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Abstract
We use convex relaxation techniques to provide a sequence ofregularized low-rank solutions for
large-scale matrix completion problems. Using the nuclearnorm as a regularizer, we provide a sim-
ple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound
on the nuclear norm. Our algorithm SOFT-IMPUTE iteratively replaces the missing elements with
those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute
an entire regularization path of solutions on a grid of values of the regularization parameter. The
computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix.
Exploiting the problem structure, we show that the task can be performed with a complexity of or-
der linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to
large matrices; for example SOFT-IMPUTE takes a few hours to compute low-rank approximations
of a 106×106 incomplete matrix with 107 observed entries, and fits a rank-95 approximation to the
full Netflix training set in 3.3 hours. Our methods achieve good training and test errors and exhibit
superior timings when compared to other competitive state-of-the-art techniques.
Keywords: collaborative filtering, nuclear norm, spectral regularization, netflix prize, large scale
convex optimization

1. Introduction

In many applications measured data can be represented in a matrixXm×n, for which only a rela-
tively small number of entries are observed. The problem is to “complete” thematrix based on
the observed entries, and has been dubbed the matrix completion problem (Cand̀es and Recht,
2008; Cand̀es and Tao, 2009; Rennie and Srebro, 2005). The “Netflix” competition (for example,
SIGKDD and Netflix, 2007) is a popular example, where the data is the basis for a recommender
system. The rows correspond to viewers and the columns to movies, with the entry Xi j being the
rating∈ {1, . . . ,5} by viewer i for movie j. There are about 480K viewers and 18K movies, and
hence 8.6 billion (8.6× 109) potential entries. However, on average each viewer rates about 200
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movies, so only 1.2% or 108 entries are observed. The task is to predict the ratings that viewers
would give to movies they have not yet rated.

These problems can be phrased as learning an unknown parameter (a matrix Zm×n) with very
high dimensionality, based on very few observations. In order for suchinference to be meaningful,
we assume that the parameterZ lies in a much lower dimensional manifold. In this paper, as is
relevant in many real life applications, we assume thatZ can be well represented by a matrix of low
rank, that is,Z≈Vm×kGk×n, wherek≪min(n,m). In this recommender-system example, low rank
structure suggests that movies can be grouped into a small number of “genres”, withGℓ j the relative
score for moviej in genreℓ. Viewer i on the other hand has an affinityViℓ for genreℓ, and hence the
modeled score for vieweri on movie j is the sum∑k

ℓ=1ViℓGℓ j of genre affinities times genre scores.
Typically we view the observed entries inX as the corresponding entries fromZ contaminated with
noise.

Srebro et al. (2005a) studied generalization error bounds for learning low-rank matrices. Re-
cently Cand̀es and Recht (2008), Candès and Tao (2009), and Keshavan et al. (2009) showed the-
oretically that under certain assumptions on the entries of the matrix, locations,and proportion of
unobserved entries, the true underlying matrix can be recovered within very high accuracy.

For a matrixXm×n let Ω ⊂ {1, . . . ,m}×{1, . . . ,n} denote the indices of observed entries. We
consider the following optimization problem:

minimize rank(Z)

subject to ∑
(i, j)∈Ω

(Xi j −Zi j )
2≤ δ, (1)

whereδ≥ 0 is a regularization parameter controlling the tolerance in training error. Therank con-
straint in (1) makes the problem for generalΩ combinatorially hard (Srebro and Jaakkola, 2003).
For a fully-observedX on the other hand, the solution is given by a truncated singular value decom-
position (SVD) ofX. The following seemingly small modification to (1),

minimize ‖Z‖∗
subject to ∑

(i, j)∈Ω
(Xi j −Zi j )

2≤ δ, (2)

makes the problem convex (Fazel, 2002). Here‖Z‖∗ is the nuclear norm, or the sum of the singular
values ofZ. Under many situations the nuclear norm is an effective convex relaxationto the rank
constraint (Fazel, 2002; Candès and Recht, 2008; Candès and Tao, 2009; Recht et al., 2007). Op-
timization of (2) is a semi-definite programming problem (Boyd and Vandenberghe, 2004) and can
be solved efficiently for small problems, using modern convex optimization software like SeDuMi
and SDPT3 (Grant and Boyd., 2009). However, since these algorithms are based on second order
methods (Liu and Vandenberghe, 2009), they can become prohibitively expensive if the dimensions
of the matrix get large (Cai et al., 2008). Equivalently we can reformulate (2) in Lagrangeform

minimize
Z

1
2 ∑
(i, j)∈Ω

(Xi j −Zi j )
2+λ‖Z‖∗. (3)

Hereλ ≥ 0 is a regularization parameter controlling the nuclear norm of the minimizerẐλ of (3);
there is a 1-1 mapping betweenδ≥ 0 andλ≥ 0 over their active domains.
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In this paper we propose an algorithm SOFT-IMPUTE for the nuclear norm regularized least-
squares problem (3) that scales to large problems withm,n≈ 105–106 with around 106–108 or more
observed entries. At every iteration SOFT-IMPUTE decreases the value of the objective function
towards its minimum, and at the same time gets closer to the set of optimal solutions of theprob-
lem (2). We study the convergence properties of this algorithm and discuss how it can be extended
to other more sophisticated forms of spectral regularization.

To summarize some performance results1

• We obtain a rank-40 solution to (2) for a problem of size 105×105 and|Ω|= 5×106 observed
entries in less than 18 minutes.

• For the same sized matrix with|Ω|= 107 we obtain a rank-5 solution in less than 21 minutes.

• For a 106×105 sized matrix with|Ω| = 108 a rank-5 solution is obtained in approximately
4.3 hours.

• We fit a rank-66 solution for the Netflix data in 2.2 hours. Here there are 108 observed entries
in a matrix with 4.8×105 rows and 1.8×104 columns. A rank 95 solution takes 3.27 hours.

The paper is organized as follows. In Section 2, we discuss related workand provide some context
for this paper. In Section 3 we introduce the SOFT-IMPUTE algorithm and study its convergence
properties in Section 4. The computational aspects of the algorithm are described in Section 5,
and Section 6 discusses how nuclear norm regularization can be generalized to more aggressive
and general types of spectral regularization. Section 7 describes post-processing of “selectors” and
initialization. We discuss comparisons with related work, simulations and experimental studies in
Section 9 and application to the Netflix data in Section 10.

2. Context and Related Work

Cand̀es and Tao (2009), Cai et al. (2008), and Candès and Recht (2008) consider the criterion

minimize ‖Z‖∗
subject to Zi j = Xi j , ∀(i, j) ∈Ω. (4)

With δ = 0, the criterion (1) is equivalent to (4), in that it requires the training error to be zero.
Cai et al. (2008) propose a first-order singular-value-thresholdingalgorithm SVT scalable to large
matrices for the problem (4). They comment on the problem (2) withδ > 0, but dismiss it as being
computationally prohibitive for large problems.

We believe that (4) will almost always be too rigid and will result in over-fitting. If minimization
of prediction error is an important goal, then the optimal solutionẐ will typically lie somewhere in
the interior of the path indexed byδ (Figures 2, 3 and 4).

In this paper we provide an algorithm SOFT-IMPUTE for computing solutions of (3) on a grid of
λ values, based on warm restarts. The algorithm is inspired by SVD-IMPUTE (Troyanskaya et al.,

1. For large problems data transfer, access and reading take quite a lotof time and is dependent upon the platform
and machine. Over here we report the times taken for the computational bottle-neck, that is, the SVD computations
over all iterations. All times are reported based on computations done in a Intel Xeon Linux 3GHz processor using
MATLAB, with no C or Fortran interlacing.
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2001)—an EM-type (Dempster et al., 1977) iterative algorithm that alternates between imputing the
missing values from a current SVD, and updating the SVD using the “complete” data matrix. In its
very motivation, SOFT-IMPUTE is different from generic first order algorithms (Cai et al., 2008; Ma
et al.; Ji and Ye, 2009). The latter require the specification of a step size,and can be quite sensitive
to the chosen value. Our algorithm does not require a step-size, or any such parameter.

The iterative algorithms proposed in Ma et al. and Ji and Ye (2009) require the computation
of a SVD of a dense matrix (with dimensions equal to the size of the matrixX) at every iteration,
as the bottleneck. This makes the algorithms prohibitive for large scale computations. Ma et al.
use randomized algorithms for the SVD computation. Our algorithm SOFT-IMPUTE also requires
an SVD computation at every iteration, but by exploiting theproblem structure, can easily handle
matrices of very large dimensions. At each iteration the non-sparse matrix has the structure:

Y =YSP (Sparse) + YLR (Low Rank). (5)

In (5) YSP has the same sparsity structure as the observedX, andYLR has rank ˜r ≪ m,n, where ˜r
is very close tor ≪ m,n the rank of the estimated matrixZ (upon convergence of the algorithm).
For large scale problems, we use iterative methods based on Lanczos bidiagonalization with partial
re-orthogonalization (as in the PROPACK algorithm, Larsen, 1998), for computing the first ˜r sin-
gular vectors/values ofY. Due to the specific structure of (5), multiplication byY andY′ can both
be achieved in a cost-efficient way. In decomposition (5), the computationally burdensome work
in computing a low-rank SVD is of an order that depends linearly on the matrix dimensions. More
precisely, evaluating each singular vector requires computation of the order ofO((m+n)r̃)+O(|Ω|)
flops and evaluatingr ′ of them requiresO((m+n)r̃r ′)+O(|Ω|r ′) flops. Exploiting warm-starts, we
observe that ˜r ≈ r—hence every SVD step of our algorithm computesr singular vectors, with com-
plexity of the orderO((m+n)r2)+O(|Ω|r) flops. This computation is performed for the number
of iterations SOFT-IMPUTE requires to run till convergence or a certain tolerance.

In this paper we show asymptotic convergence of SOFT-IMPUTE and further derive its non-
asymptotic rate of convergence which scales asO(1/k) (k denotes the iteration number). However,
in our experimental studies on low-rank matrix completion, we have observedthat our algorithm
is faster (based on timing comparisons) than the accelerated version of Nesterov (Ji and Ye, 2009;
Nesterov, 2007), having a provable (worst case) convergence rate ofO( 1

k2 ) . With warm-starts SOFT-
IMPUTE computes the entire regularization path very efficiently along a dense seriesof values for
λ.

Although the nuclear norm is motivated here as a convex relaxation to a rankconstraint, we
believe in many situations it will outperform the rank-restricted estimator (1). This is supported by
our experimental studies. We draw the natural analogy with model selection inlinear regression, and
compare best-subset regression (ℓ0 regularization) with theLASSO (ℓ1 regularization, Tibshirani,
1996; Hastie et al., 2009). There too theℓ1 penalty can be viewed as a convex relaxation of the
ℓ0 penalty. But in many situations with moderate sparsity, theLASSO will outperform best subset
in terms of prediction accuracy (Friedman, 2008; Hastie et al., 2009; Mazumder et al., 2009). By
shrinking the parameters in the model (and hence reducing their variance), the lasso permits more
parameters to be included. The nuclear norm is theℓ1 penalty in matrix completion, as compared
to theℓ0 rank. By shrinking the singular values, we allow more dimensions to be included without
incurring undue estimation variance.

Another class of techniques used in collaborative filtering problems are close in spirit to (2).
These are known asmaximum margin matrix factorizationmethods—in short MMMF—and use
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a factor model for the matrixZ (Srebro et al., 2005b). LetZ = UV ′ whereUm×r ′ andVn×r ′ , and
consider the following problem

minimize
U,V

1
2 ∑
(i, j)∈Ω

(Xi j − (UV ′)i j )
2+

λ
2
(‖U‖2F +‖V‖2F). (6)

It turns out that (6) is intimately related to (3), since (see Lemma 6)

||Z||∗ = min
U,V: Z=UV ′

1
2

(
‖U‖2F +‖V‖2F

)
.

For example, ifr ′ = min(m,n), the solution to (6) coincides with the solution to (3).2 However, (6)
is not convex in its arguments, while (3) is. We compare these two criteria in detail in Section 8,
and the relative performance of their respective algorithms in Section 9.2.

3. SOFT-I MPUTE–an Algorithm for Nuclear Norm Regularization

We first introduce some notation that will be used for the rest of this article.

3.1 Notation

We adopt the notation of Cai et al. (2008). Define a matrixPΩ(Y) (with dimensionm×n)

PΩ(Y) (i, j) =

{
Yi j if (i, j) ∈Ω
0 if (i, j) /∈Ω,

(7)

which is a projection of the matrixYm×n onto the observed entries. In the same spirit, define the
complementary projectionP⊥Ω (Y) via P⊥Ω (Y)+PΩ(Y) =Y. Using (7) we can rewrite∑(i, j)∈Ω(Xi j −

Zi j )
2 as‖PΩ(X)−PΩ(Z)‖2F .

3.2 Nuclear Norm Regularization

We present the following lemma, which forms a basic ingredient in our algorithm.

Lemma 1 Suppose the matrix Wm×n has rank r. The solution to the optimization problem

minimize
Z

1
2
‖W−Z‖2F +λ‖Z‖∗ (8)

is given byẐ = Sλ(W) where

Sλ(W)≡UDλV ′ with Dλ = diag[(d1−λ)+, . . . ,(dr −λ)+] , (9)

UDV ′ is the SVD of W, D= diag[d1, . . . ,dr ], and t+ = max(t,0).

The notationSλ(W) refers tosoft-thresholding(Donoho et al., 1995). Lemma 1 appears in Cai
et al. (2008) and Ma et al. where the proof uses the sub-gradient characterization of the nuclear
norm. In Appendix A.1 we present an entirely different proof, which can be extended in a relatively
straightforward way to other complicated forms of spectral regularization discussed in Section 6.
Our proof is followed by a remark that covers these more general cases.

2. We note here that the original MMMF formulation usesr ′ = min{m,n}. In this paper we will consider it for a family
of r ′ values.
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3.3 Algorithm

Using the notation in 3.1, we rewrite (3) as:

minimize
Z

fλ(Z) :=
1
2
‖PΩ(X)−PΩ(Z)‖

2
F +λ‖Z‖∗ . (10)

We now present Algorithm 1—SOFT-IMPUTE—for computing a series of solutions to (10) for
different values ofλ using warm starts.

Algorithm 1 SOFT-IMPUTE

1. InitializeZold = 0.

2. Do forλ1 > λ2 > .. . > λK :

(a) Repeat:

i. ComputeZnew← Sλk
(PΩ(X)+P⊥Ω (Zold)).

ii. If ‖Z
new−Zold‖2F
‖Zold‖2F

< ε exit.

iii. Assign Zold← Znew.

(b) AssignẐλk
← Znew.

3. Output the sequence of solutionsẐλ1, . . . , ẐλK
.

The algorithm repeatedly replaces the missing entries with the current guess, and then updates
the guess by solving (8). Figures 2, 3 and 4 show some examples of solutions using SOFT-IMPUTE

(blue continuous curves). We see test and training error in the top rows as a function of the nuclear
norm, obtained from a grid of valuesΛ. These error curves show a smooth and very competitive
performance.

4. Convergence Analysis

In this section we study the convergence properties of Algorithm 1. Unlike generic first-order
methods (Nesterov, 2003) including competitive first-order methods for nuclear norm regularized
problems (Cai et al., 2008; Ma et al.), SOFT-IMPUTE does not involve the choice of any additional
step-size. Most importantly our algorithm is readily scalable for solving largescale semidefinite
programming problems (2) and (10) as will be explained later in Section 5.

For an arbitrary matrix̃Z, define

Qλ(Z|Z̃) =
1
2
‖PΩ(X)+P⊥Ω (Z̃)−Z‖2F +λ‖Z‖∗ (11)

as a surrogate of the objective functionfλ(z). Note thatfλ(Z̃) = Qλ(Z̃|Z̃) for anyZ̃.
In Section 4.1, we show that the sequenceZk

λ generated viaSOFT-IMPUTE convergesasymptot-
ically, that is, ask→ ∞ to a minimizer of the objective functionfλ(Z). SOFT-IMPUTE produces a
sequence of solutions for which the criterion decreases to the optimal solution with every iteration
and the successive iterates get closer to the optimal set of solutions of the problem 10. Section 4.2
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derives the non-asymptotic convergence rate of the algorithm. The latter analysis concentrates on
the objective valuesfλ(Z

k
λ). Due to computational resources if one wishes to stop the algorithm

afterK iterations, then Theorem 2 provides a certificate of howfar Zk
λ is from the solution. Though

Section 4.1 alone establishes the convergence offλ(Z
k
λ) to the minimum offλ(Z), this does not, in

general, settle theconvergenceof Zk
λ unless further conditions (like strong convexity) are imposed

on fλ(·).

4.1 Asymptotic Convergence

Lemma 2 For every fixedλ≥ 0, define a sequence Zk
λ by

Zk+1
λ = argmin

Z
Qλ(Z|Z

k
λ)

with any starting point Z0λ. The sequence Zkλ satisfies

fλ(Z
k+1
λ )≤Qλ(Z

k+1
λ |Zk

λ)≤ fλ(Z
k
λ).

Proof Note that
Zk+1

λ = Sλ(PΩ(X)+P⊥Ω (Zk
λ)). (12)

By Lemma 1 and the definition (11) ofQλ(Z|Z
k
λ), we have:

fλ(Z
k
λ) = Qλ(Z

k
λ|Z

k
λ)

=
1
2
‖PΩ(X)+P⊥Ω (Zk

λ)−Zk
λ‖

2
F +λ‖Zk

λ‖∗

≥ min
Z

1
2

{
‖PΩ(X)+P⊥Ω (Zk

λ)−Z‖2F
}
+λ‖Z‖∗

= Qλ(Z
k+1
λ |Zk

λ)

=
1
2
‖
{

PΩ(X)−PΩ(Z
k+1
λ )

}
+
{

P⊥Ω (Zk
λ)−P⊥Ω (Zk+1

λ )
}
‖2F +λ‖Zk+1

λ ‖∗

=
1
2

{
‖PΩ(X)−PΩ(Z

k+1
λ )‖2F +‖P⊥Ω (Zk

λ)−P⊥Ω (Zk+1
λ )‖2F

}
+λ‖Zk+1

λ ‖∗ (13)

≥
1
2
‖PΩ(X)−PΩ(Z

k+1
λ )‖2F +λ‖Zk+1

λ ‖∗ (14)

= Qλ(Z
k+1
λ |Zk+1

λ )

= f (Zk+1
λ ).

Lemma 3 The nuclear norm shrinkage operatorSλ(·) satisfies the following for any W1, W2 (with
matching dimensions)

‖Sλ(W1)−Sλ(W2)‖
2
F ≤ ‖W1−W2‖

2
F .

In particular this implies thatSλ(W) is a continuous map in W.
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Lemma 3 is proved in Ma et al.; their proof is complex and based on trace inequalities. We give a
concise proof based on elementary convex analysis in Appendix A.2.

Lemma 4 The successive differences‖Zk
λ−Zk−1

λ ‖2F of the sequence Zkλ are monotone decreasing:

‖Zk+1
λ −Zk

λ‖
2
F ≤ ‖Z

k
λ−Zk−1

λ ‖2F ∀k. (15)

Moreover the difference sequence converges to zero. That is

Zk+1
λ −Zk

λ→ 0 as k→ ∞.

The proof of Lemma 4 is given in Appendix A.3.

Lemma 5 Every limit point of the sequence Zk
λ defined in Lemma 2 is a stationary point of

1
2
‖PΩ(X)−PΩ(Z)‖

2
F +λ‖Z‖∗.

Hence it is a solution to the fixed point equation

Z = Sλ(PΩ(X)+P⊥Ω (Z)). (16)

The proof of Lemma 5 is given in Appendix A.4.

Theorem 1 The sequence Zkλ defined in Lemma 2 converges to a limit Z∞
λ that solves

minimize
Z

1
2
‖PΩ(X)−PΩ(Z)‖

2
F +λ‖Z‖∗. (17)

Proof It suffices to prove thatZk
λ converges; the theorem then follows from Lemma 5.

Let Ẑλ be a limit point of the sequenceZk
λ. There exists a subsequencemk such thatZmk

λ → Ẑλ.
By Lemma 5,Ẑλ solves the problem (17) and satisfies the fixed point equation (16).

Hence

‖Ẑλ−Zk
λ‖

2
F = ‖Sλ(PΩ(X)+P⊥Ω (Ẑλ))−Sλ(PΩ(X)+P⊥Ω (Zk−1

λ ))‖2F (18)

≤ ‖(PΩ(X)+P⊥Ω (Ẑλ))− (PΩ(X)+P⊥Ω (Zk−1
λ ))‖2F

= ‖P⊥Ω (Ẑλ−Zk−1
λ )‖2F

≤ ‖Ẑλ−Zk−1
λ ‖2F . (19)

In (18) two substitutions were made; the left one using (16) in Lemma 5, the right one using (12).
Inequality (19) implies that the sequence‖Ẑλ−Zk−1

λ ‖2F converges ask→ ∞. To show the conver-
gence of the sequenceZk

λ it suffices to prove that the sequenceẐλ−Zk
λ converges to zero. We prove

this by contradiction.
Suppose the sequenceZk

λ has another limit pointZ+
λ 6= Ẑλ. ThenẐλ−Zk

λ has two distinct limit
points 0 andZ+

λ − Ẑλ 6= 0. This contradicts the convergence of the sequence‖Ẑλ−Zk−1
λ ‖2F . Hence

the sequenceZk
λ converges tôZλ := Z∞

λ .

The inequality in (19) implies that at every iterationZk
λ gets closer to an optimal solution for the

problem (17).3 This property holds in addition to the decrease of the objective function (Lemma 2)
at every iteration.

3. In fact this statement can be strengthened further—at every iterationthe distance of the estimate decreases from the
set of optimal solutions.
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4.2 Convergence Rate

In this section we derive the worst case convergence rate ofSOFT-IMPUTE.

Theorem 2 For every fixedλ ≥ 0, the sequence Zkλ;k≥ 0 defined in Lemma 2 has the following
non-asymptotic (worst) rate of convergence:

fλ(Z
k
λ)− fλ(Z

∞
λ )≤

2‖Z0
λ−Z∞

λ ‖
2
F

k+1
. (20)

The proof of this theorem is in Appendix A.6.
In light of Theorem 2, aδ > 0 accurate solution offλ(Z) is obtained after a maximum of

2
δ‖Z

0
λ−Z∞

λ ‖
2
F iterations. Using warm-starts,SOFT-IMPUTE traces out the path of solutions on a grid

of λ valuesλ1 > λ2 > .. . > λK with a total of4

K

∑
i=1

2
δ
‖Ẑλi−1−Z∞

λi
‖2F (21)

iterations. HerêZλ0 = 0 andẐλi
denotes the output ofSOFT-IMPUTE (upon convergence) forλ = λi

(i ∈ {1, . . . ,K−1}). The solutionsZ∞
λi

andZ∞
λi−1

are likely to becloseto each other, especially on a
dense grid ofλi ’s. Hence every summand of (21) and the total number of iterations is expected to
be significantly smaller than that obtained via arbitrary cold-starts.

5. Computational Complexity

The computationally demanding part of Algorithm 1 is inSλ(PΩ(X)+P⊥Ω (Zk
λ)). This requires cal-

culating a low-rank SVD of a matrix, since the underlying model assumption is that rank(Z)≪
min{m,n}. In Algorithm 1, for fixedλ, the entire sequence of matricesZk

λ have explicit5 low-rank
representations of the formUkDkV ′k corresponding toSλ(PΩ(X)+P⊥Ω (Zk−1

λ )).
In addition, observe thatPΩ(X)+P⊥Ω (Zk

λ) can be rewritten as

PΩ(X)+P⊥Ω (Zk
λ) =

{
PΩ(X)−PΩ(Zk

λ)
}

+ Zk
λ

= Sparse + Low Rank.
(22)

In the numerical linear algebra literature, there are very efficient directmatrix factorization methods
for calculating the SVD of matrices of moderate size (at most a few thousand). When the matrix is
sparse, larger problems can be solved but the computational cost depends heavily upon the sparsity
structure of the matrix. In general however, for large matrices one has toresort to indirect iterative
methods for calculating the leading singular vectors/values of a matrix. Thereis a lot research in
numerical linear algebra for developing sophisticated algorithms for this purpose. In this paper we
will use the PROPACK algorithm (Larsen, 2004, 1998) because of its low storage requirements,
effective flop count and its well documented MATLAB version. The algorithm for calculating the
truncated SVD for a matrixW (say), becomes efficient if multiplication operationsWb1 andW′b2

(with b1 ∈ℜn, b2 ∈ℜm) can be done with minimal cost.

4. We assume the solution̂Zλ at everyλ ∈ {λ1, . . . ,λK} is computed to an accuracy ofδ > 0.
5. Though we cannot prove theoretically that every iterate of the sequenceZk

λ will be of low-rank; this observation is
rather practical based on the manner in which we trace out the entire path of solutions based on warm-starts. Our
simulation results support this observation as well.
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Algorithm SOFT-IMPUTE requires repeated computation of a truncated SVD for a matrixW
with structure as in (22). Assume that at the current iterate, the matrixZk

λ has rank ˜r. Note that in
(22) the termPΩ(Zk

λ) can be computed inO(|Ω|r̃) flops using only the required outer products (i.e.,
our algorithm does not compute the matrix explicitly).

The cost of computing the truncated SVD will depend upon the cost in the operationsWb1 and
W′b2 (which are equal). For the sparse part these multiplications costO(|Ω|). Although it costs
O(|Ω|r̃) to create the matrixPΩ(Zk

λ), this is used for each of the ˜r such multiplications (which also
costO(|Ω|r̃)), so we need not include that cost here. The Low Rank part costsO((m+n)r̃) for the
multiplication byb1. Hence the cost isO(|Ω|)+O((m+n)r̃) per vector multiplication. Supposing
we want a ˜r rank SVD of the matrix (22), the cost will be of the order ofO(|Ω|r̃)+O((m+n)(r̃)2)
(for that iteration, that is, to obtainZk+1

λ from Zk
λ). Suppose the rank of the solutionZk

λ is r, then in
light of our above observations ˜r ≈ r ≪min{m,n} and the order isO(|Ω|r)+O((m+n)r2).

For the reconstruction problem to be theoretically meaningful in the sense ofCand̀es and Tao
(2009) we require that|Ω| ≈ nr ·poly(logn). In practice often|Ω| is very small. Hence introducing
theLow Rankpart does not add any further complexity in the multiplication byW andW′. So the
dominant cost in calculating the truncated SVD in our algorithm isO(|Ω|). The SVT algorithm
(Cai et al., 2008) for exact matrix completion (4) involves calculating the SVDof a sparse matrix
with costO(|Ω|). This implies that the computational order of SOFT-IMPUTE and that of SVT is the
same. This order computation does not include the number of iterations required for convergence. In
our experimental studies we use warm-starts for efficiently computing the entire regularization path.
On small scale examples, based on comparisons with the accelerated gradient method of Nesterov
(see Section 9.3; Ji and Ye, 2009; Nesterov, 2007) we find that our algorithm converges faster
than the latter in terms of run-time and number of SVD computations/ iterations. Thissupports
the computational effectiveness of SOFT-IMPUTE. In addition, since the true rank of the matrix
r ≪min{m,n}, the computational cost of evaluating the truncated SVD (with rank≈ r) is linear in
matrix dimensions. This justifies the large-scale computational feasibility of our algorithm.

The above discussions focus on the computational complexity for obtaining alow-rank SVD,
which is to be performed at every iteration ofSOFT-IMPUTE. Similar to the total iteration complexity
bound ofSOFT-IMPUTE (21), the total cost to compute the regularization path on a grid ofλ values
is given by:

K

∑
i=1

O

(
(|Ω|r̄λi

+(m+n)r̄2
λi
)
2
δ
‖Ẑλi−1−Z∞

λi
‖2F

)
.

Here ¯rλ denotes the rank6 (on an average) of the iteratesZk
λ generated bySOFT-IMPUTE for fixedλ.

The PROPACK package does not allow one to request (and hence compute) only the singular
values larger than a thresholdλ—one has to specify the number in advance. So once all the com-
puted singular values fall above the current thresholdλ, our algorithm increases the number to be
computed until the smallest is smaller thanλ. In large scale problems, we put an absolute limit on
the maximum number.

6. We assume, above that the grid of valuesλ1 > .. .λK is such thatall the solutionsZλ,λ ∈ {λ1, . . . ,λK} are ofsmall
rank, as they appear in Section 5.
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6. Generalized Spectral Regularization: From Soft to Hard Thresholding

In Section 1 we discussed the role of the nuclear norm as a convex surrogate for the rank of a matrix,
and drew the analogy withLASSO regression versus best-subset selection. We argued that in many
problemsℓ1 regularization gives better prediction accuracy. However, if the underlying model is
very sparse, then theLASSO with its uniform shrinkage can both overestimate the number of non-
zero coefficients (Friedman, 2008) in the model, and overly shrink (bias)those included toward zero.
In this section we propose a natural generalization of SOFT-IMPUTE to overcome these problems.

Consider again the problem

minimize
rank(Z)≤k

1
2
‖PΩ(X)−PΩ(Z)‖

2
F ,

a rephrasing of (1). This best rank-k solution also solves

minimize
1
2
‖PΩ(X)−PΩ(Z)‖

2
F +λ∑

j

I(γ j(Z)> 0),

whereγ j(Z) is the jth singular value ofZ, and for a suitable choice ofλ that produces a solution
with rankk.

The “fully observed” matrix version of the above problem is given by theℓ0 version of (8) as
follows:

minimize
Z

1
2
‖W−Z‖2F +λ‖Z‖0, (23)

where‖Z‖0 = rank(Z). The solution of (23) is given by a reduced-rank SVD ofW; for everyλ
there is a correspondingq = q(λ) number of singular-values to be retained in the SVD decompo-
sition. Problem (23) is non-convex inW but its global minimizer can be evaluated. As in (9) the
thresholding operator resulting from (23) is

SH
λ (W) =UDqV

′ where Dq = diag(d1, . . . ,dq,0, . . . ,0) .

Similar to SOFT-IMPUTE (Algorithm 1), we present below HARD-IMPUTE (Algorithm 2) for the
ℓ0 penalty. The continuous parameterization viaλ does not appear to offer obvious advantages
over rank-truncation methods. We note that it does allow for a continuum ofwarm starts, and is a
natural post-processor for the output of SOFT-IMPUTE (next section). But it also allows for further
generalizations that bridge the gap between hard and soft regularizationmethods.

In penalized regression there have been recent developments directedtowards “bridging” the
gap between theℓ1 andℓ0 penalties (Friedman, 2008; Zhang, 2010; Mazumder et al., 2009). This
is done via using non-convex penalties that are a better surrogate (in the sense of approximating the
penalty) toℓ0 over theℓ1. They also produce less biased estimates than those produced by theℓ1

penalized solutions. When the underlying model is very sparse they often perform very well, and
enjoy superior prediction accuracy when compared to softer penalties likeℓ1. These methods still
shrink, but are less aggressive than the best-subset selection.

By analogy, we propose using a more sophisticated version of spectral regularization. This goes
beyond nuclear norm regularization by using slightly more aggressive penalties that bridge the gap
betweenℓ1 (nuclear norm) andℓ0(rank constraint). We propose minimizing

fp,λ(Z) =
1
2
‖PΩ(X)−PΩ(Z)‖

2
F +λ∑

j

p(γ j(Z);µ), (24)
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Algorithm 2 HARD-IMPUTE

1. Initialize Z̃λk
k= 1, . . . ,K (for example, using SOFT-IMPUTE; see Section 7).

2. Do forλ1 > λ2 > .. . > λK :

(a) Repeat:

i. ComputeZnew← SH
λk
(PΩ(X)+P⊥Ω (Zold)).

ii. If ‖Z
new−Zold‖2F
‖Zold‖2F

< ε exit.

iii. Assign Zold← Znew.

(b) AssignẐH,λk
← Znew.

3. Output the sequence of solutionsẐH,λ1, . . . , ẐH,λK
.

wherep(|t|;µ) is concave in|t|. The parameterµ ∈ [µinf ,µsup] controls the degree of concavity.
We may think ofp(|t|;µinf) = |t| (ℓ1 penalty) on one end andp(|t|;µsup) = ‖t‖0 (ℓ0 penalty) on
the other. In particular for theℓ0 penalty denotefp,λ(Z) by fH,λ(Z) for “hard” thresholding. See
Friedman (2008), Mazumder et al. (2009) and Zhang (2010) for examples of such penalties.

In Remark 1 in Appendix A.1 we argue how the proof can be modified for general types of
spectral regularization. Hence for minimizing the objective (24) we will look at the analogous
version of (8, 23) which is

minimize
Z

1
2
‖W−Z‖2F +λ∑

j

p(γ j(Z);µ).

The solution is given by a thresholded SVD ofW,

Sp
λ(W) =UDp,λV ′,

whereDp,λ is a entry-wise thresholding of the diagonal entries of the matrixD consisting of singular
values of the matrixW. The exact form of the thresholding depends upon the form of the penalty
function p(·; ·), as discussed in Remark 1. Algorithm 1 and Algorithm 2 can be modified for the
penaltyp(·;µ) by using a more general thresholding functionSp

λ(·) in Step 2(a)i. The corresponding
step becomes:

Znew← Sp
λ(PΩ(X)+P⊥Ω (Zold)).

However these types of spectral regularization make the criterion (24) non-convex and hence it
becomes difficult to optimize globally. Recht et al. (2007) and Bach (2008)also consider the rank
estimation problem from a theoretical standpoint.

7. Post-processing of “Selectors” and Initialization

Because theℓ1 norm regularizes by shrinking the singular values, the number of singularvalues
retained (through cross-validation, say) may exceed the actual rank ofthe matrix. In such cases it is
reasonable toundothe shrinkage of the chosen models, which might permit a lower-rank solution.
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If Zλ is the solution to (10), then itspost-processedversionZu
λ obtained by “unshrinking” the

eigen-values of the matrixZλ is obtained by

α = argmin
αi≥0, i=1,...,rλ

‖PΩ(X)−
rλ

∑
i=1

αiPΩ(uiv
′
i)‖

2 (25)

Zu
λ = UDαV ′,

whereDα = diag(α1, . . . ,αrλ). Hererλ is the rank ofZλ andZλ =UDλV ′ is its SVD. The estimation
in (25) can be done via ordinary least squares, which is feasible because of the sparsity ofPΩ(uiv′i)
and thatrλ is small.7 If the least squares solutionsα do not meet the positivity constraints, then the
negative sign can be absorbed into the corresponding singular vector.

Rather than estimating a diagonal matrixDα as above, one can insert a matrixMrλ×rλ between
U andV above to obtain better training error for the same rank. Hence givenU, V (each of rankrλ)
from the SOFT-IMPUTE algorithm, we solve

M̂ = argmin
M

‖PΩ(X)−PΩ(UMV ′)‖2, (26)

where, Ẑλ = UM̂V ′.

The objective function in (26) is the Frobenius norm of an affine functionof M and hence can be
optimized very efficiently. Scalability issues pertaining to the optimization problem (26) can be
handled fairly efficiently via conjugate gradients. Criterion (26) will definitely lead to a decrease
in training error as that attained bŷZ = UDλV ′ for the same rank and is potentially an attractive
proposal for the original problem (1). However this heuristic cannot be caste as a (jointly) convex
problem in(U,M,V). In addition, this requires the estimation of up tor2

λ parameters, and has the
potential for over-fitting. In this paper we report experiments based on (25).

In many simulated examples we have observed that this post-processing stepgives a good es-
timate of the underlying true rank of the matrix (based on prediction error). Since fixed points of
Algorithm 2 correspond to local minima of the function (24), well-chosen warm startsZ̃λ are help-
ful. A reasonable prescription for warms-starts is the nuclear norm solution via (SOFT-IMPUTE),
or the post processed version (25). The latter appears to significantly speed up convergence for
HARD-IMPUTE. This observation is based on our simulation studies.

8. Soft-Impute and Maximum-Margin Matrix Factorization

In this section we compare in detail the MMMF criterion (6) with the SOFT-IMPUTE criterion (3).
For ease of comparison here, we put down these criteria again using ourPΩ notation.

MMMF solves

minimize
U,V

1
2
||PΩ(X−UV)||2F +

λ
2
(‖U‖2F +‖V‖2F), (27)

whereUm×r ′ andVn×r ′ are arbitrary (non-orthogonal) matrices. This problem formulation and re-
lated optimization methods have been explored by Srebro et al. (2005b) andRennie and Srebro
(2005).

7. Observe that thePΩ(uiv′i), i = 1, . . . , rλ are not orthogonal, though theuiv′i are.

2299



MAZUMDER, HASTIE AND TIBSHIRANI

SOFT-IMPUTE solves

minimize
Z

1
2
||PΩ(X−Z)||2F +λ‖Z‖∗. (28)

For each given maximum rank, MMMF produces an estimate by doing furthershrinkage with its
quadratic regularization. SOFT-IMPUTE performs rank reduction and shrinkage at the same time,
in one smooth convex operation. The following theorem shows that this one-dimensional SOFT-
IMPUTE family lies exactly in the two-dimensional MMMF family.

Theorem 3 Let X be m×n with observed entries indexed byΩ.

1. Let r′ = min(m,n). Then the solutions to (27) and (28) coincide for allλ≥ 0.

2. SupposêZ∗ is a solution to (28) forλ∗ > 0, and let r∗ be its rank. Then for any solution
Û , V̂ to (27) with r′ = r∗ andλ = λ∗, ÛV̂T is a solution to (28). The SVD factorization ofẐ∗

provides one such solution to (27). This implies that the solution space of (28) is contained in
that of (27).

Remarks:

1. Part 1 of this theorem appears in a slightly different form in Srebro etal. (2005b).

2. In part 1, we could user ′ > min(m,n) and get the same equivalence. While this might seem
unnecessary, there may be computational advantages; searching overa bigger space might
protect against local minima. Likewise in part 2, we could user ′ > r∗ and achieve the same
equivalence. In either case, no matter whatr ′ we use, the solution matriceŝU andV̂ have the
same rank aŝZ.

3. LetẐ(λ) be a solution to (28) atλ. We conjecture that rank[Ẑ(λ)] is monotone non-increasing
in λ. If this is the case, then Theorem 3, part 2 can be further strengthenedto say that for all
λ≥ λ∗ andr ′ = r∗ the solutions of (27) coincide with that of (28).

The MMMF criterion (27) defines a two-dimensional family of models indexed by (r ′,λ), while the
SOFT-IMPUTE criterion (28) defines a one-dimensional family. In light of Theorem 3, thisfamily is
a special path in the two-dimensional grid of solutions[Û(r ′,λ),V̂(r ′,λ)]. Figure 1 depicts the situation.
Any MMMF model at parameter combinations above the red squares are redundant, since their fit
is the same at the red square. However, in practice the red squares are not known to MMMF, nor
is the actual rank of the solution. Further orthogonalization ofÛ andV̂ would be required to reveal
the rank, which would only be approximate (depending on the convergence criterion of the MMMF
algorithm).

Despite the equivalence of (27) and (28) whenr ′ = min(m,n), the criteria are quite different.
While (28) is a convex optimization problem inZ, (27) is a non-convex problem in the variables
U,V and has possibly several local minima; see also Abernethy et al. (2009).It has been observed
empirically and theoretically (Burer and Monteiro, 2005; Rennie and Srebro, 2005) that bi-convex
methods used in the optimization of (27) can get stuck in sub-optimal local minima for a small value
of r ′ or a poorly chosen starting point. For a large number of factorsr ′ and large dimensionsm,n
the computational cost may be quite high (See also experimental studies in Section 9.2).

Criterion (28) is convex inZ for every value ofλ, and it outputs the solution̂Z in the form of
its soft-thresholded SVD, implying that the “factors”U,V are already orthogonal and the rank is
known.
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Figure 1: Comparison of the parameter space for MMMF (grey and black points), and SOFT-
IMPUTE (red squares) for a simple example. Since all MMMF solutions with parameters
above the red squares are identical to the SOFT-IMPUTE solutions at the red squares, all
the grey points are redundant.

MMMF has two different tuning parametersr ′ and λ, both of which are related to the rank
or spectral properties of the matricesU,V. SOFT-IMPUTE has only one tuning parameterλ. The
presence of two tuning parameters is problematic:

• It results in a significant increase in computational burden, since for every given value ofr ′,
one needs to compute an entire system of solutions by varyingλ (see Section 9 for illustra-
tions).

• In practice when neither the optimal values ofr ′ andλ are known, a two-dimensional search
(for example, by cross validation) is required to select suitable values.

Further discussions and connections between the tuning parameters and spectral properties of the
matrices can be found in Burer and Monteiro (2005) and Abernethy et al.(2009).

The proof of Theorem 3 requires a lemma.

Lemma 6 For any matrix Z, the following holds:

||Z||∗ = min
U,V: Z=UVT

1
2

(
‖U‖2F +‖V‖2F

)
. (29)

If rank(Z) = k ≤ min{m,n}, then the minimum above is attained at a factor decomposition Z=
Um×kVT

n×k.

Note that in the decompositionZ =UVT in (29) there is no constraint on the number of columnsr
of the factor matricesUm×r andVn×r . Lemma 6 is stronger than similar results appearing in Rennie
and Srebro (2005) and Abernethy et al. (2009) which establish (29) for r = min{m,n}—we give a
tighter estimate of the rankk of the underlying matrices. The proof is given in Appendix A.5.

2301



MAZUMDER, HASTIE AND TIBSHIRANI

8.1 Proof of Theorem 3

Part 1. Forr = min(m,n), any matrixZm×n can be written in the form ofZ = UVT . The criterion
(27) can be written as

min
U,V

1
2||PΩ(X−UVT)||2F + λ

2(‖U‖
2
F +‖V‖2F) (30)

= min
U,V

1
2||PΩ(X−UVT)||2F +λ‖UVT‖∗ (by Lemma 6)

= min
Z

1
2||PΩ(X−Z)||2F +λ‖Z‖∗. (31)

The equivalence of the criteria in (30) and (31) completes the proof of part 1.
Part 2. Note that if we know that the solutionẐ∗ to (28) withλ = λ∗ has rankr∗, thenẐ∗ also solves

min
Z, rank(Z)=r∗

1
2||PΩ(X−Z)||2F +λ‖Z‖∗.

We now repeat the steps (30)—(31), restricting the rankr ′ of U andV to ber ′ = r∗, and the result
follows.

9. Numerical Experiments and Comparisons

In this section we study the performance of SOFT-IMPUTE, its post-processed variants, and HARD-
IMPUTE for noisy matrix completion problems. The examples assert our claim that the matrix
reconstruction criterion (4) (Cai et al., 2008) is too rigid if one seeks good predictive models. We
include the related procedures of Rennie and Srebro (2005) and Keshavan et al. (2009) in our com-
parisons.

The reconstruction algorithm OPTSPACE, described in Keshavan et al. (2009) considers crite-
rion (1) (in the presence of noise). It uses the representationZ =USV′ (which need not correspond
to the SVD). OPTSPACE alternates between estimatingS andU,V (in a Grassmann manifold) for
computing a rank-r decomposition̂Z = ÛŜV̂ ′. It starts with a sparse SVD on acleanversion of the
observed matrixPΩ(X). This is similar to the formulation of MMMF (27) as detailed in Section 8,
without the squared Frobenius norm regularization on the componentsU,V.

To summarize, we study the following methods:

1. SOFT-IMPUTE–Algorithm 1;

2. SOFT-IMPUTE+–post-processing on the output of SOFT-IMPUTE, as in Section 7;

3. HARD-IMPUTE–Algorithm 2, starting with the output of SOFT-IMPUTE+;

4. SVT–algorithm by Cai et al. (2008);

5. OPTSPACE–reconstruction algorithm by Keshavan et al. (2009);

6. MMMF–algorithm for (6) as in Rennie and Srebro (2005).
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In all our simulation studies we use the underlying modelZm×n =Um×rV ′r×n+ε, whereU andV are
random matrices with standard normal Gaussian entries, andε is i.i.d. Gaussian.Ω is uniformly
random over the indices of the matrix withp% percent of missing entries. These are the models
under which the coherence conditions hold true for the matrix completion problem to be meaningful
(Cand̀es and Tao, 2009; Keshavan et al., 2009). The signal to noise ratio forthe model and the test-
error (standardized) are defined as

SNR=

√
var(UV ′)

var(ε)
; Test Error=

‖P⊥Ω (UV ′− Ẑ)‖2F
‖P⊥Ω (UV ′)‖2F

.

Training error (standardized) is defined as

Training Error=
‖PΩ(Z− Ẑ)‖2F
‖PΩ(Z)‖2F

,

the fraction of the error explained on the observed entries by the estimate relative to a zero estimate.
Figures 2, 3 and 4 show training and test error for all of the algorithms mentioned above—both

as a function of nuclear norm and rank—for the three problem instances. The results displayed
in the figures are averaged over 50 simulations, and also show one-standard-error bands (hardly
visible). In all examples(m,n) = (100,100). For MMMF we user ′ =min(m,n) = 100, the number
of columns inU andV. The performance of MMMF is displayed only in the plots with the nuclear
norm along the horizontal axis, since the algorithm does not deliver a precise rank. SNR, true rank
and percentage of missing entries are indicated in the figures. There is a unique correspondence
betweenλ and nuclear norm. The plots versus rank indicate how effective the nuclear norm is as a
rank approximation—that is whether it recovers the true rank while minimizing prediction error.

For routines not our own we use the MATLAB code as supplied on webpages by the authors.
For SVT second author of Cai et al. (2008), for OPTSPACE third author of Keshavan et al. (2009),
and for MMMF first author of Rennie and Srebro (2005).

9.1 Observations

The captions of each of Figures 2–4 detail the results, which we summarize here. For the first two
figures, the noise is quite high with SNR= 1, and 50% of the entries are missing. In Figure 2 the
true rank is 10, while in Figure 3 it is 6. SOFT-IMPUTE, MMMF and SOFT-IMPUTE+ have the best
prediction performance, while SOFT-IMPUTE+ is better at estimating the correct rank. The other
procedures perform poorly here, although OPTSPACE improves somewhat in Figure 3. SVT has
very poor prediction error, suggesting once again that exactly fitting the training data is far too rigid.
SOFT-IMPUTE+ has the best performance in Figure 3 (smaller rank—more aggressive fitting), and
HARD-IMPUTE starts recovering here. In both figures the training error for SOFT-IMPUTE (and
hence MMMF) wins as a function of nuclear norm (as it must, by construction), but the more
aggressive fitters SOFT-IMPUTE+ and HARD-IMPUTE have better training error as a function of
rank.

Though the nuclear norm is often viewed as a surrogate for the rank of amatrix, we see in
these examples that it can provide a superior mechanism for regularization. This is similar to the
performance ofLASSO in the context of regression. Although theLASSOpenalty can be viewed as a
convex surrogate for theℓ0 penalty in model selection, itsℓ1 penalty provides a smoother and often
better basis for regularization.
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50%missing entries with SNR=1, true rank =10
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Figure 2: SOFTIMP+ refers to the post-processing after SOFT-IMPUTE; HARD-IMPUTE uses SOFT-
IMP+ as starting values. Both SOFT-IMPUTE and SOFT-IMPUTE+ perform well (predic-
tion error) in the presence of noise; the latter estimates the actual rank of thematrix.
MMMF (with full rank 100 factor matrices) has performance similar to SOFT-IMPUTE.
HARD-IMPUTE and OPTSPACE show poor prediction error. SVT also has poor predic-
tion error, confirming our claim in this example that criterion (4) can result in overfitting;
it recovers a matrix with high nuclear norm and rank> 60 where the true rank is only 10.
Values of test error larger than one are not shown in the figure. OPTSPACE is evaluated
for a series of ranks≤ 30.
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50%missing entries with SNR=1, true rank =6
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Figure 3: SOFT-IMPUTE+ has the best prediction error, closely followed by SOFT-IMPUTE and
MMMF. Both HARD-IMPUTE and OPTSPACE have poor prediction error apart from
near the true rank 6 of the matrix, where they show reasonable performance. SVT has
very poor prediction error; it recovers a matrix with high nuclear norm and rank> 60,
where the true rank is only 6. OPTSPACE is evaluated for a series of ranks≤ 35.
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80%missing entries with SNR=10, true rank =5
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Figure 4: With low noise the performance of HARD-IMPUTE improves. It gets the correct rank
whereas OPTSPACE slightly overestimates the rank. HARD-IMPUTE has the best pre-
diction error, followed by OPTSPACE. Here MMMF has slightly better prediction error
than SOFT-IMPUTE. Although the noise is low here, SVT recovers a matrix with high
rank (approximately 30) and has poor prediction error as well. The test error of SVT is
found to be different from the limiting solution of SOFT-IMPUTE; although in theory the
limiting solution of (10) should coincide with that of SVT, in practice we never goto the
limit.
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In Figure 4 with SNR= 10 the noise is relatively small compared to the other two cases. The
true underlying rank is 5, but the proportion of missing entries is much higherat eighty percent. Test
errors of both SOFT-IMPUTE+ and SOFT-IMPUTE are found to decrease till a large nuclear norm
after which they become roughly the same, suggesting no further impact of regularization. MMMF
has slightly better test error than SOFT-IMPUTE around a nuclear norm of 350, while in theory
they should be identical. Notice, however, that the training error is slightly worse (everywhere),
suggesting that MMMF is sometimes trapped in local minima. The fact that this slightlyunderfit
solution does better in test error is a quirk of this particular example. OPTSPACE performs well in
this high-SNR example, achieving a sharp minima at the true rank of the matrix. HARD-IMPUTE

performs the best in this example. The better performance of both OPTSPACE and HARD-IMPUTE

over SOFT-IMPUTE can be attributed both to the low-rank truth and the high SNR. This is reminis-
cent of the better predictive performance of best-subset or concavepenalized regression often seen
overLASSO in setups where the underlying model is very sparse (Friedman, 2008).

9.2 Comparison with Fast MMMF (Rennie and Srebro, 2005)

In this section we compare SOFT-IMPUTE with MMMF in terms of computational efficiency. We
also examine the consequences of two regularization parameters(r ′,λ) for MMMF over one for
SOFT-IMPUTE.

Rennie and Srebro (2005) describes a fast algorithm based on conjugate-gradient descent for
minimization of the MMMF criterion (6). With (6) being non-convex, it is hard to provide theo-
retical optimality guarantees for the algorithm for arbitraryr ′,λ—that is, what type of solution it
converges to or how far it is from the global minimizer.

In Table 1 we summarize the performance results of the two algorithms. For bothSOFT-IMPUTE

and MMMF we consider a equi-spaced grid of 150λ ∈ [λmin,λmax], with λmin corresponding to a
full-rank solution of SOFT-IMPUTE andλmax the zero solution. For MMMF, three different values
of r ′ were used, and for each(Û ,V̂) were solved for over the grid ofλ values. A separate held-out
validation set with twenty percent of the missing entries sampled fromΩ⊥ were used to train the
tuning parameterλ (for each value ofr ′) for MMMF and SOFT-IMPUTE. Finally we evaluate the
standardized prediction errors on a test set consisting of the remaining eighty percent of the missing
entries inΩ⊥. In all cases we report the training errors and test errors on the optimallytuned
λ. SOFT-IMPUTE was run till a tolerance of 10−4 was achieved (fraction of decrease of objective
value). Likewise for MMMF we set the tolerance of the conjugate gradientmethod to 10−4.

In Table 1, for every algorithm total time indicates the time required for evaluating solutions
over the entire grid ofλ values. In these examples, we used direct SVD factorization based methods
for the SVD computation, since the size of the problems were quite small. In all these examples
we observe that SOFT-IMPUTE performs very favorably in terms of total times. For MMMF the
time to train the models increase with increasing rankr ′; and in case the underlying matrix has rank
which is larger thanr ′, the computational cost will be large in order to get competitive predictive
accuracy. This point is supported in the examples of Table 1. It is importantto note that, the
prediction error of SOFT-IMPUTE as obtained on the validation set is actually within standard error
of the best prediction error produced by all the MMMF models. In addition we also performed
some medium-scale examples increasing the dimensions of the matrices. To make comparisons fair,
SOFT-IMPUTE made use ofdirect SVD computations (in MATLAB) instead of iterative algorithms
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Data Method (rank) Test error Training error Time (secs)

(m,n) = (102,102) SOFT-IMPUTE (39) 0.7238(0.0027) 0.0720 4.1745
|Ω|= 5×103(50%) MMMF (20) 0.7318(0.0031) 0.2875 48.1090
SNR= 3 MMMF (60) 0.7236(0.0027) 0.1730 62.0230
rank (R)= 30 MMMF (100) 0.7237(0.0027) 0.1784 96.2750
(m,n) = (102,102) SOFT-IMPUTE (37) 0.5877(0.0047) 0.0017 4.0976
|Ω|= 2×103(20%) MMMF (20) 0.5807(0.0049) 0.0186 53.7533
SNR= 10 MMMF (60) 0.5823(0.0049) 0.0197 62.0230
rank(R)= 10 MMMF (100) 0.5823(0.0049) 0.0197 84.0375
(m,n) = (102,102) SOFT-IMPUTE (59) 0.6008(0.0028) 0.0086 3.8447
|Ω|= 8×103(80%) MMMF (20) 0.6880(0.0029) 0.4037 33.8685
SNR= 10 MMMF (60) 0.5999(0.0028) 0.0275 57.3488
rank(R)= 45 MMMF (100) 0.5999(0.0028) 0.0275 89.4525

Table 1: Performances of SOFT-IMPUTE and MMMF for different problem instances, in terms of
test error (with standard errors in parentheses), training error and times for learning the
models. SOFT-IMPUTE,“rank” denotes the rank of the recovered matrix, at the optimally
chosen value ofλ. For the MMMF, “rank” indicates the value ofr ′ in Um×r ′ ,Vn×r ′ . Results
are averaged over 50 simulations.

exploiting the specializedSparse+Low-Rankstructure (22). We report our findings on one such
simulation example:

• For (m,n) = (2000,1000), |Ω|/(m·n) = 0.2, rank= 500 and SNR=10; SOFT-IMPUTE takes
1.29 hours to compute solutions on a grid of 100λ values. The test error on the validation set
and training error are 0.9630 and 0.4375 with the recovered solution having a rank of 225.

For the same problem, MMMF withr ′ = 200 takes 6.67 hours returning a solution with test-
error 0.9678 and training error 0.6624. Withr ′ = 400 it takes 12.89 hrs with test and training
errors 0.9659 and 0.6564 respectively.

We will like to note that DeCoste (2006) proposed an efficient implementation ofMMMF via an
ensemble based approach, which is quite different in spirit from the batchoptimization algorithms
we are studying in this paper. Hence we do not compare it withSOFT-IMPUTE.

9.3 Comparison with Nesterov’s Accelerated Gradient Method

Ji and Ye (2009) proposed a first-order algorithm based on Nesterov’s acceleration scheme (Nes-
terov, 2007), for nuclear norm minimization for a generic multi-task learning problem (Argyriou
et al., 2008, 2007). Their algorithm (Liu et al., 2009; Ji and Ye, 2009) can be adapted to the SOFT-
IMPUTE problem (10); hereafter we refer to it as NESTEROV. It requires one to compute the SVD of
a dense matrix having the dimensions ofX, which makes it prohibitive for large-scale problems. We
instead would make use of the structure (22) for the SVD computation, a special characteristic of
matrix completion which is not present in a generic multi-task learning problem. Here we compare
the performances of SOFT-IMPUTE and NESTEROVon small scale examples, where direct SVDs
can be computed easily.
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Since both algorithms solve the same criterion, the quality of the solutions—objective values,
training and test errors—will be the same (within tolerance). We hence compare their performances
based on the times taken by the algorithms to converge to the optimal solution of (10) on a grid of
values ofλ. Both algorithms compute a path of solutions using warm starts. Results are shown in
Figure 5, for four different scenarios described in Table 2.

Example (m,n) |Ω|/(m·n) Rank Test Error

i (100,100) 0.5 5 0.4757
ii (100,100) 0.2 5 0.0668

iii (100,100) 0.8 5 0.0022
iv (1000,500) 0.5 30 0.0028

Table 2: Four different examples used for timing comparisons of SOFT-IMPUTE and NESTEROV

(accelerated Nesterov algorithm of Ji and Ye 2009). In all cases the SNR= 10.

Figure 5 shows the time to convergence for the two algorithms. Their respective number of
iterations are not comparable. This is because NESTEROVuses a line-search to compute an adaptive
step-size (approximate the Lipschitz constant) at every iteration, whereasSOFT-IMPUTE does not.

SOFT-IMPUTE has a rate of convergence given by Theorem 2, which for largek is worse than
the accelerated version NESTEROVwith rateO(1/k2). However, timing comparisons in Figure 5
show thatSOFT-IMPUTE performs very favorably. We do not know the exact reason behind this, but
mention some possibilities. Firstly the rates areworst caseconvergence rates. On particular problem
instances of the form (10), the rates of convergence inpracticeof SOFT-IMPUTE and NESTEROV

may be quite similar. Since Ji and Ye (2009) uses an adaptive step-size strategy, the choice of a
step-size may be time consuming.SOFT-IMPUTE on the other hand, uses a constant step size.

Additionally, it appears that the use of themomentumterm in NESTEROVaffects theSparse+Low-
rank decomposition (22). This may prevent the algorithm to be adapted for solvinglarge problems,
due to costly SVD computations.

9.4 Large Scale Simulations for SOFT-I MPUTE

Table 3 reports the performance of SOFT-IMPUTE on some large-scale problems. All computations
are performed in MATLAB and the MATLAB implementation of PROPACK is used.Data input,
access and transfer in MATLAB take a sizable portion of the total computational time, given the
size of these problems. However, the main computational bottle neck in our algorithm is the struc-
tured SVD computation. In order to focus more on the essential computationaltask, Table 3 displays
the total time required to perform the SVD computations over all iterations of the algorithm. Note
that for all the examples considered in Table 3, the implementations of algorithms NESTEROV(Liu
et al., 2009; Ji and Ye, 2009) and MMMF (Rennie and Srebro, 2005) are prohibitively expensive
both in terms of computational time and memory requirements, and hence could notbe run. We
used the valueλ = ||PΩ(X)||2/K with SOFT-IMPUTE, with K = 1.5 for all examples but the last,
whereK = 2. λ0 = ||PΩ(X)||2 is the largest singular value of the input matrixX (padded with ze-
ros); this is the smallest value ofλ for whichSλ0(PΩ(X)) = 0 in the first iteration of SOFT-IMPUTE

(Section 3).
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Figure 5: Timing comparisons of SOFT-IMPUTE and NESTEROV(accelerated Nesterov algorithm
of Ji and Ye 2009). The horizontal axis corresponds to the standardized nuclear norm,
with C = maxλ ‖Ẑλ‖∗. Shown are the times till convergence for the two algorithms over
an entire grid ofλ values for examples i–iv (in the last the matrix dimensions are much
larger). The overall time differences between Examples i–iii and Example ivis due to the
increased cost of the SVD computations. Results are averaged over 10 simulations. The
times for NESTEROVchange far more erratically withλ than they do for SOFT-IMPUTE.

The prediction performance is awful for all but one of the models, because in most cases the
fraction of observed data is very small. These simulations were mainly to show the computational
capabilities of SOFT-IMPUTE on very large problems.

10. Application to the Netflix Data Set

The Netflix training data consists of the ratings of 17,770 movies by 480,189 Netflix customers. The
resulting data matrix is extremely sparse, with 100,480,507 or 1% of the entries observed. The task
was to predict the unseen ratings for a qualifying set and a test set of about 1.4 million ratings each,
with the true ratings in these data sets held in secret by Netflix. A probe set ofabout 1.4 million
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(m,n) |Ω| |Ω|/(m·n) Recovered Time (mins) Test error Training error
×100% rank

(104,104) 105 0.1 40∗ 0.2754 0.9946 0.6160
(104,104) 105 0.1 40∗ 0.3770 0.9959 0.6217
(104,104) 105 0.1 50∗ 0.4292 0.9962 0.3862
(104,104) 106 1.0 5 1.6664 0.6930 0.6600
(105,105) 5×106 0.05 40∗ 17.2518 0.9887 0.8156
(105,105) 107 0.1 5 20.3142 0.9803 0.9761
(106,105) 108 0.1 5 259.9620 0.9913 0.9901
(106,106) 107 0.001 20∗ 99.6780 0.9998 0.5834

Table 3: Performance of SOFT-IMPUTE on different problem instances. All models are generated
with SNR=10 and underlying rank=5. Recovered rank is the rank of the solution matrix
Ẑ at the value ofλ used in (10). Those with stars reached the “maximum rank” threshold,
and option in our algorithm. Convergence criterion is taken as “fraction of improvement of
objective value” less than 10−4 or a maximum of 15 iterations for the last four examples.
All implementations are done in MATLAB including the MATLAB implementation of
PROPACK on a Intel Xeon Linux 3GHz processor.

ratings was distributed to participants, for calibration purposes. The moviesand customers in the
qualifying, test and probe sets are all subsets of those in the training set.

The ratings are integers from 1 (poor) to 5 (best). Netflix’s own algorithmhas an RMSE of
0.9525, and the contest goal was to improve this by 10%, or an RMSE of 0.8572 or better. The
contest ran for about 3 years, and the winning team was “Bellkor’s Pragmatic Chaos”, a merger
of three earlier teams (seehttp://www.netflixprize.com/ for details). They claimed the grand
prize of $1M on September 21, 2009.

Many of the competitive algorithms build on a regularized low-rank factor model similar to (6)
using randomization schemes like mini-batch, stochastic gradient descent orsub-sampling to reduce
the computational cost over making several passes over the entire data-set (see Salakhutdinov et al.,
2007; Bell and Koren., 2007; Takacs et al., 2009, for example). In thispaper, our focus is not on
using randomized or sub-sampling schemes. Here we demonstrate that our nuclear-norm regular-
ization algorithm can be applied in batch mode on the entire Netflix training set with areasonable
computation time. We note however that the conditions under which the nuclear-norm regulariza-
tion is theoretically meaningful (Candès and Tao, 2009; Srebro et al., 2005a) are not met on the
Netflix data set.

We applied SOFT-IMPUTE to the training data matrix and then performed a least-squares un-
shrinking on the singular values with the singular vectors and the training datarow and column
means as the bases. The latter was performed on a data-set of size 105 randomly drawn from the
probe set. The prediction error (RMSE) is obtained on a left out portion of the probe set. Table 4
reports the performance of the procedure for different choices of the tuning parameterλ (and the
corresponding rank); times indicate the total time taken for the SVD computationsover all itera-
tions. A maximum of 10 iterations were performed for each of the examples. Again, these results
are not competitive with those of the competition leaders, but rather demonstrate the feasibility of
applying SOFT-IMPUTE to such a large data set.
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λ Rank Time (hrs) RMSE

λ0/250 42 1.36 0.9622
λ0/300 66 2.21 0.9572
λ0/500 81 2.83 0.9543
λ0/600 95 3.27 0.9497

Table 4: Results of applying SOFT-IMPUTE to the Netflix data.λ0 = ||PΩ(X)||2; see Section 9.4.
The computations were done on a Intel Xeon Linux 3GHz processor; timingsare reported
based on MATLAB implementations of PROPACK and our algorithm. RMSE is root-
mean squared error, as defined in the text.
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Appendix A. Proofs

We begin with the proof of Lemma 1.

A.1 Proof of Lemma 1

Proof Let Z = Ũm×nD̃n×nṼ ′n×n be the SVD ofZ. Assume without loss of generality,m≥ n. We will
explicitly evaluate the closed form solution of the problem (8). Note that

1
2
‖Z−W‖2F +λ‖Z‖∗ =

1
2

{
‖Z‖2F −2

n

∑
i=1

d̃i ũ
′
iWṽi +

n

∑
i=1

d̃2
i

}
+λ

n

∑
i=1

d̃i (32)

where
D̃ = diag

[
d̃1, . . . , d̃n

]
, Ũ = [ũ1, . . . , ũn] , Ṽ = [ṽ1, . . . , ṽn] .

Minimizing (32) is equivalent to minimizing

−2
n

∑
i=1

d̃i ũ
′
iWṽi +

n

∑
i=1

d̃2
i +

n

∑
i=1

2λd̃i ; w.r.t. (ũi , ṽi , d̃i), i = 1, . . . ,n,

under the constraints̃U ′Ũ = In, Ṽ ′Ṽ = In andd̃i ≥ 0 ∀i.
Observe the above is equivalent to minimizing (w.r.t.Ũ ,Ṽ) the functionQ(Ũ ,Ṽ):

Q(Ũ ,Ṽ) = min
D̃≥0

1
2

{
−2

n

∑
i=1

d̃i ũ
′
iWṽi +

n

∑
i=1

d̃2
i

}
+λ

n

∑
i=1

d̃i . (33)
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Since the objective (33) to be minimized w.r.t.̃D, is separable ind̃i , i = 1, . . . ,n; it suffices to
minimize it w.r.t. eachd̃i separately.

The problem

minimize
d̃i≥0

1
2

{
−2d̃i ũ

′
iWṽi + d̃2

i

}
+λd̃i (34)

can be solved looking at the stationary conditions of the function using its sub-gradient (Nes-
terov, 2003). The solution of the above problem is given bySλ(ũ

′
iWṽi) = (ũ′iWṽi − λ)+, the soft-

thresholding of ˜u′iWṽi (without loss of generality, we can take ˜u′iWṽi to be non-negative). More
generally the soft-thresholding operator (Friedman et al., 2007; Hastie etal., 2009) is given by
Sλ(x) = sgn(x)(|x| − λ)+. See Friedman et al. (2007) for more elaborate discussions on how the
soft-thresholding operator arises in univariate penalized least-squares problems with theℓ1 penal-
ization.

Plugging the values of optimal̃di , i = 1, . . . ,n; obtained from (34) in (33) we get

Q(Ũ ,Ṽ) =
1
2

{
‖Z‖2F −2

n

∑
i=1

(ũ′iWṽi−λ)+(ũ′iWṽi−λ)+(ũ′iXṽi−λ)2
+

}
. (35)

Minimizing Q(Ũ ,Ṽ) w.r.t. (Ũ ,Ṽ) is equivalent to maximizing

n

∑
i=1

{
2(ũ′iWṽi−λ)+(ũ′iWṽi−λ)− (ũ′iWṽi−λ)2

+

}
= ∑

ũ′iWṽi>λ
(ũ′iWṽi−λ)2. (36)

It is a standard fact that for everyi the problem

maximize
‖u‖22≤1,‖v‖22≤1

u′Wv; such thatu⊥ {û1, . . . , ûi−1}, v⊥ {v̂1, . . . , v̂i−1}

is solved by ˆui , v̂i , the left and right singular vectors of the matrixW corresponding to itsith largest
singular value. The maximum value equals the singular value. It is easy to seethat maximizing
the expression to the right of (36) wrt(ui ,vi), i = 1, . . . ,n is equivalent to maximizing the individual
termsũ′iWṽi . If r(λ) denotes the number of singular values ofW larger thanλ then the(ũi , ṽi) , i =
1, . . . that maximize the expression (36) correspond to

[
u1, . . . ,ur(λ)

]
and

[
v1, . . . ,vr(λ)

]
; ther(λ) left

and right singular vectors ofW corresponding to the largest singular values. From (34) the optimal
D̃ = diag

[
d̃1, . . . , d̃n

]
is given byDλ = diag[(d1−λ)+, . . . ,(dn−λ)+] .

Since the rank ofW is r, the minimizerẐ of (8) is given byUDλV ′ as in (9).

Remark 1 For a more general spectral regularization of the formλ∑i p(γi(Z)) (as compared to
∑i λγi(Z) used above) the optimization problem (34) will be modified accordingly. The solution
of the resultant univariate minimization problem will be given by Sp

λ(ũ
′
iWṽi) for some generalized

“thresholding operator” Sp
λ(·), where

Sp
λ(ũ
′
iWṽi) = argmin

d̃i≥0

1
2

{
−2d̃i ũ

′
iWṽi + d̃2

i

}
+λp(d̃i).

The optimization problem analogous to (35) will be

minimize
Ũ ,Ṽ

1
2

{
‖Z‖2F −2

n

∑
i=1

d̂i ũ
′
iWṽi +

n

∑
i=1

d̂2
i

}
+λ∑

i

p(d̂i), (37)
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whered̂i = Sp
λ(ũ
′
iWṽi), ∀i. Any spectral function for which the above (37) is monotonically increas-

ing in ũ′iWṽi for every i can be solved by a similar argument as given in the above proof. The solution
will correspond to the first few largest left and right singular vectors of the matrix W. The optimal
singular values will correspond to the relevant shrinkage/ threshold operator Sp

λ(·) operated on the
singular values of W. In particular for the indicator functionp(t) = λ1(t 6= 0), the top few singular
values (un-shrunk) and the corresponding singular vectors is the solution.

A.2 Proof of Lemma 3

This proof is based on sub-gradient characterizations and is inspired by some techniques used in
Cai et al. (2008).
Proof From Lemma 1, we know that if̂Z solves the problem (8), then it satisfies the sub-gradient
stationary conditions:

0∈ −(W− Ẑ)+λ∂‖Ẑ‖∗. (38)

Sλ(W1) andSλ(W2) solve the problem (8) withW =W1 andW =W2 respectively, hence (38) holds
with W =W1, Ẑ1 = Sλ(W1) andW =W2, Ẑ2 = Sλ(W1).

The sub-gradients of the nuclear norm‖Z‖∗ are given by

∂‖Z‖∗ = {UV ′+ω : ωm×n, U ′ω = 0, ωV = 0, ‖ω‖2≤ 1}, (39)

whereZ =UDV ′ is the SVD ofZ.
Let p(Ẑi) denote an element in∂‖Ẑi‖∗. Then

Ẑi−Wi +λp(Ẑi) = 0, i = 1,2.

The above gives
(Ẑ1− Ẑ2)− (W1−W2)+λ(p(Ẑ1)− p(Ẑ2)) = 0, (40)

from which we obtain

〈Ẑ1− Ẑ2, Ẑ1− Ẑ2〉−〈W1−W2, Ẑ1− Ẑ2〉+λ〈p(Ẑ1)− p(Ẑ2), Ẑ1− Ẑ2〉= 0,

where〈a,b〉= trace(a′b).
Now observe that

〈p(Ẑ1)− p(Ẑ2), Ẑ1− Ẑ2〉= 〈p(Ẑ1), Ẑ1〉−〈p(Ẑ1), Ẑ2〉−〈p(Ẑ2), Ẑ1〉+ 〈p(Ẑ2), Ẑ2〉. (41)

By the characterization of subgradients as in (39), we have

〈p(Ẑi), Ẑi〉= ‖Ẑi‖∗ and ‖p(Ẑi)‖2≤ 1, i = 1,2.

This implies
|〈p(Ẑi), Ẑ j〉| ≤ ‖p(Ẑi)‖2‖Ẑ j‖∗ ≤ ‖Ẑ j‖∗ for i 6= j ∈ {1,2}.

Using the above inequalities in (41) we obtain:

〈p(Ẑ1), Ẑ1〉+ 〈p(Ẑ2), Ẑ2〉 = ‖Ẑ1‖∗+‖Ẑ2‖∗ (42)

−〈p(Ẑ1), Ẑ2〉−〈p(Ẑ2), Ẑ1〉 ≥ −‖Ẑ2‖∗−‖Ẑ1‖∗. (43)

2314



MATRIX COMPLETION BY SPECTRAL REGULARIZATION

Using (42,43) we see that the r.h.s. of (41) is non-negative. Hence

〈p(Ẑ1)− p(Ẑ2), Ẑ1− Ẑ2〉 ≥ 0.

Using the above in (40), we obtain:

‖Ẑ1− Ẑ2‖
2
F = 〈Ẑ1− Ẑ2, Ẑ1− Ẑ2〉 ≤ 〈W1−W2, Ẑ1− Ẑ2〉. (44)

Using the Cauchy-Schwarz Inequality,‖Ẑ1− Ẑ2‖F‖W1−W2‖F ≥ 〈Ẑ1− Ẑ2,W1−W2〉 in (44) we
get

‖Ẑ1− Ẑ2‖
2
F ≤ 〈Ẑ1− Ẑ2,W1−W2〉 ≤ ‖Ẑ1− Ẑ2‖F‖W1−W2‖F

and in particular
‖Ẑ1− Ẑ2‖

2
F ≤ ‖Ẑ1− Ẑ2‖F‖W1−W2‖F .

The above further simplifies to

‖W1−W2‖
2
F ≥ ‖Ẑ1− Ẑ2‖

2
F = ‖Sλ(W1)−Sλ(W2)‖

2
F .

A.3 Proof of Lemma 4

Proof We will first show (15) by observing the following inequalities:

‖Zk+1
λ −Zk

λ‖
2
F = ‖Sλ(PΩ(X)+P⊥Ω (Zk

λ))−Sλ(PΩ(X)+P⊥Ω (Zk−1
λ ))‖2F

(by Lemma 3) ≤ ‖
(

PΩ(X)+P⊥Ω (Zk
λ)
)
−
(

PΩ(X)+P⊥Ω (Zk−1
λ )

)
‖2F

= ‖P⊥Ω (Zk
λ−Zk−1

λ )‖2F (45)

≤ ‖Zk
λ−Zk−1

λ ‖2F . (46)

The above implies that the sequence{‖Zk
λ−Zk−1

λ ‖2F} converges (since it is decreasing and bounded
below). We still require to show that{‖Zk

λ−Zk−1
λ ‖2F} converges to zero.

The convergence of{‖Zk
λ−Zk−1

λ ‖2F} implies that:

‖Zk+1
λ −Zk

λ‖
2
F −‖Z

k
λ−Zk−1

λ ‖2F → 0 ask→ ∞.

The above observation along with the inequality in (45,46) gives

‖P⊥Ω (Zk
λ−Zk−1

λ )‖2F −‖Z
k
λ−Zk−1

λ ‖2F → 0 =⇒ PΩ(Z
k
λ−Zk−1

λ )→ 0, (47)

ask→ ∞.
Lemma 2 shows that the non-negative sequencefλ(Z

k
λ) is decreasing ink. So ask→ ∞ the

sequencefλ(Z
k
λ) converges.

Furthermore from (13,14) we have

Qλ(Z
k+1
λ |Zk

λ)−Qλ(Z
k+1
λ |Zk+1

λ )→ 0 ask→ ∞,
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which implies that
‖P⊥Ω (Zk

λ)−P⊥Ω (Zk+1
λ )‖2F → 0 ask→ ∞.

The above along with (47) gives

Zk
λ−Zk−1

λ → 0 ask→ ∞.

This completes the proof.

A.4 Proof of Lemma 5

Proof The sub-gradients of the nuclear norm‖Z‖∗ are given by

∂‖Z‖∗ = {UV ′+W : Wm×n, U ′W = 0, WV= 0, ‖W‖2≤ 1}, (48)

whereZ =UDV ′ is the SVD ofZ. SinceZk
λ minimizesQλ(Z|Z

k−1
λ ), it satisfies:

0∈ −(PΩ(X)+P⊥Ω (Zk−1
λ )−Zk

λ)+∂‖Zk
λ‖∗ ∀k. (49)

SupposeZ∗ is a limit point of the sequenceZk
λ. Then there exists a subsequence{nk}⊂{1,2, . . .}

such thatZnk
λ → Z∗ ask→ ∞.

By Lemma 4 this subsequenceZnk
λ satisfies

Znk
λ −Znk−1

λ → 0

implying
P⊥Ω (Znk−1

λ )−Znk
λ −→ P⊥Ω (Z∗λ)−Z∗λ =−PΩ(Z

∗).

Hence,

(PΩ(X)+P⊥Ω (Znk−1
λ )−Znk

λ )−→ (PΩ(X)−PΩ(Z
∗
λ)). (50)

For everyk, a sub-gradientp(Zk
λ) ∈ ∂‖Zk

λ‖∗ corresponds to a tuple(uk,vk,wk) satisfying the proper-
ties of the set∂‖Zk

λ‖∗ (48).
Considerp(Znk

λ ) along the sub-sequencenk. As nk −→ ∞, Znk
λ −→ Z∗λ.

Let
Znk

λ = unkDnkv
′
nk
, Z∗ = u∞D∗v′∞

denote the SVD’s. The product of the singular vectors convergeu′nk
vnk → u′∞v∞. Furthermore due

to boundedness (passing on to a further subsequence if necessary)wnk → w∞. The limit u∞v′∞ +w∞
clearly satisfies the criterion of being a sub-gradient ofZ∗. Hence this limit corresponds top(Z∗λ) ∈
∂‖Z∗λ‖∗.

Furthermore from (49, 50), passing on to the limits along the subsequencenk, we have

0∈ −(PΩ(X)−PΩ(Z
∗
λ))+∂‖Z∗λ‖∗.

Hence the limit pointZ∗λ is a stationary point offλ(Z).
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We shall now prove (16). We know that for everynk

Znk
λ = Sλ(PΩ(X)+P⊥Ω (Znk−1

λ )). (51)

From Lemma 4, we knowZnk
λ −Znk−1

λ → 0. This observation along with the continuity ofSλ(·) gives

Sλ(PΩ(X)+P⊥Ω (Znk−1
λ ))→ Sλ(PΩ(X)+P⊥Ω (Z∗λ)).

Thus passing over to the limits on both sides of (51) we get

Z∗λ = Sλ(PΩ(X)+P⊥Ω (Z∗λ)),

therefore completing the proof.

A.5 Proof of Lemma 6

The proof is motivated by the principle of embedding an arbitrary matrix into a positive semidefinite
matrix (Fazel, 2002). We require the following proposition, which we proveusing techniques used
in the same reference.

Proposition 1 Suppose matrices Wm×m,W̃n×n,Zm×n satisfy the following:
(

W Z
ZT W̃

)
� 0.

Thentrace(W)+ trace(W̃)≥ 2‖Z‖∗.

Proof Let Zm×n = Lm×rΣr×rRT
n×r denote the SVD ofZ, wherer is the rank of the matrixZ. Observe

that the trace of the product of two positive semidefinite matrices is always non-negative. Hence we
have the following inequality:

trace

(
LLT −LRT

−RLT RRT

)(
W Z
ZT W̃

)
� 0.

Simplifying the above expression we get:

trace(LLTW)− trace(LRTZT)− trace(RLTZ)+ trace(RRTW̃)≥ 0. (52)

Due to the orthogonality of the columns ofL,Rwe have the following inequalities:

trace(LLTW)≤ trace(W) and trace(RRTW̃)≤ trace(W̃).

Furthermore, using the SVD ofZ:

trace(LRTZT) = trace(Σ) = trace(LRTZT).

Using the above in (52), we have:

trace(W)+ trace(W̃)≥ 2trace(Σ) = 2‖Z‖∗.
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Proof [Proof of Lemma 6.] For the matrixZ, consider any decomposition of the formZ= Ũm×rṼT
n×r

and construct the following matrix

(
ŨŨT Z
ZT ṼṼT

)
=

(
Ũ
Ṽ

)
(ŨTṼT), (53)

which is positive semidefinite. Applying Proposition 1 to the left hand matrix in (53), we have:

trace(ŨŨT)+ trace(ṼṼT)≥ 2‖Z‖∗.

Minimizing both sides above w.r.t. the decompositionsZ = Ũm×rṼT
n×r ; we have

min
Ũ ,Ṽ; Z=ŨṼT

{
trace(ŨŨT)+ trace(ṼṼT)

}
≥ 2‖Z‖∗. (54)

Through the SVD ofZ we now show that equality is attained in (54). SupposeZ is of rank

k≤ min(m,n), and denote its SVD byZm×n = Lm×kΣk×kRT
n×k. Then forŨ = Lm×kΣ

1
2
k×k andṼ =

Rn×kΣ
1
2
k×k the equality in (54) is attained.

Hence, we have:

‖Z‖∗ = min
Ũ ,Ṽ;Z=ŨṼT

{
trace(ŨŨT)+ trace(ṼṼT)

}

= min
Ũ ,Ṽ;Z=Ũm×kṼT

n×k

{
trace(ŨŨT)+ trace(ṼṼT)

}
.

Note that the minimum can also be attained for matrices withr ≥ k or evenr ≥min(m,n); however,
it suffices to consider matrices withr = k. Also it is easily seen that the minimum cannot be attained
for anyr < k; hence the minimal rankr for which (29) holds true isr = k.

A.6 Proof of Theorem 2

There is a close resemblance betweenSOFT-IMPUTE and Nesterov’s gradient method (Nesterov,
2007, Section 3). However, as mentioned earlier the original motivation of our algorithm is very
different.

The techniques used in this proof are adapted from Nesterov (2007).
Proof PluggingZk

λ = Z̃ in (11), we have

Qλ(Z|Z
k
λ) = fλ(Z

k
λ)+

1
2
‖P⊥Ω (Zk

λ−Z)‖2F (55)

≥ fλ(Z
k
λ).

Let Zk
λ(θ) denote a convex combination of the optimal solution (Z∞

λ ) and thekth iterate (Zk
λ):

Zk
λ(θ) = θZ∞

λ +(1−θ)Zk
λ. (56)
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Using the convexity offλ(·) we get:

fλ(Z
k
λ(θ))≤ (1−θ) fλ(Z

k
λ)+θ fλ(Z

∞
λ ). (57)

ExpandingZk
λ(θ) using (56), and simplifyingP⊥Ω (Zk

λ−Zk
λ(θ)) we have:

‖P⊥Ω (Zk
λ−Zk

λ(θ))‖
2
F = θ2‖P⊥Ω (Zk

λ−Z∞
λ )‖

2
F

≤ θ2‖Zk
λ−Z∞

λ ‖
2
F (58)

≤ θ2‖Z0
λ−Z∞

λ ‖
2
F . (59)

Line 59 follows from (58) by observing that‖Zm
λ −Z∞

λ ‖
2
F ≤ ‖Z

m−1
λ −Z∞

λ ‖
2
F , ∀m—a consequence of

the inequalities (19) and (18), established in Theorem 1.
Using (55), the value offλ(Z) at the(k+1)th iterate satisfies the following chain of inequalities:

fλ(Z
k+1
λ ) ≤ min

Z

{
fλ(Z)+

1
2
‖P⊥Ω (Zk

λ−Z)‖2F

}

≤ min
θ∈[0,1]

{
fλ(Z

k
λ(θ))+

1
2
‖P⊥Ω (Zk

λ−Zk
λ(θ))‖

2
F

}
(60)

≤ min
θ∈[0,1]

{
fλ(Z

k
λ)+θ( fλ(Z

∞
λ )− fλ(Z

k
λ))+

1
2

θ2‖Z0
λ−Z∞

λ ‖
2
F

}
. (61)

Line 61 follows from Line 60, by using (57) and (59).
The r.h.s. expression in (61), is minimized atθ̂(k+1) given by

θ̂(k+1) = min{1,θk} ∈ [0,1], where,

θk =
fλ(Z

k
λ)− fλ(Z

∞
λ )

‖Z0
λ−Z∞

λ ‖
2
F

.

If ‖Z0
λ−Z∞

λ ‖
2
F = 0, then we takeθk = ∞.

Note thatθk is a decreasing sequence. This implies that ifθk0 ≤ 1 thenθm≤ 1 for all m≥ k0.
Suppose,θ0 > 1. Thenθ̂(1) = 1. Hence using (61) we have:

fλ(Z
1
λ)− fλ(Z

∞
λ )≤

1
2
‖Z0

λ−Z∞
λ ‖

2
F =⇒ θ1≤

1
2
.

Thus we get back to the former case.
Henceθk ≤ 1 for all k≥ 1.
In addition, observe the previous deductions show that, ifθ0 > 1 then (20) holds true fork= 1.
Combining the above observations, plugging in the value ofθ̂ in (61) and simplifying, we get:

fλ(Z
k+1
λ )− fλ(Z

k
λ)≤−

( fλ(Z
k
λ)− fλ(Z

∞
λ ))

2

2‖Z0
λ−Z∞

λ ‖
2
F

. (62)

For the sake of notational convenience, we define the sequenceαk = fλ(Z
k
λ)− fλ(Z

∞
λ ). It is easily

seen thatαk is a non-negative decreasing sequence.
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Using this notation in (62) we get:

αk ≥
α2

k

2‖Z0
λ−Z∞

λ ‖
2
F

+αk+1

(Sinceαk ↓) ≥
αkαk+1

2‖Z0
λ−Z∞

λ ‖
2
F

+αk+1. (63)

Dividing both sides of the inequality in (63), byαkαk+1 we have:

α−1
k+1≥

1

2‖Z0
λ−Z∞

λ ‖
2
F

+α−1
k . (64)

Summing both sides of (64) over 1≤ k≤ (k−1) we get:

α−1
k ≥

k−1

2‖Z0
λ−Z∞

λ ‖
2
F

+α−1
1 . (65)

Sinceθ1 ≤ 1, we observeα1/(2‖Z0
λ−Z∞

λ ‖
2
F) ≤ 1/2—using this in (65) and rearranging terms we

get, the desired inequality (20)—completing the proof of the Theorem.
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