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Abstract
We propose the elastic net, a new regularization and variable se-

lection method. Real world data and a simulation study show that
the elastic net often outperforms the lasso, while enjoying a similar
sparsity of representation. In addition, the elastic net encourages a
grouping effect, where strongly correlated predictors tend to be in
(out) the model together. The elastic net is particularly useful when
the number of predictors (p) is much bigger than the number of obser-
vations (n). By contrast, the lasso is not a very satisfactory variable
selection method in the p � n case. An efficient algorithm called
LARS-EN is proposed for computing elastic net regularization paths
efficiently, much like the LARS algorithm does for the lasso.

Key Words: Grouping effect; LARS algorithm; lasso; p � n problem;
penalization; variable selection.

1 Introduction and Motivation

We consider the usual linear regression model: given p predictors x1, · · · ,xp,
the response y is predicted by

ŷ = β̂0 + x1β̂1 + · · · + xpβ̂p. (1)

∗Address for correspondence: Trevor Hastie, Department of Statistics, Stanford Uni-
versity, Stanford, CA 94305. E-mail: hastie@stanford.edu.
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A model-fitting procedure produces the vector of coefficients β̂ = (β̂0, · · · , β̂p).
For example, the ordinary least squares (OLS) estimates are obtained by
minimizing the residual sum squares (RSS). The criteria for evaluating the
quality of a model will differ according to the circumstances. Typically the
following two aspects are important.

• Accuracy of prediction on future data: it is hard to defend a model
that predicts poorly.

• Interpretation of the model: scientists prefer a simpler model because
it puts more light on the relationship between response and covari-
ates. Parsimony is especially an important issue when the number of
predictors is large.

It is well known that OLS often does poorly in both prediction and inter-
pretation. Penalization techniques have been proposed to improve OLS. For
example, ridge regression (Hoerl & Kennard 1988) minimizes RSS subject
to a bound on the L2 norm of the coefficients. As a continuous shrinkage
method, ridge regression achieves its better prediction performance through a
bias-variance trade-off. However, ridge regression cannot produce a parsimo-
nious model, for it always keeps all the predictors in the model. Best-subset
selection on the other hand produces a sparse model, but it is extremely vari-
able because of its inherent discreteness, as addressed by Breiman (1996).

A promising technique called the lasso was proposed by Tibshirani (1996).
The lasso is a penalized least squares method imposing a L1 penalty on the
regression coefficients. Due to the nature of the L1 penalty, the lasso does
both continuous shrinkage and automatic variable selection simultaneously.
Tibshirani (1996) and Fu (1998) compared the prediction performance of the
lasso, ridge and Bridge regression (Frank & Friedman 1993) and found none
of them uniformly dominates the other two. However, as variable selection
becomes increasingly important in modern data analysis, the lasso is much
more appealing due to its sparse representation.

Although the lasso has shown success in many situations, it has some
limitations. Consider the following three scenarios:

1. In the p > n case, the lasso selects at most n variables before it satu-
rates, because of the nature of the convex optimization problem. This
seems to be a limiting feature for a variable selection method. More-
over, the lasso is not well-defined unless the bound on the L1 norm of
the coefficients is smaller than a certain value.
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2. If there is a group of variables among which the pairwise correlations
are very high, then the lasso tends to select only one variable from the
group and does not care which one is selected. See Section 2.3.

3. For usual n > p situations, if there exist high correlations among predic-
tors, it has been empirically observed that the prediction performance
of the lasso is dominated by ridge regression (Tibshirani 1996) .

Scenarios (1) and (2) make the lasso an inappropriate variable selection
method in some situations. We illustrate our points by considering the gene-
selection problem in microarray data analysis. A typical microarray data
set has many thousands of predictors (genes) and often less than 100 sam-
ples. For those genes sharing the same biological “pathway”, the correlations
among them can be high (Segal & Conklin 2003). We think of those genes as
forming a group. The ideal gene selection method should be able to do two
things: eliminate the trivial genes, and automatically include whole groups
into the model once one gene amongst them is selected (“grouped selection”).
For this kind of p � n and grouped variables situation, the lasso is not the
ideal method, because it can only select at most n variables out of p can-
didates (Efron et al. 2004), and it lacks the ability to reveal the grouping
information. As for prediction performance, scenario (3) is not rare in re-
gression problems. So it is possible to further strengthen the prediction power
of the lasso.

Our goal is to find a new method that works as well as the lasso whenever
the lasso does the best, and can fix the problems highlighted above; i.e.,
it should mimic the ideal variable selection method in scenarios (1) and
(2), especially with microarray data, and it should deliver better prediction
performance than the lasso in scenario (3).

In this paper we propose a new regularization technique which we call the
elastic net. Similar to the lasso, the elastic net simultaneously does automatic
variable selection and continuous shrinkage, and is able to select groups of
correlated variables. It is like a stretchable fishing net that retains “all the
big fish”. Simulation studies and real data examples show that the elastic
net often outperforms the lasso in terms of prediction accuracy.

In Section 2 we define the naive elastic net, which is a penalized least
squares method using a novel elastic net penalty. We discuss the grouping
effect caused by the elastic net penalty. In Section 3, we show that this naive
procedure tends to overshrink in regression problems. We then introduce the
elastic net, which corrects this problem. An efficient LARS-EN algorithm
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is proposed for computing the entire elastic net regularization paths with
the computational effort of a single OLS fit. Prostate cancer data is used
to illustrate our methodology in Section 4, and simulation results comparing
the lasso and the elastic net are presented in Section 5. Section 6 shows an
application of the elastic net to classification and gene selection in a Leukemia
microarray problem.

2 Naive Elastic Net

2.1 Definition

Suppose the data set has n observations with p predictors. Let y = (y1, . . . , yn)T

be the response and X = [x1| · · · |xp] be the model matrix, where xj =
(x1j, . . . , xnj)

T , j = 1, . . . , p are the predictors. After a location and scale
transformation, we can assume the response is centered and the predictors
are standardized,

n∑
i=1

yi = 0,
n∑

i=1

xij = 0, and
n∑

i=1

x2
ij = 1, for j = 1, 2, . . . , p. (2)

For any fixed non-negative λ1 and λ2, we define the naive elastic net
criterion

L (λ1, λ2,β) = |y − Xβ|2 + λ2 |β|2 + λ1 |β|1 , (3)

where

|β|2 =
p∑

j=1

β2
j and |β|1 =

p∑
j=1

|βj| .

The naive elastic net estimator β̂ is the minimizer of (3):

β̂ = arg min
β

L (λ1, λ2,β) . (4)

The above procedure can be viewed as a penalized least-squares method.
Let α = λ2

λ1+λ2
, then solving β̂ in (3) is equivalent to the optimization prob-

lem:

β̂ = arg min
β

|y − Xβ|2 , subject to (1 − α) |β|1 + α |β|2 ≤ t for some t. (5)

We call the function (1 − α) |β|1 + α |β|2 the elastic net penalty, which is
a convex combination of the lasso and ridge penalty. When α = 1, the
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naive elastic net becomes simple ridge regression. In this paper, we only
consider α < 1. ∀α ∈ [0, 1), the elastic net penalty function is singular
(without first derivative) at 0 and it is strictly convex ∀ α > 0, thus possessing
the characteristics of both the lasso and ridge. Note that the lasso penalty
(α = 0) is convex but not strictly convex. These arguments can be seen
clearly from Figure 1.

β1

β2

Ridge
Lasso
Elastic Net

geometry of the elastic net penalty

Figure 1: 2-dimensional contour plots (level=1). The outmost contour shows
the shape of the ridge penalty while the diamond shaped curve is the contour
of the lasso penalty. The red solid curve is the contour plot of the elastic net
penalty with α = 0.5. We see singularities at the vertexes and the edges are
strictly convex. The strength of convexity varies with α.

2.2 Solution

We now develop a method to solve the naive elastic net problem efficiently. It
turns out that the solution is equivalent to a lasso type optimization problem.
This fact implies that the naive elastic net also enjoys the computational
advantage of the lasso.

Lemma 1 Given data set (y,X) and (λ1, λ2), define an artificial data set
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(y∗,X∗) by

X∗
(n+p)×p

= (1 + λ2)
− 1

2

(
X√
λ2I

)
, y∗

(n+p) =

(
y

0

)
.

Let γ = λ1√
1+λ2

and β∗ =
√

1 + λ2β. Then the naive elastic net criterion can
be written as

L (γ,β) = L (γ,β∗) = |y∗ − X∗β∗|2 + γ |β∗|1 .

Let
β̂

∗
= arg min

β∗
L (γ,β∗) ,

then

β̂ =
1√

1 + λ2

β̂
∗
.

The proof is just simple algebra, which we omit. Lemma 1 says that we can
transform the naive elastic net problem to an equivalent lasso problem on
augmented data. Note that the sample size in the augmented problem is
n + p and X∗ has rank p, which means the naive elastic net can potentially
select all p predictors in all situations. This important property overcomes
the limitations of the lasso described in scenario (1). Lemma 1 also shows
that the naive elastic net can perform an automatic variable selection in a
fashion similar to the lasso. In the next section we show that the naive elastic
net has the ability of selecting “grouped” variables, a property not shared by
the lasso.

In the case of an orthogonal design, it is straightforward to show that
with parameters (λ1, λ2), the naive elastic net solution is

β̂i(naive elastic net) =

(∣∣∣β̂i(ols)
∣∣∣ − λ1

2

)
+

1 + λ2

sgn
(
β̂i(ols)

)
. (6)

where β̂(ols) = XTy and z+ denotes the positive part, which is z if z >
0, else 0. The solution of ridge regression with parameter λ2 is given by
β̂(ridge) = β̂(ols)/(1 + λ2), and the lasso solution with parameter λ1 is

β̂i(lasso) =
(∣∣∣β̂i(ols)

∣∣∣ − λ1

2

)
+

sgn
(
β̂i(ols)

)
. Figure 2 shows the operational

characteristics of the three penalization methods in an orthogonal design,
where the naive elastic net can be viewed as a two-stage procedure: a ridge-
type direct shrinkage followed by a lasso-type thresholding.
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β̂

β

OLS
Lasso
Ridge
Naive ENet

Figure 2: Exact solutions for the lasso, ridge and the naive elastic net (naive
ENet) in an orthogonal design. Shrinkage parameters are λ1 = 2, λ2 = 1.

2.3 The grouping effect

In the “large p, small n” problem (West et al. 2001), the “grouped variables”
situation is a particularly important concern, which has been addressed a
number of times in the literature. For example, principal component analysis
(PCA) has been used to construct methods finding a set of highly correlated
genes in Hastie et al. (2000) and Ramon (2003). A careful study by Segal &
Conklin (2003) strongly motivates the use of regularized regression procedure
to find the grouped genes. We consider the generic penalization method

β̂ = arg min
β

|y − Xβ|2 + λJ(β) (7)

where J(·) is positive valued for β �= 0.
Qualitatively speaking, a regression method exhibits the grouping effect

if the regression coefficients of a group of highly correlated variables tend to
be equal (up to a sign change if negatively correlated). In particular, in the
extreme situation where some variables are exactly identical, the regression
method should assign identical coefficients to the identical variables.

Lemma 2 Assume xi = xj, i, j ∈ {1, . . . , p}.
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1. If J(·) is strictly convex, then β̂i = β̂j ∀ λ > 0.

2. If J(β) = |β|1, then β̂iβ̂j ≥ 0 and β̂
∗

is another minimizer of (7),
where

β̂∗
k =


β̂k if k �= i and k �= j

(β̂i + β̂j) · (s) if k = i

(β̂i + β̂j) · (1 − s) if k = j.

for any s ∈ [0, 1].

Lemma 2 shows a clear distinction between strictly convex penalty func-
tions and the lasso penalty. Strict convexity guarantees the grouping effect
in the extreme situation with identical predictors. In contrast the lasso does
not even have a unique solution. The elastic net penalty with λ2 > 0 is
strictly convex, thus enjoying the property in assertion (1).

Theorem 1 Given data (y,X) and parameters (λ1, λ2), the response y is
centered and the predictors X are standardized. Let β̂ (λ1, λ2) be the naive
elastic net estimate. Suppose β̂i (λ1, λ2) β̂j (λ1, λ2) > 0. Define

Dλ1,λ2(i, j) =
1

|y|1

∣∣∣β̂i (λ1, λ2) − β̂j (λ1, λ2)
∣∣∣ ,

then Dλ1,λ2(i, j) ≤ 1
λ2

√
2 (1 − ρ), where ρ = xT

i xj, the sample correlation.

The unit-less quantity Dλ1,λ2(i, j) describes the difference between the
coefficient paths of predictors i and j. If xi and xj are highly correlated,
i.e., ρ

.
= 1 (if ρ

.
= −1 then consider −xj), Theorem 1 says the difference

between the coefficient paths of predictor i and predictor j is almost 0. The
upper bound in the above inequality provides quantitative description for the
grouping effect of the naive elastic net.

The lasso doesn’t possess the grouping effect. Scenario (2) in Section 1
occurs frequently in practice. A theoretical explanation is given in Efron
et al. (2004). For a simpler illustration, let’s consider the linear model with
p = 2. Tibshirani (1996) gave the explicit expression for (β̂1, β̂2), from which

we easily get
∣∣∣β̂1 − β̂2

∣∣∣ = |cos(θ)|, where θ is the angle between y and x1−x2.

It is easy to construct examples such that ρ = cor(x1,x2) → 1 but cos(θ)
doesn’t vanish.
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2.4 Bayesian connections and the Lq penalty

Bridge regression (Frank & Friedman 1993, Fu 1998) has J(β) = |β|q in (7),
which is a generalization of both the lasso (q = 1) and ridge (q = 2). The
bridge estimator can be viewed as the Bayes posterior mode under the prior

pλ,q(β) = C(λ, q) exp(−λ|β|q). (8)

Ridge regression (q = 2) corresponds to a Gaussian prior and the lasso (q = 1)
a Laplacian (or double exponential) prior. The elastic net penalty corre-
sponds to a new prior given by

pλ,α(β) = C(λ, α) exp(−λ(α|β|2 + (1 − α)|β|1)); (9)

a compromise between the Gaussian and Laplacian priors. Although bridge
with 1 < q < 2 will have many similarities with the elastic net, there is
a fundamental difference between them. The elastic nets produces sparse
solutions, while the bridge does not. Fan & Li (2001) prove that in the Lq

(q ≥ 1) penalty family, only the lasso penalty (q = 1) can produce a sparse
solution. Bridge (1 < q < 2) always keeps all predictors in the model, as
does ridge. Since automatic variable selection via penalization is a primary
objective of this article, Lq (1 < q < 2) penalization is not a candidate.

3 Elastic Net

3.1 Deficiency of the naive elastic net

As an automatic variable selection method, the naive elastic net overcomes
the limitations of the lasso in scenarios (1) and (2). However, empirical
evidence (see Sections 4 and 5) shows that the naive elastic net does not
perform satisfactorily unless it is very close to either ridge or the lasso. This
is the reason we call it naive.

In the regression prediction setting, an accurate penalization method
achieves good prediction performance through the bias-variance trade-off.
The naive elastic net estimator is a two-stage procedure: for each fixed λ2

we first find the ridge regression coefficients, and then we do the lasso type
shrinkage along the lasso coefficient solution paths. It appears to incur a
double amount of shrinkage. Double shrinkage does not help to reduce the
variances much and introduces unnecessary extra bias, compared with pure
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lasso or ridge shrinkage. In the next section we improve the prediction per-
formance of the naive elastic net by correcting this double-shrinkage.

3.2 The elastic net estimate

We follow the notation in Section 2.2. Given data (y,X), penalty parameter
(λ1, λ2), and augmented data (y∗,X∗), the naive elastic net solves a lasso
type problem

β̂
∗

= arg min
β∗

|y∗ − X∗β∗|2 +
λ1√

1 + λ2

|β∗|1 . (10)

The elastic net (corrected) estimates β̂ are defined by

β̂ (elastic net) =
√

1 + λ2β̂
∗
. (11)

Recall that β̂(naive elastic net) = 1√
1+λ2

β̂
∗
, thus

β̂(elastic net) = (1 + λ2)β̂(naive elastic net). (12)

Hence the elastic net coefficient is a rescaled naive elastic net coefficient.
Such a scaling transformation preserves the variable-selection property of

the naive elastic net, and is the simplest way to undo shrinkage. Hence all
the good properties of the naive elastic net described in Section 2 hold for
the elastic net. Empirically we have found the elastic net performs very well
when compared with the lasso and ridge.

We also have theoretical/heuristic justification for choosing 1 + λ2 as the
scaling factor. Consider the exact solution of the naive elastic net when
the predictors are orthogonal. The lasso is known to be minimax optimal
(Donoho et al. 1995) in this case, which implies the naive elastic net is not op-
timal. After scaling by 1+λ2, the elastic net automatically achieves minimax
optimality.

A strong motivation for the (1+λ2) rescaling comes from a decomposition
of the ridge operator. Since the predictors X are standardized, we have

XTX =


1 ρ12 · ρ1p

1 · ·
1 ρp−1,p

1


p×p

,
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where ρi,j is sample correlation. Ridge estimates with parameter λ2 are given

by β̂(ridge) = Ry, with

R = (XTX + λ2I)
−1XT .

We can rewrite R as

R = 1
1+λ2

R∗ = 1
1+λ2


1 ρ12

(1+λ2)
· ρ1p

(1+λ2)

1 · ·
1 ρp−1,p

(1+λ2)

1


−1

XT . (13)

R∗ is like the usual OLS operator except the correlations are shrunk by factor
1

1+λ2
, which we call de-correlation. Hence from (13) we can interpret the ridge

operator as de-correlation followed by direct scaling shrinkage.
This decomposition suggests that the grouping effect of ridge is caused by

the de-correlation step. When we combine the grouping effect of ridge with
the lasso, the direct 1/(1 + λ2) shrinkage step is not needed and removed
by rescaling. Although ridge requires 1/(1 + λ2) shrinkage to effectively
control the estimation variance, in our new method, we can rely on the lasso
shrinkage to control the variance and obtain sparsity.

From now on, let β̂ stand for β̂ (elastic net). The next theorem gives
another presentation of the elastic net, in which the de-correlation argument
is more explicit.

Theorem 2 Given data (y,X) and (λ1, λ2), then the elastic net estimates
β̂ are given by

β̂ = arg min
β

βT

(
XTX + λ2I

1 + λ2

)
β − 2yTXβ + λ1 |β|1 . (14)

It is easy to see that

β̂(lasso) = arg min
β

βT (̂XTX)β − 2yTXβ + λ1 |β|1 . (15)

Hence Theorem 2 interprets the elastic net as a stabilized version of the lasso.
Note that Σ̂ = XTX is a sample version of the correlation matrix (Σ) and
XT X+λ2I

1+λ2
= (1 − γ)Σ̂ + γI with γ = λ2

1+λ2
shrinks Σ̂ towards identity matrix.

Together (14) and (15) say that rescaling after the elastic net penalization is
mathematically equivalent to replacing Σ̂ with its shrunk version in the lasso.
In linear discriminant analysis, prediction accuracy can often be improved
by replacing Σ̂ by a shrunken estimate (Friedman 1989, Hastie et al. 2001).
Likewise we improve the lasso by regularizing Σ̂ in (15).
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3.3 Connection with univariate soft-thresholding

The lasso is a special case of the elastic net with λ2 = 0. The other interesting
special case of the elastic net emerges when λ2 → ∞. By Theorem 2, β̂ →
β̂(∞) as λ2 → ∞, where

β̂(∞) = arg min
β

βT β − 2yTXβ + λ1 |β|1 .

β̂(∞) has a simple closed form

β̂(∞)i =

(∣∣∣yTxi

∣∣∣ − λ1

2

)
+

sgn
(
yTxi

)
, i = 1, 2, . . . , p. (16)

Observe that yTxi is the univariate regression coefficient of the i-th predictor,
β̂(∞) are the estimates by applying soft-thresholding on univariate regression
coefficients, thus (16) is called univariate soft-thresholding (UST).

UST totally ignores the dependence among predictors and treats them as
independent variables. Although this may be considered illegitimate, UST
and its variants are used in other methods such as SAM (Tusher et al. 2001)
and the nearest shrunken centroids (NSC) classifier (Tibshirani et al. 2002),
and have shown good empirical performance. The elastic net naturally
bridges the lasso and UST.

3.4 Computation: the LARS-EN algorithm

We propose an efficient algorithm called LARS-EN to efficiently solve the
elastic net, which is based on the recently proposed LARS algorithm of Efron
et al. (2004) (referred to as the LAR paper henceforth). In the LAR paper,
the authors proved that starting from zero, the lasso solution paths grow
piecewise linearly in a predictable way. They proposed a new algorithm
called LARS to efficiently solve the entire lasso solution path using the same
order of computations as a single OLS fit. By Lemma 1, for each fixed λ2

the elastic net problem is equivalent to a lasso problem on the augmented
data set. So the LARS algorithm can be directly used to efficiently create
the entire elastic net solution path with the computational efforts of a single
OLS fit. Note however, that for p � n, the augmented data set has p + n
“observations” and p variables, which can slow things down a lot.

We further facilitate the computation by taking advantage of the sparse
structure of X∗, which is crucial in the p � n case. In detail, as outlined in
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the LAR paper, at the k-th step we need to invert the matrix GAk
= X∗T

Ak
X∗

Ak
,

where Ak is the active variable set. This is done efficiently by updating or
downdating the Cholesky factorization of GAk−1

found at the previous step.

Note that GA = 1
1+λ2

(
XT

AXA + λ2I
)

for any index set A, so it amounts to

updating or downdating the Cholesky factorization of XT
Ak−1

XAk−1
+ λ2I. It

turns out that one can use a simple formula to update the Cholesky factoriza-
tion of XT

Ak−1
XAk−1

+λ2I, which is very similar to the formula used for updat-

ing the Cholesky factorization of XT
Ak−1

XAk−1
(Golub & Van Loan 1983). The

exact same downdating function can be used for downdating the Cholesky
factorization of XT

Ak−1
XAk−1

+λ2I. In addition, when calculating the equian-
gular vector and the inner products of the non-active predictors with the
current residuals, we can save computations using the simple fact that X∗

j

has p − 1 zero elements. In a word, we do not explicitly use X∗ to compute
all the quantities in the LARS algorithm. It is also economical to only record
the non-zero coefficients and the active variables set at each LARS-EN step.

The LARS-EN algorithm sequentially updates the elastic net fits. In the
p � n case, such as with microarray data, it is not necessary to run the
LARS-EN algorithm to the end (early stopping). Real data and simulated
computational experiments show that the optimal results are achieved at an
early stage of the LARS-EN algorithm. If we stop the algorithm after m
steps, then it requires O(m3 + pm2) operations.

3.5 Choice of tuning parameters

We now discuss how to choose the type and value of the tuning parameter
in the elastic net. Although we defined the elastic net using (λ1, λ2), it is
not the only choice as the tuning parameter. In the lasso, the conventional
tuning parameter is the L1 norm of the coefficients (t) or the fraction of the

L1 norm (s). By the proportional relation between β̂ and β̂
∗
, we can also

use (λ2, s) or (λ2, t) to parameterize the elastic net. The advantage of using
(λ2, s) is that s is always valued within [0, 1]. In the LARS algorithm the lasso
is described as a forward stage-wise additive fitting procedure and shown to
be (almost) identical to ε-L2 boosting (Efron et al. 2004). This new view
adopts the number of steps k of the LARS algorithm as a tuning parameter
for the lasso. For each fixed λ2, the elastic net is solved by the LARS-EN
algorithm, hence similarly we can use the number of the LARS-EN steps
(k) as the second tuning parameter besides λ2. The above three types of
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tuning parameter correspond to three ways to interpret the piece-wise elastic
net/lasso solution paths as shown in Figure 3.

There are well-established methods for choosing such tuning parameters
(Hastie et al. 2001, Chapter 7). If only training data are available, 10-
fold cross-validation is a popular method for estimating the prediction error
and comparing different models, and we use it here. Note that there are
two tuning parameters in the elastic net, so we need to cross-validate on
a 2-dimensional surface. Typically we first pick a (relatively small) grid of
values for λ2, say (0, 0.01, 0.1, 1, 10, 100) . Then for each λ2, the LARS-EN
algorithm produces the entire solution path of the elastic net. The other
tuning parameter (λ1, s or k) is selected by 10-fold CV. The chosen λ2 is the
one giving the smallest CV error.

For each λ2, the computational cost of 10-fold CV is the same as ten OLS
fits. Thus the 2-D CV is computationally thrifty in the usual n > p setting.
In the p � n case, the cost grows linearly with p, and is still manageable.
Practically, early stopping is used to ease the computational burden. For
example, suppose n = 30 and p = 5000, if we don’t want more than 200
variables in the final model, we may stop the LARS-EN algorithm after 500
steps and only consider the best k within 500.

From now on we drop the subscript of λ2 if s or k is the other parameter.

4 Prostate Cancer Data Example.

The data in this example comes from a study of prostate cancer (Stamey et al.
1989). The predictors are eight clinical measures: log cancer volume (lcavol),
log prostate weight (lweight), age, log of the amount of benign prostatic
hyperplasia (lbph), seminal vesicle invasion (svi), log capsular penetration
(lcp), Gleason score (gleason) and percentage Gleason score 4 or 5 (pgg45).
The response is the log of prostate specific antigen (lpsa).

OLS, ridge regression, the lasso, the naive elastic net, and the elastic
net were all applied to these data. The prostate cancer data were divided
into two parts: a training set with 67 observations, and a test set with 30
observations. Model fitting and tuning parameter selection by 10-fold cross-
validation were carried out on the training data. We then compared the
performance of those methods by computing their prediction mean squared
error on the test data.

Table 1 clearly shows the elastic net as the winner among all competitors
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Table 1: Prostate cancer data: comparing different methods

Method Parameter(s) Test MSE Variables Selected
OLS 0.586 (0.184) all
Ridge λ = 1 0.566 (0.188) all
Lasso s = 0.39 0.499 (0.161) (1,2,4,5,8)

Naive elastic net λ = 1, s = 1 0.566 (0.188) all
Elastic net λ = 1000, s = 0.26 0.381 (0.105) (1,2,5,6,8)

in terms of both prediction accuracy and sparsity. OLS is the worst method.
The naive elastic net is identical to ridge regression in this example and fails
to do variable selection. The lasso includes lcavol, lweight lbph, svi, and
pgg45 in the final model, while the elastic net selects lcavol, lweight, svi, lcp,
and pgg45. The prediction error of the elastic net is about 24 percent lower
than that of the lasso. We also see in this case that the elastic net is actually
UST, because the selected λ is very big (1000). This can be considered as a
piece of empirical evidence supporting UST. Figure 3 displays the lasso and
the elastic net solution paths.

If we check the correlation matrix of these eight predictors, we see there
are a number of medium correlations, although the highest is 0.76 (between
pgg45 and gleason). We have seen that the elastic net dominates the lasso by
a good margin. In other words, the lasso is hurt by the high correlation. We
conjecture that whenever ridge improves on OLS, the elastic net will improve
the lasso. We demonstrate this point by simulations in the next section.

5 A Simulation Study

The purpose of this simulation is to show that the elastic net not only dom-
inates the lasso in terms of prediction accuracy, but also is a better variable
selection procedure than the lasso. We simulate data from the true model

y = Xβ + σε, ε ∼ N(0, 1).

Four examples are presented here. The first three examples were used in
the original lasso paper (Tibshirani 1996), to systematically compare the
prediction performance of the lasso and ridge regression. The fourth example
creates a “grouped variable” situation.
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Figure 3: The left panel shows the lasso estimates as a function of s, and
the right panel shows the elastic net estimates as a function of s. Both of
them are piecewise linear, which is a key property of our efficient algorithm.
The solution paths also show the elastic net is identical to univariate soft-
thresholding in this example. In both plots the vertical dotted line indicates
the selected final model.
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Within each example, our simulated data consists of a training set, an
independent validation set, and an independent test set. Models were fitted
on training data only, and the validation data were used to select the tuning
parameters. We computed the test error (mean squared error) on the test
data set. We use the notation ·/ · /· to describe the number of observations
in the training, validation and test set respectively; e.g. 20/20/200. Here are
the details of the four scenarios.

Example 1: We simulated 50 data sets consisting of 20/20/200 observations
and 8 predictors. We let β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3. The pair-
wise correlation between xi and xj was set to be cor(i, j) = (0.5)|i−j|.

Example 2: Same as example 1, except βj = 0.85 for all j.

Example 3: We simulated 50 data sets consisting of 100/100/400 observa-
tions and 40 predictors. We set β = (0, . . . , 0︸ ︷︷ ︸

10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

)

and σ = 15; cor(i, j) = 0.5 for all i, j.

Example 4: We simulated 50 data sets consisting of 50/50/400 observations
and 40 predictors. We chose β = (3, . . . , 3︸ ︷︷ ︸

15

, 0, . . . , 0︸ ︷︷ ︸
25

) and σ = 15. The

predictors X are generated as the follows:

xi = Z1 + εx
i , Z1 ∼ N(0, 1), i = 1, · · · , 5,

xi = Z2 + εx
i , Z2 ∼ N(0, 1), i = 6, · · · , 10,

xi = Z3 + εx
i , Z3 ∼ N(0, 1), i = 11, · · · , 15,

xi ∼ N(0, 1), xi i.i.d i = 16, . . . , 40,

where εx
i are iid N(0, 0.01), i = 1, . . . , 15. In this model, we have 3

equally important groups, and within each group there are 5 members.
There are also 25 pure noise features. An ideal method would only
select the 15 true features and set the coefficients of the 25 noise features
to 0.

Table 2 and Figure 4 (Box-plots) summarize the prediction results. First
we see that the naive elastic net either has very poor performance (in example
1) or behaves almost identical to either ridge regression (in example 2 and
3) or the lasso (in example 4). In all examples, the elastic net is significantly
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Table 2: Median of MSE, inside () are the corresponding std. errors based
on B = 500 Bootstrap.

Method Ex.1 Ex.2 Ex.3 Ex.4
Lasso 3.06 (0.31) 3.87 (0.38) 65.0 (2.82) 46.6 (3.96)

Elastic net 2.51 (0.29) 3.16 (0.27) 56.6 (1.75) 34.5 (1.64)
Ridge 4.49 (0.46) 2.84 (0.27) 39.5 (1.80) 64.5 (4.78)

Naive elastic net 5.70 (0.41) 2.73 (0.23) 41.0 (2.13) 45.9 (3.72)

more accurate than the lasso, even when the lasso is doing much better than
ridge. The reductions of the prediction error in four examples are 18%, 18%,
13% and 27%, respectively. The simulation results indicate that the elastic
net dominates the lasso under collinearity.

Table 3 shows that the elastic net produces sparse solutions. The elastic
net tends to select more variables than the lasso does, due to the grouping
effect. In example 4 where grouped selection is required, the elastic net
behaves like the “oracle”. The additional “grouped selection” ability makes
the elastic net a better variable selection method than the lasso.

Here is an idealized example showing the important differences between
the elastic net and the lasso. Let Z1 and Z2 be two independent unif(0, 20)
variables. The response y is generated from y = Z1 + 0.1 · Z2 + N(0, 1).
Suppose we only observe

x1 = Z1 + ε1, x2 = −Z1 + ε2, x3 = Z1 + ε3,

x4 = Z2 + ε4, x5 = −Z2 + ε5, x6 = Z2 + ε6,

where εi are iid N(0, 1
16

). 100 observations were generated from this model.
x1,x2,x3 form a group whose underlying factor is Z1, and x4,x5,x6 form a
second group whose underlying factor is Z2. The within group correlations
are almost 1 and the between group correlations are almost 0. An “oracle”
would identify the Z1 group as the important variates. Figure 5 compares
the solution paths of the lasso and the elastic net.
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Figure 4: Comparing prediction accuracy of the lasso, the elastic net (Enet),
ridge and the naive elastic net (NEnet). The elastic net outperforms the lasso
in all four examples.
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Table 3: Median number of non-zero coefficients

Method Ex.1 Ex.2 Ex.3 Ex.4
Lasso 5 6 24 11

Elastic net 6 7 27 16
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Figure 5: The left and right panel show the lasso and the elastic net (λ2 = 0.5)
solution paths respectively. As can be seen from the lasso solution plot, x3

and x2 are considered the most important variables in the lasso fit, but their
paths are jumpy. The lasso plot does not reveal any correlation information
by itself. In contrast, the elastic net has much smoother solution paths, while
clearly showing the “grouped selection”: x1,x2,x3 are in one “significant”
group and x4,x5,x6 are in the other “trivial” group. The de-correlation yields
grouping effect and stabilizes the lasso solution.
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6 Microarrays Classification and Gene Selec-

tion

A typical microarray data set has thousands of genes and less than 100
samples. Because of the unique structure of the microarray data, we feel a
good classification method should have the following properties:

1. Gene selection should be built into the procedure.

2. It should not be limited by the fact that p � n.

3. For those genes sharing the same biological “pathway”, it should be
able to automatically include whole groups into the model once one
gene amongst them is selected.

From published results in this domain, it appears that many classifiers
achieve similar low classification error rates. But many of these methods do
not select genes in a satisfactory way. Most of the popular classifiers fail
with respect to at least one of the above properties. The lasso is good at
(1) but fails both (2) and (3). The support vector machine (SVM) (Guyon
et al. 2002) and penalized logistic regression (PLR) (Zhu & Hastie 2004) are
very successful classifiers, but they cannot do gene selection automatically
and both use either univariate ranking (UR) (Golub et al. 1999) or recursive
feature elimination (RFE) (Guyon et al. 2002) to reduce the number of genes
in the final model.

As an automatic variable selection method, the elastic net naturally over-
comes the difficulty of p � n and has the ability to do “grouped selection”.
We use the leukemia data to illustrate the elastic net classifier.

The leukemia data consists of 7129 genes and 72 samples (Golub et al.
1999). In the training data set, there are 38 samples, among which 27 are
type 1 leukemia (ALL) and 11 are type 2 leukemia (AML). The goal is to
construct a diagnostic rule based on the expression level of those 7219 genes
to predict the type of leukemia. The remaining 34 samples are used to test
the prediction accuracy of the diagnostic rule. To apply the elastic net,
we first coded the type of leukemia as a 0-1 response y. The classification
function is I(fitted value > 0.5), where I(·) is the indicator function. We
used 10-fold cross-validation to select the tuning parameters.

We used pre-screening to make the computation more manageable. Each
time a model is fit, we first select the 1000 most “significant” genes as the pre-
dictors, according to their t-statistic scores (Tibshirani et al. 2002). Note that
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Table 4: Summary of leukemia classification results

Method 10-fold CV error Test error No. of genes
Golub 3/38 4/34 50

SVM RFE 2/38 1/34 31
PLR RFE 2/38 1/34 26

NSC 2/38 2/34 21
Elastic Net 3/38 0/34 45

this screening is done separately in each training fold in the cross-validation.
In practise, this screening does not effect the results, because we stop the
elastic net path relatively early, at a stage when the screened variables are
unlikely to be in the model.

All the pre-screening, fitting and tuning were done only using the training
set and the classification error is evaluated on the test data.

We stopped the LARS-EN algorithm after 200 steps. As can be seen from
Figure 6, using the number of steps k in the LARS-EN algorithm as the tun-
ing parameter, the elastic net classifier (λ = 0.01, k = 82) gives 10-fold CV
error 3/38 and the test error 0/34 with 45 genes selected. Figure 7 displays
the elastic net solution paths and the gene selection results. Table 4 com-
pares the elastic net with several competitors including Golubs’ method, the
support vector machine (SVM), penalized logistic regression (PLR), nearest
shrunken centroid (NSC) (Tibshirani et al. 2002). The elastic net gives the
best classification, and it has an internal gene selection facility.

7 Discussion

We have proposed the elastic net, a novel shrinkage and selection method.
The elastic net produces a sparse model with good prediction accuracy, while
encouraging a grouping effect. The empirical results and simulations demon-
strate the good performance of the elastic net and its superiority over the
lasso. When used as a (two-class) classification method, the elastic net ap-
pears to perform well on microarray data in terms of misclassification error,
and it does automatic gene selection.

Although our methodology is motivated by regression problems, the elas-
tic net penalty can be used in classification problems with any consistent
(Zhang 2004) loss functions, including the L2 loss which we have considered
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Figure 6: Leukemia classification and gene selection by the elastic net(λ =
0.01). The early stopping strategy (the upper plot) finds the optimal classifier
with much less computational cost. With early stopping, the number of steps
is much more convenient than s, the fraction of L1 norm, since computing s
depends on the fit at the last step of the LARS-EN algorithm, the actual values
of s are not available in 10-fold cross-validation if the LARS-EN algorithm
is early stopped. On the training set, steps=200 is equivalent to s = 0.50,
indicated by the broken vertical line in the lower plot.
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Figure 7: Leukemia data: the elastic net coefficients paths (up to k = 100).
The labels on the top indicate the number of nonzero coefficients (selected
genes) at each step. The optimal elastic net model is given by the fit at step
eighty-two with 45 selected genes. Note that the size of training set is 38,
so the lasso can at most select 38 genes. In contrast, the elastic net selected
more than 38 genes, not limited by the sample size.
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here and binomial deviance. Some nice properties of the elastic net are better
understood in the classification paradigm. For example, Figure 6 is a familiar
picture in boosting: the test error keeps decreasing and reaches a long flat
region then slightly increases (Hastie et al. 2001). This is no coincidence. In
fact we have discovered that the elastic net penalty has a close connection
with the maximum margin explanation (Rosset et al. 2004) to the success of
the SVM and boosting. Thus Figure 6 has a nice margin-based explanation.
We have made some progress in using the elastic net penalty in classification,
which will be reported in a future paper.

We view the elastic net as a generalization of the lasso, which has been
shown to be a valuable tool for model fitting and feature extraction. Recently
the lasso was used to explain the success of boosting: boosting performs
a high-dimensional lasso without explicitly using the lasso penalty (Hastie
et al. 2001, Friedman et al. 2004). Our results offer other insights into the
lasso, and ways to improve it.
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Appendix: Proofs

Proof of Lemma 2.
Part (1): Fix λ > 0. If β̂i �= β̂j, let us consider β̂

∗
as follows

β̂∗
k =

 β̂k if k �= i and k �= j
1
2

(
β̂i + β̂j

)
if k = i or k = j.

Because xi = xj, it is obvious that Xβ̂
∗

= Xβ̂, thus
∣∣∣y − Xβ̂

∗∣∣∣2 =
∣∣∣y − Xβ̂

∣∣∣2 .

However, J(·) is strictly convex, so we have J
(
β̂

∗)
< J

(
β̂

)
. Therefore β̂

cannot be the minimizer of (7), a contradiction. So we must have β̂i = β̂j.
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Part (2): If β̂iβ̂j < 0, consider the same β̂
∗

again. We see |β̂∗| < |β̂|, so β̂
cannot be a lasso solution. The rest can be directly verified by the definition
of the lasso, thus omitted.

Proof of Theorem 1. If β̂i (λ1, λ2) β̂j (λ1, λ2) > 0, then both β̂i (λ1, λ2)

and β̂j (λ1, λ2) are non-zero, we have sgn
(
β̂i (λ1, λ2)

)
= sgn

(
β̂j (λ1, λ2)

)
.

Because of (4), β̂ (λ1, λ2) satisfies

∂L (λ1, λ2,β)

∂βk

∣∣∣∣
β=

ˆβ(λ1,λ2)
= 0 if β̂k (λ1, λ2) �= 0. (17)

Hence we have

−2xT
i

(
y − Xβ̂ (λ1, λ2)

)
+ λ1sgn

(
β̂i (λ1, λ2)

)
+ 2λ2β̂i (λ1, λ2) = 0, (18)

−2xT
j

(
y − Xβ̂ (λ1, λ2)

)
+ λ1sgn

(
β̂j (λ1, λ2)

)
+ 2λ2β̂j (λ1, λ2) = 0. (19)

Subtracting (18) from (19) gives

(xT
j − xT

i )
(
y − Xβ̂ (λ1, λ2)

)
+ λ2

(
β̂i (λ1, λ2) − β̂j (λ1, λ2)

)
= 0,

which is equivalent to

β̂i (λ1, λ2) − β̂j (λ1, λ2) =
1

λ2

(xT
i − xT

j )r̂ (λ1, λ2) , (20)

where r̂ (λ1, λ2) = y − xβ̂ (λ1, λ2) is the residual vector. Since X are stan-
dardized, |xi − xj|2 = 2(1 − ρ) where ρ = xT

i xj. By (4) we must have

L
(
λ1, λ2, β̂ (λ1, λ2)

)
≤ L (λ1, λ2,β = 0) ,

i.e., |r̂ (λ1, λ2)|2 + λ2

∣∣∣β̂ (λ1, λ2)
∣∣∣2 + λ1

∣∣∣β̂ (λ1, λ2)
∣∣∣
1
≤ |y|2 .

So |r̂ (λ1, λ2)| ≤ |y|. Then (20) implies

Dλ1,λ2(i, j) ≤
1

λ2

|r̂ (λ1, λ2)|
|y| |xi − xj| ≤

1

λ2

√
2(1 − ρ).
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Proof of Theorem 2. Let β̂ be the elastic net estimates. By definition and
(10) we have

β̂ = arg min
β

∣∣∣∣∣y∗ − X∗ β√
1 + λ2

∣∣∣∣∣
2

+
λ1√

1 + λ2

∣∣∣∣∣ β√
1 + λ2

∣∣∣∣∣
1

= arg min
β

βT

(
X∗TX∗

1 + λ2

)
β − 2

y∗T X∗
√

1 + λ2

+ y∗Ty∗ +
λ1 |β|1
1 + λ2

. (21)

Substituting the identities

X∗TX∗ =

(
XTX + λ2

1 + λ2

)
, y∗TX∗ =

yTX√
1 + λ2

, y∗Ty∗ = yTy

into (21), we have

β̂ = arg min
β

1

1 + λ2

(
βT

(
XTX + λ2I

1 + λ2

)
β − 2yTXβ + λ1 |β|1

)
+ yTy

= arg min
β

βT

(
XTX + λ2I

1 + λ2

)
β − 2yTXβ + λ1 |β|1 .
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