an orthogonal design, it is straightforward to show that with parameters .λ1, λ2/

the naı̈ve elastic net solution is

β̂i.naı̈ve elastic net/= .|β̂i.OLS/|−λ1=2/+
1+λ2

sgn{β̂i.OLS/}, .6/

where β̂.OLS/=XTy and z+ denotes the positive part, which is z if z > 0 and 0 otherwise. The
solution of ridge regression with parameter λ2 is given by β̂.ridge/= β̂.OLS/=.1+λ2/, and the
lasso solution with parameter λ1 is

β̂i.lasso/= .|β̂i.OLS/|−λ1=2/+ sgn{β̂i.OLS/}:

Fig. 2 shows the operational characteristics of the three penalization methods in an orthogonal
design, where the naı̈ve elastic net can be viewed as a two-stage procedure: a ridge-type direct
shrinkage followed by a lasso-type thresholding.

2.3. The grouping effect
In the ‘large p, small n’ problem (West et al., 2001), the ‘grouped variables’ situation is a partic-
ularly important concern, which has been addressed many times in the literature. For example,
principal component analysis has been used to construct methods for finding a set of highly
correlated genes in Hastie et al. (2000) and Dı́az-Uriarte (2003). Tree harvesting (Hastie et al.,
2003) uses supervised learning methods to select groups of predictive genes found by hierar-
chical clustering. Using an algorithmic approach, Dettling and Bühlmann (2004) performed
the clustering and supervised learning together. A careful study by Segal and Conklin (2003)
strongly motivates the use of a regularized regression procedure to find the grouped genes. We
consider the generic penalization method
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β̂=arg min
β

|y −Xβ|2 +λ J.β/ .7/

where J.·/ is positive valued for β �=0.
Qualitatively speaking, a regression method exhibits the grouping effect if the regression

coefficients of a group of highly correlated variables tend to be equal (up to a change of sign if
negatively correlated). In particular, in the extreme situation where some variables are exactly
identical, the regression method should assign identical coefficients to the identical variables.

Lemma 2. Assume that xi =xj, i, j ∈{1, . . . , p}.

(a) If J.·/ is strictly convex, then β̂i = β̂j, ∀λ> 0.
(b) If J.β/=|β|1, then β̂iβ̂j �0 and β̂

Å
is another minimizer of equation (7), where

β̂
Å
k =




β̂k if k �= i and k �= j,
.β̂i + β̂j/ · .s/ if k = i,
.β̂i + β̂j/ · .1− s/ if k = j,

for any s∈ [0, 1].

Lemma 2 shows a clear distinction between strictly convex penalty functions and the lasso
penalty. Strict convexity guarantees the grouping effect in the extreme situation with identical
predictors. In contrast the lasso does not even have a unique solution. The elastic net penalty
with λ2 > 0 is strictly convex, thus enjoying the property in assertion (1).

Theorem 1. Given data .y, X/ and parameters .λ1, λ2/, the response y is centred and the
predictors X are standardized. Let β̂.λ1, λ2/ be the naı̈ve elastic net estimate. Suppose that
β̂i.λ1, λ2/ β̂j.λ1, λ2/> 0. Define

Dλ1,λ2.i, j/= 1
|y|1

|β̂i.λ1, λ2/− β̂j.λ1, λ2/|;

then

Dλ1,λ2.i, j/� 1
λ2

√{2.1−ρ/},

where ρ=xT
i xj, the sample correlation.

The unitless quantity Dλ1,λ2.i, j/ describes the difference between the coefficient paths of
predictors i and j. If xi and xj are highly correlated, i.e. ρ

:= 1 (if ρ
:=−1 then consider −xj),

theorem 1 says that the difference between the coefficient paths of predictor i and predictor j is
almost 0. The upper bound in the above inequality provides a quantitative description for the
grouping effect of the naı̈ve elastic net.

The lasso does not have the grouping effect. Scenario (b) in Section 1 occurs frequently in
practice. A theoretical explanation is given in Efron et al. (2004). For a simpler illustration,
let us consider the linear model with p = 2. Tibshirani (1996) gave the explicit expression for
.β̂1, β̂2/, from which we easily obtain that |β̂1 − β̂2|= | cos.θ/|, where θ is the angle between y
and x1 −x2. It is easy to construct examples such that ρ= corr.x1, x2/→1 but cos.θ/ does not
vanish.

2.4. Bayesian connections and the Lq-penalty
Bridge regression (Frank and Friedman, 1993; Fu, 1998) has J.β/=|β|qq =Σp

j=1 |βj|q in equa-
tion (7), which is a generalization of both the lasso (q = 1) and ridge regression (q = 2). The
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bridge estimator can be viewed as the Bayes posterior mode under the prior

pλ,q.β/=C.λ, q/exp.−λ|β|qq/: .8/

Ridge regression (q=2) corresponds to a Gaussian prior and the lasso (q=1) a Laplacian (or
double-exponential) prior. The elastic net penalty corresponds to a new prior given by

pλ,α.β/=C.λ, α/exp[−λ{α|β|2 + .1−α/|β|1}], .9/

a compromise between the Gaussian and Laplacian priors. Although bridge regression with
1 < q < 2 will have many similarities with the elastic net, there is a fundamental difference
between them. The elastic net produces sparse solutions, whereas bridge regression does not.
Fan and Li (2001) proved that, in the Lq (q � 1) penalty family, only the lasso penalty (q = 1)
can produce a sparse solution. Bridge regression (1 < q < 2) always keeps all predictors in the
model, as does ridge regression. Since automatic variable selection via penalization is a primary
objective of this paper, Lq (1 <q< 2) penalization is not a candidate.

3. Elastic net

3.1. Deficiency of the naı̈ve elastic net
As an automatic variable selection method, the naı̈ve elastic net overcomes the limitations of
the lasso in scenarios (a) and (b). However, empirical evidence (see Sections 4 and 5) shows
that the naı̈ve elastic net does not perform satisfactorily unless it is very close to either ridge
regression or the lasso. This is why we call it naı̈ve.

In the regression prediction setting, an accurate penalization method achieves good pre-
diction performance through the bias–variance trade-off. The naı̈ve elastic net estimator is a
two-stage procedure: for each fixed λ2 we first find the ridge regression coefficients, and then
we do the lasso-type shrinkage along the lasso coefficient solution paths. It appears to incur
a double amount of shrinkage. Double shrinkage does not help to reduce the variances much
and introduces unnecessary extra bias, compared with pure lasso or ridge shrinkage. In the next
section we improve the prediction performance of the naı̈ve elastic net by correcting this double
shrinkage.

3.2. The elastic net estimate
We follow the notation in Section 2.2. Given data .y, X/, penalty parameter .λ1, λ2/ and aug-
mented data .yÅ, XÅ/, the naı̈ve elastic net solves a lasso-type problem

β̂
Å =arg min

β
Å

|yÅ −XÅβÅ|2 + λ1√
.1+λ2/

|βÅ|1: .10/

The elastic net (corrected) estimates β̂ are defined by

β̂.elastic net/=√
.1+λ2/β̂

Å
: .11/

Recall that β̂.naı̈ve elastic net/={1=
√

.1+λ2/}β̂
Å

; thus

β̂.elastic net/= .1+λ2/ β̂.naı̈ve elastic net/: .12/

Hence the elastic net coefficient is a rescaled naı̈ve elastic net coefficient.
Such a scaling transformation preserves the variable selection property of the naı̈ve elastic

net and is the simplest way to undo shrinkage. Hence all the good properties of the naı̈ve elastic
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net that were described in Section 2 hold for the elastic net. Empirically we have found that the
elastic net performs very well when compared with the lasso and ridge regression.

We have another justification for choosing 1 +λ2 as the scaling factor. Consider the exact
solution of the naı̈ve elastic net when the predictors are orthogonal. The lasso is known to be
minimax optimal (Donoho et al., 1995) in this case, which implies that the naı̈ve elastic net is
not optimal. After scaling by 1+λ2, the elastic net automatically achieves minimax optimality.

A strong motivation for the .1 + λ2/-rescaling comes from a decomposition of the ridge
operator. Since the predictors X are standardized, we have

XTX =




1 ρ12 · ρ1p

1 · ·
1 ρp−1, p

1




p×p

,

where ρi,j is sample correlation. Ridge estimates with parameter λ2 are given by β̂.ridge/=Ry,
with

R = .XTX +λ2I/−1XT:

We can rewrite R as

R = 1
1+λ2

RÅ = 1
1+λ2




1
ρ12

1+λ2
·

ρ1p

1+λ2
1 · ·

1
ρp−1, p

1+λ2
1




−1

XT: .13/

RÅ is like the usual OLS operator except that the correlations are shrunk by the factor 1=.1+λ2/,
which we call decorrelation. Hence from equation (13) we can interpret the ridge operator as
decorrelation followed by direct scaling shrinkage.

This decomposition suggests that the grouping effect of ridge regression is caused by the
decorrelation step. When we combine the grouping effect of ridge regression with the lasso,
the direct 1=.1+λ2/ shrinkage step is not needed and is removed by rescaling. Although ridge
regression requires 1=.1 +λ2/ shrinkage to control the estimation variance effectively, in our
new method, we can rely on the lasso shrinkage to control the variance and to obtain sparsity.

From now on, let β̂ stand for β̂.elastic net/. The next theorem gives another presentation of
the elastic net, in which the decorrelation argument is more explicit.

Theorem 2. Given data .y, X/ and .λ1, λ2/, then the elastic net estimates β̂ are given by

β̂=arg min
β

βT
(

XTX +λ2I
1+λ2

)
β−2yTXβ+λ1 |β|1: .14/

It is easy to see that

β̂.lasso/=arg min
β

βT.XTX/β−2yTXβ+λ1 |β|1: .15/

Hence theorem 2 interprets the elastic net as a stabilized version of the lasso. Note that Σ̂=XTX
is a sample version of the correlation matrix Σ and

XTX +λ2I
1+λ2

= .1−γ/Σ̂+γI
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with γ =λ2=.1 +λ2/ shrinks Σ̂ towards the identity matrix. Together equations (14) and (15)
say that rescaling after the elastic net penalization is mathematically equivalent to replacing Σ̂
with its shrunken version in the lasso. In linear discriminant analysis, the prediction accuracy
can often be improved by replacing Σ̂ by a shrunken estimate (Friedman, 1989; Hastie et al.,
2001). Likewise we improve the lasso by regularizing Σ̂ in equation (15).

3.3. Connections with univariate soft thresholding
The lasso is a special case of the elastic net with λ2 =0. The other interesting special case of the
elastic net emerges when λ2 →∞. By theorem 2, β̂→ β̂.∞/ as λ2 →∞, where

β̂.∞/=arg min
β

βTβ−2yTXβ+λ1 |β|1:

β̂.∞/ has a simple closed form

β̂.∞/i =
(

|yTxi|− λ1

2

)
+

sgn.yTxi/, i=1, 2, . . . , p: .16/

Observe that yTxi is the univariate regression coefficient of the ith predictor and β̂.∞/ are the
estimates by applying soft thresholding on univariate regression coefficients; thus equation (16)
is called univariate soft thresholding (UST).

UST totally ignores the dependence between predictors and treats them as independent vari-
ables. Although this may be considered illegitimate, UST and its variants are used in other meth-
ods such as significance analysis of microarrays (Tusher et al., 2001) and the nearest shrunken
centroids classifier (Tibshirani et al., 2002), and have shown good empirical performance. The
elastic net naturally bridges the lasso and UST.

3.4. Computation: the algorithm LARS-EN
We propose an efficient algorithm called LARS-EN to solve the elastic net efficiently, which is
based on the recently proposed algorithm LARS of Efron et al. (2004). They proved that, starting
from zero, the lasso solution paths grow piecewise linearly in a predictable way. They proposed
a new algorithm called LARS to solve the entire lasso solution path efficiently by using the same
order of computations as a single OLS fit. By lemma 1, for each fixed λ2 the elastic net problem
is equivalent to a lasso problem on the augmented data set. So algorithm LARS can be directly
used to create the entire elastic net solution path efficiently with the computational efforts of a
single OLS fit. Note, however, that for p�n the augmented data set has p+n ‘observations’
and p variables, which can slow the computation considerably.

We further facilitate the computation by taking advantage of the sparse structure of XÅ,
which is crucial in the p � n case. In detail, as outlined in Efron et al. (2004), at the kth step
we need to invert the matrix GAk

= XÅT
Ak

XÅ
Ak

, where Ak is the active variable set. This is done
efficiently by updating or downdating the Cholesky factorization of GAk−1 that is found at the
previous step. Note that

GA = 1
1+λ2

.XT
AXA +λ2I/

for any index set A, so it amounts to updating or downdating the Cholesky factorization of
XT

Ak−1
XAk−1 +λ2I. It turns out that we can use a simple formula to update the Cholesky fac-

torization of XT
Ak−1

XAk−1 + λ2I, which is very similar to the formula that is used for updat-
ing the Cholesky factorization of XT

Ak−1
XAk−1 (Golub and Van Loan, 1983). The exact same
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downdating function can be used for downdating the Cholesky factorization of XT
Ak−1

XAk−1 +
λ2I. In addition, when calculating the equiangular vector and the inner products of the non-
active predictors with the current residuals, we can save computations by using the simple fact
that XÅ

j has p − 1 zero elements. In a word, we do not explicitly use XÅ to compute all the
quantities in algorithm LARS. It is also economical to record only the non-zero coefficients and
the active variables set at each LARS-EN step.

Algorithm LARS-EN sequentially updates the elastic net fits. In the p � n case, such as
with microarray data, it is not necessary to run the algorithm to the end (early stopping). Real
data and simulated computational experiments show that the optimal results are achieved at
an early stage of algorithm LARS-EN. If we stop the algorithm after m steps, then it requires
O.m3 +pm2/ operations.

3.5. Choice of tuning parameters
We now discuss how to choose the type and value of the tuning parameter in the elastic
net. Although we defined the elastic net by using .λ1, λ2/, it is not the only choice as the
tuning parameter. In the lasso, the conventional tuning parameter is the L1-norm of the
coefficients (t) or the fraction of the L1-norm (s). By the proportional relationship between
β̂ and β̂

Å
, we can also use .λ2, s/ or .λ2, t/ to parameterize the elastic net. The advantage

of using .λ2, s/ is that s is always valued within [0, 1]. In algorithm LARS the lasso is des-
cribed as a forward stagewise additive fitting procedure and shown to be (almost) identical to
"-L2 boosting (Efron et al., 2004). This new view adopts the number of steps k of algorithm
LARS as a tuning parameter for the lasso. For each fixed λ2, the elastic net is solved by our
algorithm LARS-EN; hence similarly we can use the number of the LARS-EN steps .k/ as
the second tuning parameter besides λ2. The above three types of tuning parameter corres-
pond to three ways to interpret the piecewise elastic net or lasso solution paths as shown in
Fig. 3.

There are well-established methods for choosing such tuning parameters (Hastie et al. (2001),
chapter 7). If only training data are available, tenfold cross-validation (CV) is a popular method
for estimating the prediction error and comparing different models, and we use it here. Note
that there are two tuning parameters in the elastic net, so we need to cross-validate on a
two-dimensional surface. Typically we first pick a (relatively small) grid of values for λ2, say
.0, 0:01, 0:1, 1, 10, 100/. Then, for each λ2, algorithm LARS-EN produces the entire solution
path of the elastic net. The other tuning parameter (λ1, s or k) is selected by tenfold CV. The
chosen λ2 is the one giving the smallest CV error.

For each λ2, the computational cost of tenfold CV is the same as 10 OLS fits. Thus two-
dimensional CV is computationally thrifty in the usual n > p setting. In the p � n case, the
cost grows linearly with p and is still manageable. Practically, early stopping is used to ease the
computational burden. For example, suppose that n=30 and p=5000; if we do not want more
than 200 variables in the final model, we may stop algorithm LARS-EN after 500 steps and
consider only the best k within 500.

From now on we drop the subscript of λ2 if s or k is the other parameter.

4. Prostate cancer example

The data in this example come from a study of prostate cancer (Stamey et al., 1989). The predic-
tors are eight clinical measures: log(cancer volume) (lcavol), log(prostate weight) (lweight), age,
the logarithm of the amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion
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Fig. 3. (a) Lasso estimates as a function of s and (b) elastic net estimates (λ D 1000) as a function of s:
both estimates are piecewise linear, which is a key property of our efficient algorithm; the solution paths also
show that the elastic net is identical to univariate soft thresholding in this example (·

···, final model selected)

(svi), log(capsular penetration) (lcp), Gleason score (gleason) and percentage Gleason score 4
or 5 (pgg45). The response is the logarithm of prostate-specific antigen (lpsa).

OLS, ridge regression, the lasso, the naı̈ve elastic net and the elastic net were all applied to
these data. The prostate cancer data were divided into two parts: a training set with 67 obser-
vations and a test set with 30 observations. Model fitting and tuning parameter selection by
tenfold CV were carried out on the training data. We then compared the performance of those
methods by computing their prediction mean-squared error on the test data.

Table 1 clearly shows that the elastic net is the winner among all the competitors in terms
of both prediction accuracy and sparsity. OLS is the worst method. The naı̈ve elastic net per-
forms identically to ridge regression in this example and fails to do variable selection. The lasso
includes lcavol, lweight lbph, svi and pgg45 in the final model, whereas the elastic net selects

Table 1. Prostate cancer data: comparing different methods

Method Parameter(s) Test mean-squared error Variables selected

OLS 0.586 (0.184) All
Ridge regression λ=1 0.566 (0.188) All
Lasso s=0:39 0.499 (0.161) (1,2,4,5,8)
Naı̈ve elastic net λ=1, s=1 0.566 (0.188) All
Elastic net λ=1000, s=0:26 0.381 (0.105) (1,2,5,6,8)
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lcavol, lweight, svi, lcp and pgg45. The prediction error of the elastic net is about 24% lower
than that of the lasso. We also see in this case that the elastic net is actually UST, because the λ
selected is very big (1000). This can be considered as a piece of empirical evidence supporting
UST. Fig. 3 displays the lasso and the elastic net solution paths.

If we check the correlation matrix of these eight predictors, we see that there are some medium
correlations, although the highest is 0.76 (between pgg45 and gleason). We have seen that the
elastic net dominates the lasso by a good margin. In other words, the lasso is hurt by the high
correlation. We conjecture that, whenever ridge regression improves on OLS, the elastic net will
improve the lasso. We demonstrate this point by simulations in the next section.

5. A simulation study

The purpose of this simulation is to show that the elastic net not only dominates the lasso in
terms of prediction accuracy but also is a better variable selection procedure than the lasso. We
simulate data from the true model

y =Xβ+σ", "∼N.0, 1/:

Four examples are presented here. The first three examples were used in the original lasso paper
(Tibshirani, 1996), to compare the prediction performance of the lasso and ridge regression
systematically. The fourth example creates a grouped variable situation.

Within each example, our simulated data consist of a training set, an independent validation
set and an independent test set. Models were fitted on training data only, and the validation
data were used to select the tuning parameters. We computed the test error (the mean-squared
error) on the test data set. We use the notation ·= ·=· to describe the number of observations in
the training, validation and test set respectively, e.g. 20/20/200. Here are the details of the four
scenarios.

(a) In example 1, we simulated 50 data sets consisting of 20/20/200 observations and eight
predictors. We let β = .3, 1:5, 0, 0, 2, 0, 0, 0/ and σ = 3. The pairwise correlation between
xi and xj was set to be corr.i, j/=0:5|i−j|.

(b) Example 2 is the same as example 1, except that βj =0:85 for all j.
(c) In example 3, we simulated 50 data sets consisting of 100/100/400 observations and 40

predictors. We set

β= .0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

/

and σ =15; corr.i, j/=0:5 for all i and j.
(d) In example 4 we simulated 50 data sets consisting of 50/50/400 observations and 40 pre-

dictors. We chose

β= .3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

/

and σ =15. The predictors X were generated as follows:

xi =Z1 + "x
i , Z1 ∼N.0, 1/, i=1, . . . , 5,

xi =Z2 + "x
i , Z2 ∼N.0, 1/, i=6, . . . , 10,

xi =Z3 + "x
i , Z3 ∼N.0, 1/, i=11, . . . , 15,

xi ∼N.0, 1/, xi independent identically distributed, i=16, : : : , 40,
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Table 2. Median mean-squared errors for the simulated examples and
four methods based on 50 replications†

Method Results for the following examples:

Example 1 Example 2 Example 3 Example 4

Lasso 3.06 (0.31) 3.87 (0.38) 65.0 (2.82) 46.6 (3.96)
Elastic net 2.51 (0.29) 3.16 (0.27) 56.6 (1.75) 34.5 (1.64)
Ridge regression 4.49 (0.46) 2.84 (0.27) 39.5 (1.80) 64.5 (4.78)
Naı̈ve elastic net 5.70 (0.41) 2.73 (0.23) 41.0 (2.13) 45.9 (3.72)

†The numbers in parentheses are the corresponding standard errors (of the
medians) estimated by using the bootstrap with B = 500 resamplings on the
50 mean-squared errors.

where "x
i are independent identically distributed N.0, 0:01/, i= 1, : : : , 15: In this model,

we have three equally important groups, and within each group there are five members.
There are also 25 pure noise features. An ideal method would select only the 15 true
features and set the coefficients of the 25 noise features to 0.

Table 2 and Fig. 4 (box plots) summarize the prediction results. First we see that the naı̈ve
elastic net either has a very poor performance (in example 1) or behaves almost identically to
either ridge regression (in examples 2 and 3) or the lasso (in example 4). In all the examples, the
elastic net is significantly more accurate than the lasso, even when the lasso is doing much better
than ridge regression. The reductions in the prediction error in examples 1, 2, 3 and 4 are 18%,
18%, 13% and 27% respectively. The simulation results indicate that the elastic net dominates
the lasso under collinearity.

Table 3 shows that the elastic net produces sparse solutions. The elastic net tends to select
more variables than the lasso does, owing to the grouping effect. In example 4 where grouped
selection is required, the elastic net behaves like the ‘oracle’. The additional ‘grouped selection’
ability makes the elastic net a better variable selection method than the lasso.

Here is an idealized example showing the important differences between the elastic net and
the lasso. Let Z1 and Z2 be two independent U.0, 20/ variables. The response y is generated as
N.Z1 +0:1Z2, 1/. Suppose that we observe only

x1 =Z1 + "1, x2 =−Z1 + "2, x3 =Z1 + "3,

x4 =Z2 + "4, x5 =−Z2 + "5, x6 =Z2 + "6,

where "i are independent identically distributed N.0, 1=16/. 100 observations were generated
from this model. The variables x1, x2 and x3 form a group whose underlying factor is Z1, and
x4, x5 and x6 form a second group whose underlying factor is Z2. The within-group correla-
tions are almost 1 and the between-group correlations are almost 0. An oracle would identify
the Z1-group as the important variates. Fig. 5 compares the solution paths of the lasso and the
elastic net.

6. Microarray classification and gene selection

A typical microarray data set has thousands of genes and fewer than 100 samples. Because of
the unique structure of the microarray data, we feel that a good classification method should
have the following properties.
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Fig. 4. Comparing the accuracy of prediction of the lasso, the elasic net (Enet), ridge regression and
the naı̈ve elastic net (NEnet) (the elastic net outperforms the lasso in all four examples): (a) example 1;
(b) example 2; (c) example 3; (d) example 4

(a) Gene selection should be built into the procedure.
(b) It should not be limited by the fact that p�n.
(c) For those genes sharing the same biological pathway, it should be able to include whole

groups into the model automatically once one gene among them is selected.

From published results in this domain, it appears that many classifiers achieve similar low
classification error rates. But many of these methods do not select genes in a satisfactory way.
Most of the popular classifiers fail with respect to at least one of the above properties. The
lasso is good at (a) but fails both (b) and (c). The support vector machine (Guyon et al., 2002)
and penalized logistic regression (Zhu and Hastie, 2004) are very successful classifiers, but they
cannot do gene selection automatically and both use either univariate ranking (Golub et al.,
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Table 3. Median number of non-zero coefficients

Method Results for the following examples:

Example 1 Example 2 Example 3 Example 4

Lasso 5 6 24 11
Elastic net 6 7 27 16
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Fig. 5. (a) Lasso and (b) elastic net (λ2 D 0:5) solution paths: the lasso paths are unstable and (a) does
not reveal any correction information by itself; in contrast, the elastic net has much smoother solution paths,
while clearly showing the ‘grouped selection’—x1, x2 and x3 are in one ‘significant’ group and x4, x5 and x6
are in the other ‘trivial’ group; the decorrelation yields the grouping effect and stabilizes the lasso solution

1999) or recursive feature elimination (Guyon et al., 2002) to reduce the number of genes in the
final model.

As an automatic variable selection method, the elastic net naturally overcomes the difficulty
of p�n and has the ability to do grouped selection. We use the leukaemia data to illustrate the
elastic net classifier.

The leukaemia data consist of 7129 genes and 72 samples (Golub et al., 1999). In the training
data set, there are 38 samples, among which 27 are type 1 leukaemia (acute lymphoblastic leu-
kaemia) and 11 are type 2 leukaemia (acute myeloid leukaemia). The goal is to construct a
diagnostic rule based on the expression level of those 7219 genes to predict the type of leukae-
mia. The remaining 34 samples are used to test the prediction accuracy of the diagnostic rule. To
apply the elastic net, we first coded the type of leukaemia as a 0–1 response y. The classification
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function is I.fitted value > 0:5/, where I.·/ is the indicator function. We used tenfold CV to
select the tuning parameters.

We used prescreening to make the computation more manageable. Each time that a model
is fitted, we first select the 1000 most ‘significant’ genes as the predictors, according to their
t-statistic scores (Tibshirani et al., 2002). Note that this screening is done separately in each
training fold in the CV. In practice, this screening does not affect the results, because we stop
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Fig. 6. Leukaemia classification and gene selection by the elastic net (λ D 0:01): (a) the early stopping
strategy at 200 steps finds the optimal classifier with much less computational cost than (b) the whole elastic
net paths; with early stopping, the number of steps is much more convenient than s, the fraction of L1-norm,
since computing s depends on the fit at the last step of algorithm LARS-EN; the actual values of s are not
available in tenfold CV (+) if the algorithm is stopped early; on the training set, 200 steps are equivalent to
s D0:50 (·

···)

Table 4. Summary of the leukaemia classification results

Method Tenfold CV Test error Number of
error genes

Golub 3/38 4/34 50
Support vector maching–recursive 2/38 1/34 31

feature elimination
Penalized logistic regression–recursive 2/38 1/34 26

feature elimination
Nearest shrunken centroids 2/38 2/34 21
Elastic net 3/38 0/34 45



Elastic Net 317

0 20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Steps

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

0 5 10 14 18 22 24 25 30 31 34 37 37 41 41 43 45 45 47 47 52

Fig. 7. Leukaemia data—elastic net coefficients paths (up to k D100): the numbers on the top indicate the
number of non-zero coefficients (selected genes) at each step; the optimal elastic net model is given by the
fit at step 82 (·

···) with 45 selected genes; note that the size of the training set is 38, so the lasso can at most
select 38 genes; in contrast, the elastic net selected more than 38 genes, not limited by the sample size;
λD0:01 is chosen by tenfold CV; if a bigger λ is used, the grouping effect will be stronger

the elastic net path relatively early, at a stage when the screened variables are unlikely to be in
the model.

All the prescreening, fitting and tuning were done using only the training set and the classifi-
cation error is evaluated on the test data.

We stopped algorithm LARS-EN after 200 steps. As can be seen from Fig. 6, using the num-
ber of steps k in the algorithm as the tuning parameter, the elastic net classifier (λ= 0:01 and
k = 82) gives a tenfold CV error of 3/38 and a test error of 0/34 with 45 genes selected. Fig. 7
displays the elastic net solution paths and the gene selection results. Table 4 compares the elastic
net with several competitors including Golub’s method, the support vector machine, penalized
logistic regression and the nearest shrunken centroid (Tibshirani et al., 2002). The elastic net
gives the best classification, and it has an internal gene selection facility.

7. Discussion

We have proposed the elastic net, a novel shrinkage and selection method. The elastic net pro-
duces a sparse model with good prediction accuracy, while encouraging a grouping effect. The
empirical results and simulations demonstrate the good performance of the elastic net and its
superiority over the lasso. When used as a (two-class) classification method, the elastic net
appears to perform well on microarray data in terms of the misclassification error, and it does
automatic gene selection.
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Although our methodology is motivated by regression problems, the elastic net penalty can
be used in classification problems with any consistent (Zhang, 2004) loss functions, including
the L2-loss which we have considered here and binomial deviance. Some nice properties of the
elastic net are better understood in the classification paradigm. For example, Fig. 6 is a familiar
picture in boosting: the test error keeps decreasing and reaches a long flat region and then slightly
increases (Hastie et al., 2001). This is no coincidence. In fact we have discovered that the elastic
net penalty has a close connection with the maximum margin explanation (Rosset et al., 2004)
to the success of the support vector machine and boosting. Thus Fig. 6 has a nice margin-based
explanation. We have made some progress in using the elastic net penalty in classification, which
will be reported in a future paper.

We view the elastic net as a generalization of the lasso, which has been shown to be a valuable
tool for model fitting and feature extraction. Recently the lasso was used to explain the success of
boosting: boosting performs a high dimensional lasso without explicitly using the lasso penalty
(Hastie et al., 2001; Friedman et al., 2004). Our results offer other insights into the lasso, and
ways to improve it.
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Appendix A: Proofs

A.1. Proof of lemma 2
A.1.1. Part (1)
Fix λ> 0. If β̂i �= β̂j , let us consider β̂

Å
as follows:

β̂
Å
k =

{
β̂k if k �= i and k �= j,
1
2 .β̂i + β̂j/ if k = i or k = j.

Because xi = xj , it is obvious that Xβ̂
Å = Xβ̂; thus |y − Xβ̂

Å|2 =|y − Xβ̂|2: However, J.·/ is strictly con-
vex, so we have J.β̂

Å
/<J.β̂/. Therefore β̂ cannot be the minimizer of equation (7), which is a contradiction.

So we must have β̂i = β̂j:

A.1.2. Part (2)
If β̂iβ̂j < 0, consider the same β̂

Å
again. We see that |β̂Å|< |β̂|, so β̂ cannot be a lasso solution. The rest

can be directly verified by the definition of the lasso, which is thus omitted.

A.2. Proof of theorem 1
If β̂i.λ1, λ2/ β̂j.λ1, λ2/>0, then both β̂i.λ1, λ2/ and β̂j.λ1, λ2/ are non-zero, and we have sgn{β̂i.λ1, λ2/}=
sgn{β̂j.λ1, λ2/}. Because of equation (4), β̂ .λ1, λ2/ satisfies

@L.λ1, λ2, β/

@βk

∣∣∣∣
β=β̂.λ1,λ2/

=0 if β̂k.λ1, λ2/ �=0: .17/

Hence we have

−2xT
i {y −Xβ̂.λ1, λ2/}+λ1 sgn{β̂i.λ1, λ2/}+2λ2 β̂i.λ1, λ2/=0, .18/
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−2xT
j {y −Xβ̂.λ1, λ2/}+λ1 sgn{β̂j.λ1, λ2/}+2λ2 β̂j.λ1, λ2/=0: .19/

Subtracting equation (18) from equation (19) gives

.xT
j −xT

i /{y −Xβ̂.λ1, λ2/}+λ2{β̂i.λ1, λ2/− β̂j.λ1, λ2/}=0,

which is equivalent to

β̂i.λ1, λ2/− β̂j.λ1, λ2/= 1
λ2

.xT
i −xT

j / r̂.λ1, λ2/, .20/

where r̂.λ1, λ2/=y−xβ̂.λ1, λ2/ is the residual vector. Since X are standardized, |xi −xj|2 =2.1−ρ/ where
ρ=xT

i xj: By equation (4) we must have

L{λ1, λ2, β̂.λ1, λ2/}�L.λ1, λ2, β=0/,

i.e.

|r̂.λ1, λ2/|2 +λ2|β̂.λ1, λ2/|2 +λ1|β̂.λ1, λ2/|1 � |y|2:
So |r̂.λ1, λ2/|� |y|. Then equation (20) implies that

Dλ1,λ2 .i, j/� 1
λ2

|r̂.λ1, λ2/|
|y| |xi −xj|� 1

λ2

√{2.1−ρ/}:

A.3. Proof of theorem 2
Let β̂ be the elastic net estimates. By definition and equation (10) we have

β̂=arg min
β

∣∣∣∣yÅ −XÅ β√
.1+λ2/

∣∣∣∣
2

+ λ1√
.1+λ2/

∣∣∣∣ β√
.1+λ2/

∣∣∣∣
1

=arg min
β

βT
(

XÅTXÅ

1+λ2

)
β−2

yÅTXÅ
√

.1+λ2/
+yÅTyÅ + λ1 |β|1

1+λ2
: .21/

Substituting the identities

XÅTXÅ =
(

XTX +λ2

1+λ2

)
,

yÅTXÅ = yTX√
.1+λ2/

,

yÅTyÅ =yTy

into equation (21), we have

β̂=arg min
β

1
1+λ2

{
βT

(
XTX +λ2I

1+λ2

)
β−2yTXβ+λ1 |β|1

}
+yTy

=arg min
β

βT
(

XTX +λ2I
1+λ2

)
β−2yTXβ+λ1 |β|1 :
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