
864

Inference from presence-only data; the ongoing controversy
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Presence-only data abounds in ecology, often accompanied by a background sample. Although many interesting aspects 
of the species’ distribution can be learned from such data, one cannot learn the overall species occurrence probability, or 
prevalence, without making unjustified simplifying assumptions. In this forum article we question the approach of Royle 
et al. (2012) that claims to be able to do this.

Modelling of species distributions is most convincing  
when presence–absence data is sampled in a systematic way. 
For example, researchers survey a collection of equal sized 
quadrats and record the presence or absence of a particular 
species of plant. They also record other features of the  
quadrat, such as annual precipitation, soil salinity, altitude, 
and so on. These features are then used in a statistical model 
such as logistic regression to build a model for the prob
ability of species occurrence. Using this fitted model, species 
occurrence probability is predicted and can be projected 
onto a map of the region, if the features are available at  
each geographical unit. See Guisan and Zimmerman (2000) 
for a review of such methods.

Often the only species data available are the geographical 
coordinates of sites where the species was observed –  
so-called presence-only data – as recorded by observers.  
Also available is a large collection of background data, con-
sisting of geographical coordinates and associated geographi-
cal features such as those available from GIS data. In many 
cases this background data is available at every geographical 
unit of area in a map of the region, and hence also at the 
presence sites. Apart from those locations where the species 
were observed, no species information is available for the 
background data.

For animal species, sampling time as well as area is rele-
vant, since the species may wander around. Other compli-
cating factors exist, such as the species being present but are 
not observed, and sampling bias (e.g. proximity to roads). 
For the purposes of this article, we keep the discussion  
simple and avoid these other sampling issues.

The question is what can one learn from such presence– 
background data? There are many approaches to this prob-
lem, which has become an active area of research. Our 
current favorite approach is to model the species occurrence 
rate (as in number of times the focal species is seen per unit 
area, per unit time). To this end the inhomogeneous Poisson 
point process (IPP) (Wharton and Shepard 2010, Aarts et al. 

2012) is attractive. Other popular approaches are: 1) 
MAXENT (Phillips and Dudik 2008) which models the fea-
ture density for the presence data. 2) Naive logistic regres-
sion, which treats the background data as absence data, and 
fits logistic regression models. 3) Manly’s exponential model 
(Manly et  al. 2010), a precursor to the IPP model in this 
context. Fithian and Hastie (unpubl.) survey these methods, 
and shows that they are all equivalent to the IPP model, in 
particular for an exhaustive sample of background data. 
Similar conclusions appear in Aarts et al. (2012) as well as 
Warton and Shepherd (2010). The conclusion to be drawn 
from these comparisons is that while absolute occurrence 
rates are typically elusive, relative rates are more accessible 
and available from these type of data.

This forum article will step away from these sampling 
considerations, and address a simpler question. We can think 
of sampling units as geographical sites x ∈ c; each x repre-
sents a cell or unit of area, and c represents the domain of 
interest, or entire collection of such cells. At each site the 
vector z  z(x) records the values of som geographical attri-
butes or features. Let the binary variable y denote presence 
(1) or absence (0) sites. We denote the marginal density of z 
by p(z), and the (conditional) density of z at presence sites 
by p1(z), and absence sites by p0(z). If the overall presence 
occurrence probability is y(y  1) and hence absence 
y(y  0)  1 2 y(y  1), then basic probability theory tells 
us two things: 

1) the conditional occurrence probability at a site, given 
we observe feature z, is given by
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2) The marginal feature density p(z) is a mixture of the two 
class-conditional densities:

p(z) 5 p1(z) y(y 5 1) 1 p0(z)(1 2 y(y 5 1))	 (2)
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Presence–background data consists of a random sample  
of values of z from p1(z), as well as a separate sample from 
p(z) (possibly the entire background distribution), which 
directly inform us about the densities p1 and p. However, 
even if both of these distributions were fully known, we can 
see from Eq. (1) that this would not be enough information 
to estimate y(y  1z). We are missing the overall occurrence 
probability y(y  1), or at least some data that allow us to 
estimate this.

The reader might think that Eq. (2) offers some hope, but 
it does not. We know or have data on p(z) and p1(z) – this 
leaves a lot of flexibility in choosing somewhat arbitrary  
values for y(y  1) and p0(z) to make Eq. (2) work out – 
unless, that is, we impose strong parametric restrictions on 
some of the ingredients. But then we are manufacturing 
information via these assumptions when none exists in  
the data. We will see more of this in the next section. Ward 
et al. (2009) discuss this problem and the lack of identifi-
ability of y(y  1) from such data. They warned of the folly 
in relying on arbitrary parametric assumptions to squeeze 
out estimates of y(y  1). Phillips et al. (2009) raise similar 
issues. Most recently Phillips and Elith (2013) address the 
same issue, and reinforce some of the points we make here.

The parametric approach of Royle et al.

Royle et  al. (2012) discuss methods for estimating species 
occurrence probabilities from presence-only data – the same 
problem we outline above. They cite Ward et al. (2009), yet 
proceed to impose parametric assumptions on y(y  1z) to 
enable estimation of y(y  1) – exactly what we warned 
against. Here we will strengthen our argument in the context 
of their model, and using their notation. We will also sim-
plify the discussion further, as they did, and focus attention 
on geographic features x rather than environmental features 
z  z(x); in the appendix we show that this transition is 
benign.

Figure 1 (left panel, red) shows a plot of a very simple 
model for occurrence probability

y(y  1x; b)	 (3)

This corresponds to a logistic regression model linear in x,

logit[y(y 1x; b)]  b0 1 xb1	 (4)

In this case b0  21 and b1  1. We assume here that the 
marginal distribution p(x) is uniform on [22.5, 2.5],  
which makes the overall prevalence y(y  1)  ∫y(y   1x; b) 
p(x)dx  ≈  0.33 in this case, and the values of y(y  1x; b) 
range between 0.03 and 0.83. Royle et al. (2012) use a linear 
logistic model similar to Eq. (4) for modeling occurrence 
probability.

With such a parametric assumption, one can perform 
inference on the data. As they point out, using Eq. (1)  
we can write

ψ π ψ  π( ) ( ) ( ) ( )y y x x  1 11 x 	  (5)

	          y( y  1, x)	 (6)
If p(x) is uniform, as it typically is in the geographic domain, 
and since Σx ∈c y(y  1, x)  y(y  1), we can write
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This is a model for the density of the observed data xi  
at the presence sites, and it is expressed in terms of the 
parameters of our logistic regression model if we replace 
y(yx) in Eq. (7) with y(yx; b). On the basis of this  
Royle et al. (2012) do maximum-likelihood estimation for  
b see Eq. (9) below. Note that the presence observations xi 
appear in the numerator; the background data are used to 
compute the sums in the denominator.

This sounds like statistical alchemy: why don’t we need to 
know y(y  1) anymore? Note that b0 is playing a similar 
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Figure 1. Left panel: two different models for occurrence probabilities. The blue curve is half the red curve, and hence has exactly half  
the prevalence (marginal occurrence probability) of the red curve. The implied likelihood (Eq. 9) of the presence-data xi is identical for these 
two models. Right plot: the logits of the two models on the left. The broken blue curve is the best linear approximation to the solid blue 
curve – the approximation that would be imposed by a linear logistic regression model. Since the solid logit curves (red and blue)  
are indistinguishable with respect to the likelihood (Eq. 9), distinguishing the dotted blue line from the red is no easier than distinguishing 
it from the solid blue. Determining whether or not this slight curvature is present is the entire basis upon which the Royle et al. (2012) 
procedure would estimate the prevalence at either 34% (solid red) or 17% (dotted blue).
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role as y(y  1) was before (y(y  1) multiplied all occur-
rence probabilities, whereas eb0 multiplies the odds). 
Therefore, it should be surprising that suddenly we can esti-
mate it from the data. The reason b0  21 vs b0  1 are 
distinguishable from each other in this model is that if  
we hold b1 fixed and change b0, it increases all of the prob-
abilities y(y  1x) in Eq. (7), increasing the numerator and 
the denominator. But because it changes some a little more 
than others, it subtly changes the density p1(xi) – ‘subtly’ 
being the operative word. The problem is that other things 
can subtly change p1 too – such as the linear logistic model 
(Eq. 4) being subtly misspecified, as we see next.

The blue curve in this left hand plot of Fig. 1 corresponds 
to a different model for the occurrence probability,

ψ∗  β ψ  β( ) ( )y x y x   1 1
2

1; ;
	

(8)

For this model (Eq. 8) the overall prevalence y*(y  1)   
1/2  y(y  1), i.e. 0.17 or exactly half of the prevalence 
for model (Eq. 3). Although y*(y  1x) does not corre-
spond to a linear logistic model, it is nearly linear on  
the logit scale (see the solid blue curve in the right plot of 
Fig. 1), and is still a simple parametric model; but more  
on that to come.

The critical point of this example is that the joint likeli-
hood of the presence data (i.e. Eq. 4 in Royle et al. (2012))
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is identical for these two models. In other words, the  
likelihood would have nothing to say about whether model 
(Eq. 3) or model (Eq. 8) was preferred – two models, both 

with two parameters, but with one having prevalence half 
the other. We could change the 1/2 in (Eq. 8) to any 0   
C  1 and the same statement would be true (with ‘half ’ 
changed to ‘fraction C ’). We note that this lack of identifi-
ability with propotional models that we exploit was pointed 
out by Lele and Keim (2006, p. 3023, top left), who origi-
nally proposed the approach used by Royle et al. (2012).

Now the second model is not a linear logistic model, so it 
would not be up for comparison in the Royle et al. (2012) 
framework. The right hand panel shows the logit transforms 
of each of these two models. Indeed, the second model is  
not a linear logistic model, but it is almost one. The dotted 
blue curve shows the best linear approximation to this logit 
in the population. Since the solid red line and solid blue 
curve are indistinguishable from each other with respect to 
the likelihood Eq. (9), distinguishing the dotted blue  
line from the red is no easier than distinguishing it from  
the solid blue. Determining whether or not this slight  
curvature is present is the entire basis upon which the  
Royle et  al. (2012) procedure would estimate the preva-
lence at either 34% (solid red) or 17%. One would need an 
awfully large amount of data to be able to detect a difference 
between the two blue lines, even with presence–absence 
data.

We now present a simulation to reinforce the points  
we have made. We simulate data from model (Eq. 8)  
(nearly linear logistic), and fit a linear logistic model using 
the likelihood (Eq. 9). In detail, we generate a large sample 
of values of x via the uniform distribution p, generate  
0/1 ‘presence/absence’ data using the probabilities (Eq. 8), 
and then take a random subset of 1000 values of x from 
those that came up as ‘present’. This sample of 1000 is  
fed into (Eq. 9), which is then maximized with respect to  
the two linear logistic parameters. Rather than show the 
parameter estimates b̂0 and  b̂1 that result, we instead com-
pute the implied estimated prevalence value ŷ(y  1)   
∫y(y  1x; b̂)p(x)dx. This was repeated B  1000 times.  
The middle histogram in Fig. 2 shows the results. The  
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Figure 2. Results of three separate simulation runs. The center histogram shows the estimated value ŷ(y  1) when a linear logistic  
regression model is fit to data generated from model (Eq. 8). The histogram summarizes B  1000 different runs, each consisting of  
1000 presence samples. The true value of y(y  1) is given by the vertical red line. The two flanking histograms change the 1/2 in  
(Eq. 8) to C  3/10 (left) and C  7/10 (right), with again the red line showing the true value of y(y  1). In all cases, irrespective of  
the true value of y(y  1), the histograms indicate that the value being estimated is centered around y(y  1) ≈ 0.33, the value from  
Eq. (3).
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shown here, they are too fragile and arbitrary, and will not be 
robust in practical settings.

Acknowledgements – TH was partially supported by grant  
DMS-1007719 from the National Science Foundation, and  
grant RO1-EB001988-15 from the National Inst. of Health. WF  
was supported by VIGRE grant DMS-0502385 from the National 
Science Foundation. The authors thank Jane Elith for helpful sug-
gestions on an earlier draft.

References

Aarts, G. et al. 2012. Comparative interpretation of count,  
presence–absence and point methods for species distribution 
models. – Methods Ecol. Evol. 3: 177–187.

Guisan, A. and Zimmerman, N. 2000. Predictive habitat dis
tribution models in ecology. – Ecol. Model. 135: 147–186.

Lele, S. and Keim, J. 2006. Weighted distributions and estimation 
of resource selection probability Functions. – Ecology 87:  
3021–3028.

Manly, B. et  al. 2010. Resource selection by animals: statistical 
design and analysis for field studies. – Kluwer.

Phillips, S. and Dudik, M. 2008. Modeling of species distribution 
with maxent: new extensions and a comprehensive evaluation. 
– Ecography 31: 161–175.

Phillips, S. and Elith, J. 2013. On estimating probability of  
presence from use-availability or presence-background data.  
– Ecology in press.

Phillips, S. et al. 2009. Sample selection bias and presence-only 
distribution models: implications for background and pseudo-
absence data. – Ecol. Appl. 19: 181–197.

Royle, J. et  al. 2012. Likelihood analysis of species occurrence  
probability from presence-only data for modelling species  
distributions. – Methods Ecol. Evol. 3: 545–554.

Ward, G. et  al. 2009. Presence-only data and the em algorithm. 
– Biometrics 65: 554–563.

Wharton, D. and Shepard, L. 2010. Poisson point process models 
solve the ‘pseudo-absence problem’ for presence-only data  
in ecology. – Ann. Appl. Stat. 4: 1383–1402.

histogram is peaked around 0.33 (the value from Eq. (3), not 
the true value 0.17). The flanking histograms repeat these 
simulations using 3/10 and 7/10 rather than the 1/2 in  
(Eq. 8). In all cases the estimated ŷ(y  1)bear no relation-
ship to the true values (red lines).

The take-home message here is that: a) two perfectly 
good and parsimonious probability models are indistin-
guishable with respect to the likelihood (Eq. 9) for the pres-
ence data, despite the fact that one has half the prevalence  
of the other; i.e. prevalence is not identifiable in this 
extended family. b) By insisting on a particular parametric 
form, e.g. linear logistic, we are on extremely flimsy ground, 
as the subtle distinction in this example shows. c) When 
presence-only data arise via models that are nearly linear  
on the logistic scale, maximum likelihood using Eq. (9)  
and a linear logistic regression model can be incapable of 
estimating the correct parameter values, and in particular 
the correct implied prevalence. This is not trickery with data 
simulations or abstract ideas; it cuts to the core of how  
Royle et al.’s model estimates probabilities. They say you can 
estimate probabilities from presence-only data by using 
their model, which relies on a linear logistic framework.  
The problem is that in the real world, functional forms  
are almost never linear; linearity is just a useful approxi
mation. We have shown here that data distributed just 
slightly differently to that allowed in their framework will 
lead to incorrect estimates of prevalence, and therefore 
incorrect estimates of probability of presence.

Stepping back a bit, we remake our earlier point. It  
should be clear that a sample of n1 sites, along with a  
sample of n0 unclassified samples (i.e. a mix of presence and 
absence), tells you nothing about the overall probability of 
occurrence, absent strong parametric assumptions about  
the form of the underlying densities. In other words, there is 
no information on prevalence in the data itself; it all comes 
from the model assumptions. Using such assumptions as the 
basis for estimating overall prevalence is not a good idea; as 

Appendix

Geographic vs environmental features

Usually we parameterize our conditional occurrence model  
in terms of environmental features zi  z(xi) rather than  
the geographic features xi themselves. For ease of exposition 
here, we treat z as discrete rather than continuous.

Then along the lines of Eq. (7) we would have
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Here p(z) is the marginal environmental feature distribution, 
and is not uniform. However,
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and so the denominator in Eq. (11) can be written
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So then we have
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So if p(x) is uniform, and we parameterize y(yi  1z(xi); b), 
then the log-likelihood contribution from presence site i  
for b is
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where Ci can be discarded, since it does not depend on b.


