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Discriminant Adaptive 
Nearest Neighbor Classification 

Trevor Hastie and Rolbert Tibshirani 

Abstract-Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in 
high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of 
dimensionality. We use a local linear discriminant analysis to estimate an effective metric for computing neighborhoods. We 
determine the local decision boundaries from centroid information, and then shrink neighborhoods in directions orthogonal to these 
local decision boundaries, and elongate them parallel to the boundaries. Thereafter, any neighborhood-based classifier can be 
employed, using the modified neighborhoods. The posterior probabilities tend to be more homogeneous in the modified 
neighborhoods. We also propose a method for global dimension reduction, that combines local dimension information. In a number 
of examples, the methods demonstrate the potential for substantial improvements over nearest neighbor classification. 

Index Terms-Classification, nearest neighbors, linear discriminant an,alysis, curse of dimensionality. 

+ -  
I INTRODUCTION 

E consider a discrimination problem with J classes and W N training observations. The training observations con- 
sist of predictor measurements x = (xl, x,, . . . xp) on p predictors 
and the known class memberships. Our goal is to predict the 
class membership of an observation with predictor vector q. 

Nearest neighbor classification is a simple and appealing 
approach to this problem. We find the set of K nearest 
neighbors in the training set to xo and then classify xo as the 
most frequent class among the K neighbors. Nearest neigh- 
bors is an extremely flexible classification scheme, and does 
not involve any preprocessing (fitting) of the training data. 
This can offer both space and speed advantages in very 
large problems: see [l], [2], or [3] for background material 
on nearest neighborhood classification. 

Reference [41 shows that the one nearest neighbor rule 
has asymptotic error rate at most twice the Bayes rate. 
However in finite samples the curse of dimensionality can 
severely hurt the nearest neighbor rule. The relative radius 
of the nearest-neighbor sphere grows like Y'lP where p is the 
dimension and Y the radius for p = 1, resulting in severe bias 
at the target point x (see Section 6). Fig. 1 illustrates the 
situation for a simple example, where the data in each class 
are uniformly distributed in a half-square, and perfectly 
separated by a vertical line. Our illustration here is based 
on a 1-NN rule, but the same phenomenon occurs for k-NN 
rules as well. Nearest neighbor techniques are based on the 
assumption that locally the class posterior probabilities are 
approximately constant (in Fig. 1, the true posterior prob- 
abilities are constant along any vertical line). 
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Fig. 1. The points are uniform in the square, with the vertical line sepa- 
rating class l and 2. The vertical strip denotes the N N  region using 
only the horizontal coordinate to find the nearest neighbor for the target 
point (solid dot). The sphere shows the NN region using both coordi- 
naltes, and we see in this case it has extended into the class 1 region 
(and found the wrong class in this instance. 

Using only the horizontal coordinate in Fig. 1, we create 
narrow vertical-strip neighborhoods, for which this as- 
sumption is approximately true. The same size neighbor- 
hood using both coordinates is too wide in the horizontal 
dnection-the direction in which the posterior probabilities 
change. 

Fig. 2 shows an exampIe of our discriminant adaptive 
nearest neighbor (DANN) metric. There are two classes in 
two dimensions, one of which almost completely surrounds 
the other. The left panel shows a nearest neighborhood of 
size 25 at the target point (shown as the origin), which is 
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chosen to be near the class boundary. The right panel 
shows the same size neighborhood using a DANN metric. 
Notice how the modified neighborhood extends further in 
the direction parallel to the decision boundary. As we will 
see in our simulation studies, this new neighborhood can 
often provide improvement in classification performance. 

Fig. 2. The left panel shows the spherical neighborhood containing 25 
points. The right panel shows the ellipsoidal neighborhood found by 
the DANN procedure, also containing 25 points. The latter IS elongated 
along the true decision boundary, and flattened orthogonal to it. 

While the idea of local adaptation of the nearest neigh- 
bor metric may seem obvious, we could find few proposals 
along these lines in the literature. A summary of previous 
work is provided in Section 7. 

2 DISCRIMINANT ADAPTIVE NEAREST NEIGHBORS 

Our proposal is motivated as follows. Consider first a 
standard linear discriminant (LDA) classification proce- 
dure with K classes. Let B and W denote the p x p between 
and within sum-of-squares matrices. In LDA the data are 
first sphered with respect to W, then the target point is 
classified to the class of the closest centroid (with a cor- 
rection for the class prior membership probabilities). Since 
only relative distances are relevant, any distances in the 
complement of the subspace spanned by the sphered cen- 
troids can be ignored. This complement corresponds to 
the null space of B. 

We propose to estimate B and W locally, and use them to 
form a local metric that approximately behaves like the 
LDA metric. One such candidate is 

C = W-’BW-’ 

~ W-’/2(W-1/2BW-1/2)W-1/2 

(1) 
where B‘ is the between sum-of-squares in the sphered 
space. Consider the action of C as the matrix in a quadratic 
metric for computing (squared) distances (x - x,)’C(x - xo): 

- - W-l/2B*W-l/2 

it first spheres the space using W; 
0 components of distance in the null space of B* are ig- 

nored; 
0 other componen!s are weighted according to the ei- 

genvalues of B when there are more than two 
classes-directions in which the centroids are more 
spread out are weighted more than those in which 
they are close. 

Thus this metric would result in neighborhoods similar to 
the narrow strip in Fig. 1: infinitely long in the null space of 
B, and then deformed appropriately in the centroid sub- 
space according to how they are placed. It is dangerous to 
allow neighborhoods to extend infinitely in any direction, 
so we need to limit this stretching. Our proposal is 

C = W-1/2[W-1/2BW-1/2 + E11w-1/2 

= W’/’[B‘ + ,CI]W-*/’ (2) 

where E is some small tuning parameter to be determined, 
and I is the p-dimensional identity matrix. The metric 
shrinks the neighborhood in directions in which the local 
class centroids differ, with the intention of ending up with a 
neighborhood in which the class centroids coincide (and 
hence nearest neighbor classification is appropriate). With 
this goal in mind one can think of iterating the procedure, 
and thus successively shrinking in directions in which the 
class centroids do not coincide. 

Here is a summary of the proposal. 

Discriminant Adaptive Nearest Neiakbov Classifier 
0) Initialize the metric Z = 1, the identity matrix. 
1) Spread out a nearest neighborhood of KM points 

around the test point x,, in the metric C. 
2) Calculate the weighted within and between sum-of- 

squares matrices W and B using the points in the 
neighborhood (see (8) below). 

3)  Define a new metric C = W’/2[W”2BW1’2+ E I]W1/2. 
4) Iterate steps 1,2, and 3. 
5) At completion, use the metric C for K-nearest neigh- 

The metric (2) can be given a more formal justification. 
Suppose we are classifying at a test point xo and find a sin- 
gle nearest neighbor X according to a metric d ( X ,  x,,). Let 
p ( j  I x) be the true probability of class j at point x. 

bor classification at the test point xo. 

We consider the Chi-squared distance 

(3)  

which measures the distance (appropriately weighted) 
between the true and estimated posteriors. Small u(X,  x,) 
implies that the misclassification error rate will be close to 
the asymptotic error rate for INN, which is achieved when 
X = x, or more generally when p ( j l X )  = p(jl x,). We show 
that the first term in our metric (2) approximates r (X ,  xo). 

Assuming that in the neighborhood x I j has a Gaussian 
distribution with mean pl and covariance E, we obtain by a 
simple first-order Taylor approximation 

where Z = p ( j  I xo)pj. Plugging this into (3) we get 
1 

Thus the approximately best distance metric is 
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Estimating C by W and xj  p(jl x,)(yj -@(pi - ,illT by B 

gives the first term in the metric (2). 
By allowing prior uncertainty for the class means pj, that 

is, assuming pj  - N(v,, €1)  in the sphered space, we obtain 
the second term in the metric (2). 

2.1 Details of the Implementation 
Define a weight function at xo by 

k(x, xo; L h)  = &(((zf'(x - x,,)ll]. (6) 

Here CO is an initial non-negative metric (often I) ,  and q,5h is a 
symmetric real-valued function depending on a parameter h. 
We use a tri-cube function defined over a K-nearest neighbor- 
hood NK(xo) of x,. Formally, we define di = llC'/2(xi - xo)l/, 
h = maxitN di and define 

K (  0 )  

k(x,, x,; E, h)  = [l - ( d , / F ~ ) ~ ] ~ I ( l d ~ l  < h). (7) 
Let B(x,; CO, k )  and W(x,; CO, k )  be the weighted between 

and within class sum-of-squares matrices, where the 
weights assigned to the ith observation are given by wi = 
k(xi, x,; CO, h).  That is, 

J 
B(xo; C,, k )  = 2 RI(%, - %)(XI - 

J=l 

where X, is the weighted mean of the NI observations in the 

jth group. Finally, we let B(x,; X,, k )  and W(x,; CO, k )  deter- 

mine the metric in (2). 
Notice that (8) and (2) produce a mapping CO -+ C, say 

C = g(C,). An approach we explore is to start with CO = I (the 
identity matrix) and iterate this procedure. The result is a 
metric C for use in a nearest neighbor classification rule at 
x,. In our examples we explore the effect of this iterative 
procedure. 

2.2 Some Remarks about the DANN Metric 
It is natural to ask whether the mapping g( . )  has a fixed point, 
and if it does, whether an iteration of the form C t g(C) con- 
verges to it. These questions seem difficult to answer in gen- 
eral. To get some insight, it is helpful to consider an equiva- 
lent form of the iteration. At each step we take a spherical 
neighborhood around the test point, estimate the metric X, 
and then transform the predictors via xn" = Z 'I2 x . A t  com- 
pletion we use a spherical nearest neighbor rule in the final 
transformed space. It is easy to show that this procedure is 
equivalent to the one given above. If the metrics estimated 
in j iterations are C,, C,, ... C,, then the effective metric for 

the original coordinates is Z ~ 2 C ~ ~ 2 1  . . Cy2C 1 Eli2 2 . * .  Eli2 1-1 C1i2 ] 

Expressed in this way, the fixed points of the iteration 
satisfy W-'BW' + EW' = cI .  In particular a fixed point oc- 
curs when B is zero and W is proportional to the identity 
matrix, in the space of the transformed coordinates. 

In practice we find it more effective to estimate only the 
diagonal elements of W, and assume that the off diagonal 
elements are zero. This is especially true if the dimension of 
the predictor space is large, as there will be insufficient data 
locally to estimate the O(p2) elements of W. With the diago- 
nal approximation, the two forms of the algorithm are not 
equivalent: we use the version that transforms the space at 
each step since a diagonal approximation makes most sense 
in the transformed coordinates. 

If the predictors are spatially or temporally related, we 
might use a penalized estimate of W that downweights 
coinponents of the covariance that correspond to spatially 
noisy signals [5]. A related approach is to pre-filter the pre- 
dirtors using a smooth basis, and then operate in the re- 
duced domain. 

In the final neighborhood we perform K nearest neigh- 
bor classification. An alternative approach would be to use 
discriminant analysis to perform the classification, using 
the locally determined parameters. We are currently inves- 
tigating this approach. 

2.3 Choice of Tuning Parameters 
The DANN procedure has a number of adjustable tuning 
parameters: 

KM: the number of nearest neighbors in the neighbor- 
hood NK, (x,) for estimation of the metric; 
K: the number of neighbors in the final nearest neigh- 
bor rule; 
E: the "softening" parameter in the metric. 

While K is common to all near-neighbor rules, our procedure 
has introduced two new parameters. We do not have any 
theory on which to base their choice, but have experimented 
with different ranges of values. Test sets or cross validation 
could be used to estimate a optimal values for these parame- 
ters. In the examples in the next section we instead use fixed 
choices, based on previous experimentation. 

The value of K,,,, must be reasonably large since the initial 
neighborhood is used to estimate a covariance: we use KM = 
max(N/5, 50). To ensure consistency one should take KM to 
be a vanishing fraction of N, and should also use larger 
values for higher dimensional problems. Often a smaller 
number of neighbors is preferable for the final classification 
rule to avoid bias: we used K = 5, and compared it to stan- 
dard five nearest neighbors. Since our metric adapts to 
avoid bias, it is conceivable that in cases where a small K is 
needed for pure nearest neighbors, we might be able to 
support a larger K and reduce the variance. 

Note that the metric (2) is invariant under nonsingular 
transformations of the predictors, and hence it is not unrea- 
scinable to consider fixed values of E. In many of our ex- 
periments we tried values of E in the set {0 0.01, 0.1, .2, .5, 1, 
2,5); in all cases any value greater than 0 was better than 0, 
and there was little to distinguish amongst them, with a 
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value of E = 1 appearing to dominate. This is the value we 
used in our examples below. 

3 DIMENSION REDUCTION USING LOCAL 
DISCRIMINANT INFORMATION 

So far our technique has been entirely "memory based," 
in that we locally adapt a neighborhood about a query 
point at the time of classification. Here we describe a 
method for performing a global dimension reduction, by 
pooling the local dimension information over all points in 
the training set. In a nutshell we consider subspaces cor- 
responding to {eigenvectors of the average local between 
sum-of-squares matrices}. One would first project the data 
onto the chosen subspace, where classification would then 
take place (using K - NN,  DANN, or any other classifier). 
The novelty here is in choosing the subspace using pooled 
local information. 

Consider first how linear discriminant analysis (LDA) 
works. After sphering the data, it concentrates in the space 
spanned by the class means X i  or a reduced rank space that 
lies close to these means. If X denote the overall mean, this 
subspace is exactly the principal component hyperplane for 
the data points Xi - SZ weighted by the class proportions. 

Our idea to compute the deviations XI -57 locally in a 
neighborhood around each of the N training points, and 
then do an overall principal components analysis for the 
N x J deviations. Here are the details. Let xi (i) be the mean 
of class j vectors in a neighborhood of the ith training point, 
and X(z) be the overall mean. All means are weighted by 
the local class membership proportions ~ ( z ) ,  1 = 1, , . ., J.  Let 
Z,(i) = x , ( i )  - X(i), the local centroid deviations. We seek a 
subspace that gets close in average weighted squared dis- 
tance to all N x J of these. Denoting by U ( p  x I, an or- 
thonormal basis for the k < p dimensional subspace, we 
minimize the criterion 

or the total weighted residual sum of squares. It is not hard 
to show that minimizing RSS(U) amounts to maximizing 

where the B(i) are the local between sum-of-squares matri- 
ces. This latter problem is solved by finding the largest ei- 
genvectors of the average between sum-of-squares matrix 

2 B(i)/N. 
1=1 

Fig. 3 shows a simple illustrative example. The two 
classes are Gaussian with substantial within class covari- 
ance between the two predictors XI and X,. In the left 
panel, the solid line is the Gaussian decision boundary 
that optimally separates the classes. The orthogonal 
vector labeled S is a one-dimensional subspace onto 
which we can project the data and perform classification. 

Using the knowledge that the data are Gaussian, it is the 
leading discriminant direction. The broken lines are the 
boundaries and equivalent subspace produced by our 
procedure. In the right panel, each line segment repre- 
sents the local between information centered at that 
point. Our procedure uses a principal components analy- 
sis of these N x J line segments to produce the broken 
line subspace in the left panel. 

I D A  and Lou1 Subspaces --- K = 25 Local Between Directions 

Fig. 3. Two dimensional Gaussian data with two classes and correla- 
tion 0.65. The solid lines are the LDA decision boundary and its 
equivalent subspace for classification. The dashed lines were pro- 
duced by the local procedure described in this section. [Right panel] 
Each line segment represents the local between information centered 
at that point. 

To allow combination of the local between information 
in a meaningful way, notice that we have not sphered the 
data locally before computing the mean deviations. A justi- 
fication for this is that any local spherical window contain- 
ing two classes, say, will have approximately a linear deci- 
sion boundary orthogonal to the vector joining the two 
means. 

Fig. 4 shows the eigenvalues of the average between 
matrix for an instance of a two-class, four-dimensional 
sphere model with six noise dimensions. The decision 
boundary is a four-dimensional sphere, although locally 
linear (full details of this example are given in the next 
section). For this demonstration we randomly rotated the 
10 dimensional data, so that the dimensions to be 
trimmed are not coordinate directions. The eigenvalues 
show a distinct change after 4 (the correct dimension), 
and using our DANN classifier in these four dimensions 
actually beats ordinary 5NN in the known four dimen- 
sional sphere subspace in many simulation realizations 
(because DANN does additional local neighborhood ad- 
justments.) 

It is desirable to automate the dimension reduction 
operation. Since our local information is based on 
spherical neighborhoods (potentially in high dimen- 
sions), we find an iterative approach most successful. We 
apply this procedure in the full space, and use cross- 
validated DANN to find the best nested subspace (with a 
built in bias towards larger subspaces). We then succes- 
sively repeat these operations in the new subspaces, until 
no further reduction is deemed suitable by CV. Using 
DANN in this final subspace is what we have labeled 
sub-DANN in the boxplots of Figs. 5 and 6. 
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4D Sphere with 6 noise Variables 
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Fig. 4. The eigenvalues of the average between matrix for the 4D 
sphere plus six noise variable problem. Using these first four dimen- 
sions followed by our DANN nearest neighbor routine, we get better 
performance than 5NN in the real 4D subspace. 

4 EXAMPLES 
4.1 The Methods 
In the following examples we compare several classification 
approaches: 

LDA-linear discriminant analysis 
reduced LDA-linear discriminant restricted to the 
relevant subspace, where appropriate. In example 2 
below, for instance, the relevant subspace is defined 
by the first two predictors. Reduced LDA is included 
for comparison purposes, as one would not normally 
know the relevant subspace in a problem. 
5-NN: five nearest neighbor classification 
reduced 5-NN: five nearest neighbor classification, re- 
stricted to the relevant subspace as above. Again this 
subspace would not normally be known. 
DANN-Discriminant adaptive nearest neighbor, one 
iteration. 
iter-DANN-Discriminant adaptive nearest neighbor, 
five iterations. 
sub-DANN-Discriminant adaptive nearest neighbor, 
with automatic subspace reduction. This is described 
in Section 3. 

For all methods, the predictors were first standardized 
so as to have zero mean and unit variance over the 
training set, and the test set predictors was standardized 
by the corresponding training mean and variance. The 
training and test set sizes were 200 and 500, unless indi- 
cated otherwise. 

4.2 The Problems 
1) Two-Dimensional Gaussian. Two Gaussian classes in two 

dimensions (X,, X,) separated by two units in XI. The 
predictors have variance (1,2) and correlation 0.75. 

2) Two-Dimensional Gaussian with 14 Noise. As in (I), 
augmented with 14 predictors having independent 
standard Gaussian distributions. 

3) Unstructured. In this example we simulated data with 

extremely disconnected class structure. There are four 
classes each with three spherical bivariate normal 
subclasses, having standard deviation 0.25. The 
means of the 12 subclasses were chosen at random 
(without replacement) from the integers [l, 2, ... 51 x 
[1, 2, ... 51. Each training sample had 20 observations 
per subclass, for a total of 240 observations. 

4) Unstvuctuved with Eight Noise. As in 3 above, but aug- 
mented with eight predictors having independent 
standard Gaussian distributions. 

5) 4 Dimensional Spheres with Six Noise. In this example 
there are 10 predictors and two classes. The last six 
predictors are noise variables, with standard Gaus- 
sian distributions, independent of each other and the 
class membership. The first four predictors in class 1 
are independent standard normal, conditioned on the 
radius being greater than 3, while the first four predic- 
tors in class 2 are independent standard normal without 
the restriction. The first class almost completely sur- 
rounds the second class in the four dimensional sub- 
space of the first four predictors. Tlus example was de- 
signed to see if D A "  could improve upon nearest 
neighbors in the presence of noise variables. 

6) 10 Dimensional Spheres. As in the previous example 
there are 10 predictors and two classes. Now all 10 
predictors in class 1 are independent standard nor- 
mal, conditioned on the radius being greater than 22.4 
and less than 40, while the predictors in class 2 are in- 
dependent standard normal without the restriction. In 
this example there are no pure noise variables, the 
kind that a nearest neighbor subset selection rule 
might be able weed out. At any given point in the 
feature space, the class discrimination occurs along 
only one direction. However this direction changes as 
we move across the feature space and all variables are 
important somewhere in the space. The first class al- 
most completely surrounds the second class in the full 
ten-dimensional space. 

7) Constant Class Probabilities. This is four class problem, 
with class probabilities (.l, 2, .2, .5) independent of x. 
The x vectors were independent standard Gaussian in 
six dimensions. The training sample size was 100. The 
idea here was to investigate the cost of using an 
adaptive method like DANN in a scenario where ad- 
aptation is not needed. 

8) Friedman's Example 1: This example is taken from 161. 
There are two classes in 10 dimensions, 200 training 
observations, 500 test observations. The predictors in 
class 1 are independent standard normal; those in 
class 2 are independent normal with mean fi/2and 

variance l/j, for j = 1, 2, ... 10. All predictors are im- 
portant here, but the ones with higher index j are 
more so. 

9) Sonar Data. This example has 60 predictors, two 
classes ("mines" and "rocks") and 104 observations in 
both the training and test data set. It was obtained 
from the benchmark collection maintained by Scott 
Fahlman at Carnegie Mellon University, and was 
contributed by Terry Sejnowski. 
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(5) Four dim sphere in ten dim 

I 

* ** *+ $* *+ ,&b 8 p $9 9' 

(7) constant class probabilities 

(6) Ten dim sphere in ten dim 

I 
TABLE 1 

RESULTS FOR REAL DATA EXAMPLES 

42.4 
42.7 

heart 11.0 10.0 10.0 

(8) Friedman example 1 

Fig. 6. Boxplots of error rates over 20 simulations, second four simu- 
lated examples. 

10)Vowel Data. This example is a popular benchmark for 
neural network algorithms, and consists of training and 
test data with 10 predictors and 11 classes. It was also 
obtained from the benchmark collection maintained by 
Scott Fahlman at Carnegie Mellon University. 

11)Glass Data. This data was taken from [7]. The goal is to 
classify four types of forensic glass from 10 chemical 
attributes. There are 89 training cases and 96 test cases. 

12)Heaut Data. These data were analyzed in [8]. We received 
it from Leo Breiman, who credits Elizabeth Gilpin and 
and Richard Olshen with helping him to obtain it. After 
removing two variables with many missing values, the 
dataset consists of 19 measurements on 779 patients who 
had recently suffered a heart attack. The objective was to 
predict survival to 30 days. There were 77 deaths in the 
dataset. We randomly chose a training sample of size 
679 and a test sample of size 100. 

4.3 Discussion of Results 
The results for the simulated examples are summarized in 
Figs. 5 and 6. Each experiment was repeated 20 times, and 
the boxplots are a convenient summary of these 20 results 
for each configuration. The results for the real data exam- 
ples are given in Table 1. 

(1) Two normals 

;:bo 
' 1 1  

I 

" i l  

F: 

:2) Two normals with noise 

Fig. 5. Boxplots of error rates over 20 simulations, first four simulated 
examples. 

DANN seems to do as well as 5-NN across the board, 
and offers significant improvements in problems with noise 
variables (2, 4, 6, and 8). DANN does not do as well as re- 
duced nearest neighbors in problems 2 or 5: This is not sur- 
prising since in effect we are giving the nearest neighbor 
rule the information that DANN is trying to infer from the 
training data. A nearest neighbor method with variable 
selection might do well in these problems: however this 
procedure can be foiled by by rotating the relevant sub- 
space away from the coordinate directions. In Friedman's 
example 1, the error rates of DANN are roughly the same 
as the rates for the "machete" and "scythe" reported in [6]. 

On the average there seems to be no advantage in car- 
rying out more than one iteration of the DANN procedure. 
The subspace DANN procedure is the overall winner, pro- 
ducing big gains in problems admitting global dimension 
reduction. 
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In the sonar example, DANN outperforms 5-NN, al- 
though it should be noted that l-NN gives only 3.8% errors. 
The performance of DANN on the vowel data is particu- 
larly encouraging: the error rate of 38.3% is the lowest that 
we know of for any procedure. In the glass and heart data, 
there is little to choose among any of the methods. 

The top panel of Fig. 7 shows error rates relative to 5-NN, 
accumulated across the 8 x 20 simulated problems. The 
bottom panel shows the rates relative to LDA. 

Error rates relative to 5-NN Error ,ales relative to IDA 

:;i 

Fig. 7. Relative error rates of the methods across the eight simulated 
problems. In the top panel the error rate has been divided by the error 
rate 5-NN, on a simulation by simulation basis. In the bottom panel we 
have divided by the error rate of LDA. 

We see that DANN is 20-30% better than 5-NN on the 
average, and is at most 20% worse. DANN is also better 
than LDA on the average but can be three times worse (in 
problem 2). 

5 IMAGE CLASSIFICATION EXAMPLE 
Here we consider an image classification problem. The data 
consist of four LANDSAT images in different spectral 
bands of a small area of the earths surface, and the goal is to 
classify into soil and vegetation types. Fig. 8 shows the four 
spectral bands, two in the visible spectrum (red and green) 
and two in the infra red spectrum. These data are taken 
from the data archive of the STATLOG [9].' The goal is to 
classify each pixel into one of seven land types: red soil, cot- 
ton, vegetation stubble, mixture, gray soil, damp gray soil, very 
damp gray soil. We extract for each pixel its %neighbors, 
giving us (8 + 1) x 4 = 36 features (the pixel intensities) per 
pixel to be classified. The data come scrambled, with 4,435 
training pixels and 2,000 test pixels, each with their 36 fea- 
tures and the known classification. Included in Fig. 8 is the 
true classification, as well as that produced by linear dis- 
criminant analysis. The right panel compares DANN to all the 
procedures used in STATLOG, and we see the results are 
favorable. 

6 SOME BIAS-VARIANCE CALCULATIONS 
In this section we examine the bias and variance of the 
nearest neighbor and discriminant adaptive nearest neigh- 
bor rules. 

First we derive the distribution of the radius of the near- 

1. The authors thank C. Taylor and D. Spiegelhalter for making these im- 
ages and data available. 
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Fig. 8. The first four images are the satellite images in the four spectral 
bands. The fifth image represents the known classification, and the 
final image is the classification map produced by linear discriminant 
analysis. The right panel shows the misclassification results of a variety 
of classification procedures on the satellite image test data (taken from 
[9].) DANN is the overall winner. 

est neighborhood. Suppose we have N data points uni- 
formly distributed in the unit cube [-.5, .5Id. Consider a 
spherical (one)-nearest neighborhood centered at the origin. 
Let R be the radius of the neighborhood. Then 

(9) 
Here vd = 2zd'*/(d . r(d/2)) and v,/ is the volume of the 
sphere of radius Y in d dimensions. From this we can com- 
pute the median of R: 

Prob(X 2 U )  = (1 - v,/)". 

med( R )  = [ 1-.5lIN r id. 
Fig. 9 shows the median radius as a function of the dimen- 
sion and size of the training sample. A horizontal line is 
drawn at the maximum radius 0.5. We see that for N = 100 
the median radius reaches the maximum by dimension 9, 
and is already as large as 0.25 by dimension 5. For N = 
10,000 the situation is only a little better. 

Now suppose we have a two-class problem with 
Pv(Y = 1 I x) = p ( x ) .  We form a nearest neighborhood at a 
point xo and find the nearest neighbor X having class Y(X) 
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Fig. 9. Median radius of a one-nearest neighborhood as a function of 
dimension and size of training sample. 

(the upper case letter denotes a random variable). Our esti- 
mate of p(x,,) is simply Y(X). The bias and variance of Y(X) are 

Bias = Ep(X) - p(xJ 
Var = var[E(Y(X) I X)] + E[var(Y(X) I X)] 

= Ep(X)[l ~ Ep(X)I. (11) 
The expectations in the final expression for bias and vari- 
ance are with respect to the distribution of the nearest 
neighbor X. Now as dimension increases, we have seen 
above that the distance between nearest neighbor X and x0 
increases. Therefore if p(x) changes appreciably over the 
space, the difference between p(x) and p(xo) will tend to 
increase and hence the bias will increase. But (11) also tells 
us that the variance will often increase as well. Suppose we 
have equal numbers in each class. Note that p(1 - p )  takes is 
maximum at p = 1/2. Now if xo is in a reasonably pure re- 
gion (that is p ( ~ , )  near 0 or l), p(xO)(l - p(~ , ) )  will be small. 
But as the nearest neighbor X moves farther away from xo, 
E(p(X)) will tend towards 0.5 and hence the variance will 
increase. 

For the two-dimensional normal example with noise, 
we carried out some simulations to estimate the bias and 
variance of the 5-NN, DANN, and 5-NN restricted to the 
first predictor. Fig. 10 shows the bias and variance of 
class probability estimates from each method, as the 
number of noise variables increases. The estimates were 
obtained from 100 training samples of size 200. 

Recall that the class centers are at (0, 0, 0, . . . 0) and (2, 0, 
0, ... 0). In the top, middle and bottom rows of the figure, 
the classification was done at the points (1, 0, ... 01, (.5, 0, 0, 
... 0) and (0, 0, ... O), respectively, for which the true prob- 
ability of class 1 are 0.5,0.729, and 0.981. 

The variance of the three methods i s  similar, since 
they all use a fixed number of neighbors (5). The bias of 
5-NN increases with increasing number of noise vari- 
ables, but DANN retains a low bias, similar to that of 
reduced 5-NN by concentrating on the directions or- 
thogonal to maximum centroid separation. 

7 DISCUSSION 
We have developed an adaptive form of nearest neighbor 
classification that can offer substantial improvements over 
standard nearest neighbors method in some problems. We 
have also proposed a method that uses local discrimination 
information to estimate a subspace for global dimension 
reduction. 

Reference [lo] proposed a technique close to ours for 
the two class problem. In our terminology they used our 
metric with W = I and E = 0, with B determined locally in 
a neighborhood of size K,. In effect this extends the 
neighborhood infinitely in the null space of the local 
between class directions, but they restrict this neighbor- 
hood to the original KM observations. This amounts to 
projecting the local data onto the line joining the two 
local centroids. In our experiments this approach tended 
to perform on average 10% worse than our metric, and 
we did not pursue it further. Reference [111 extended this 
to 1 > 2 classes, but here their approach differs even more 
from ours. They computed a weighted average of the 
local centroids from the overall average, and project the 
data onto it, a one-dimensional projection. Even with t = 
0 we project the data onto the subspace containing the 
local centroids, and deform the metric appropriately in 
that subspace. Reference [12] recognized a shortfall of 
the Short and Fukanaga approach, since the averaging 
can cause cancellation, and proposed other metrics to 
avoid this. Although their metrics differ from ours, the 
Chi-squared motivation for our metric ( 3 )  was inspired 
by the metrics developed in their paper. We have not 
tested out their proposals, but they report results of ex- 
periments with far more modest improvements over 
standard nearest neighbors than we achieved. 

Reference [6] proposes a number of techniques for 
flexible metric nearest neighbor classification. These tech- 
niques use a recursive partitioning style strategy to adap- 
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tively shrink and shape rectangular neighborhoods 
around the test point. Friedman also uses derived vari- 
ables in the process, including discriminant variates. With 
the latter variables, his procedures have some similarity to 
the discriminant adaptive nearest neighbor approach. 

Other recent work that is somewhat related to this is that 
of [13]. He estimates the covariance matrix in a variable 
kernel classifier using a neural network approach. 

There are a number of ways in which this work might 
be generalized. In some discrimination problems, it is 
natural to use specialized distance measures that capture 
invariances in the feature space. For example, [141, 1151 
use a transformation-invariant metric to measure distance 
between digitized images of handwritten numerals in a 
nearest neighbor rule. The invariances include local trans- 
formations of images such as rotation, shear and stroke- 
thickness. An invariant distance measure might be used in 
a linear discriminant analysis and hence in the DANN 
procedure. 

Near neighbor techniques are used in the regression set- 
ting as well. Local polynomial regression [16] is currently 
very popular, where, for example, locally weighted linear 
surfaces are fit in modest sized neighborhoods. Analogs of 
K-NN classification for small K are used less frequently. In 
this case the response variable is quantitative rather than a 
class label. 

Reference [17] invented a technique called sliced in- 
verse regression, a dimension reduction tool for situations 
where the regression function changes in a lower- 
dimensional space. They show that under symmetry 
conditions of the marginal distribution of X, the inverse 
regression curve E(XIY) is concentrated in the same 
lower-dimensional subspace. They estimate the curve by 
slicing Y into intervals, and computing conditional 
means of X in each interval, followed by a principal 
component analysis. There are obvious similarities with 
our DANN procedure, and the following generalizations 
of DANN are suggested for regression: 

locally we use the B matrix of the sliced means to 
form our DANN metric, and then perform local regres- 
sion in the deformed neighborhoods. 
The local B(i) matrices can be pooled as in subDANN 
to extract global subspaces for regression. This has an 
apparent advantage over the approach of [171: We 
only require symmetry locally, a condition that is lo- 
cally encouraged by the convolution of the data with 
a spherical kernel. 
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