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Abstract. Starting from the observation that Friedman’s partial dependence plot
has exactly the same formula as Pearl’s back-door adjustment, we explore the pos-
sibility of extracting causal information from black-box models trained by machine
learning algorithms. There are three requirements to make causal interpretations:
a model with good predictive performance, some domain knowledge in the form of
a causal diagram and suitable visualization tools. We provide several illustrative
examples and find some interesting causal relations in these datasets.

1. Introduction

A central task of statistics is to infer the relationship between “predictor variables”,
commonly denoted by X, and “response variables”, Y . Many if not most of the statis-
tical analyses implicitly hold a determinism view regarding this relationship: the input
variables X go into one side of a black box and the response variables Y come out from
the other side. Pictorially, this process can be described by

X nature Y

A common mathematical interpretation of this picture is

Y = f(X, ε), (1)

where f is the law of nature and ε is some random noise. Having observed data that
is likely generated from (1), there are two goals in the data analysis:

Science: Extract information about the law of nature—the function f .
Prediction: Predict what the response variables Y are going to be with the predictor

variables X revealed to us.

In an eminent article, Breiman (2001b) contrasts two cultures of statistical analysis
that emphasize on different goals. The “data modeling culture” assumes a parametric
form for f (e.g. generalized linear model). The parameters are often easy to interpret.
They are estimated from the data and then used for science and/or prediction. The
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2 CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS

“algorithmic modeling culture”, more commonly known as machine learning, trains
complex models (e.g. random forest, neural nets) that approximates f to maximize
predictive accuracy. These black-box models often perform significantly better than
the parametric models (in terms of prediction) and have achieved tremendous success
in applications across many fields (see e.g. Hastie et al., 2009).

However, the results of the black-box models are notoriously difficult to interpret.
The machine learning algorithms usually generate a high-dimensional and highly non-
linear function g(x) as an approximation to f(x) with many interactions, making the
visualization very difficult. Yet this is only a technical challenge. The real challenge is
perhaps a conceptual one. For example, one of the most commonly asked question is
the importance of a component of X. Jiang and Owen (2002) notice that there are at
least three notions of variable importance:

(1) The first notion is to take the black-box function g(x) at its face value and
ask which variable xj has a big impact on g(x). For example, if g(x) = β0 +∑p

j=1 βjxj is a linear model, then βj can be used to measure the importance

of xj given it is properly normalized. For more general g(x), we may want to
obtain a functional analysis of variance (ANOVA). See Jiang and Owen (2002)
and Hooker (2007) for methods of this kind.

(2) The second notion is to measure the importance of a variable Xj by its con-
tribution to predictive accuracy. For decision trees, Breiman et al. (1984) use
the total decrease of node impurity (at nodes split by Xj) as an importance
measure of Xj. This criterion can be easily generalized to additive trees such as
boosting (Freund and Schapire, 1996, Friedman et al., 2000) and random forests
(Breiman, 2001a). Breiman (2001a) proposes to permute the values of Xj and
use the degradation of predictive accuracy as a measure of variable importance.

(3) The third notion is causality. If we are able to make an intervention on Xj

(change the value of Xj from a to b with the other variables fixed), how much
will the value of Y change?

Among the three notions above, only the third is about the science instead of pre-
diction. To the best of our knowledge, causal interpretation of black-box models has
not been studied before, though the reverse direction—using machine learning to aid
causal inference—is becoming popular in the literature (van der Laan and Rose, 2011,
?, Athey and Imbens, 2016, Chernozhukov et al., 2018). This paper aims to fill this
vacuum and explain when and how we can make causal interpretations after fitting
black-box models.

2. Partial dependence plot

Our development starts with a curious coincidence. One of the most used visual-
ization tools of black-box models is the partial dependence plot (PDP) proposed in
Friedman (2001). Given the output g(x) of a machine learning algorithm, the partial
dependence of g on a subset of variables XS is defined as (let C be the complement set
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of S)

gS(xS) = EXC [g(xS , XC)] =

∫
g(xS , xC) dP (xC). (2)

That is, the PDP gS is the expectation of g over the marginal distribution of all vari-
ables other thanXS . This is different from the conditional expectation E[g(XS, XC)|XS =
xs], where the expectation is taken over the conditional distribution of XC given
XS = xs. In practice, PDP is simply estimated by averaging over the training data
{Xi, i = 1, . . . , n} with fixed xS :

ḡS(xS) =
1

n

n∑
i=1

g(xS , XiC).

An appealing property of PDP is that it recovers the corresponding individual com-
ponents if g is additive. For example, if g(x) = hS(xS) + hC(xC), then the PDP gS
is equal to hS(xS) up to an additive constant. Furthermore, if g is multiplicative
g(x) = hS(xS) · hC(xC), then the PDP gS is equal to hS(xS) up to a multiplicative
constant. These two properties do not hold for conditional expectation.

Interestingly, the equation (2) that defines PDP is exactly the same as the famous
back-door adjustment formula of Pearl (1993). To be more precise, Pearl (1993) shows
that if the causal relationship of the variables in (X, Y ) can be represented by a graph
and XC satisfies a graphical back-door criterion (to be defined in Section 3.2) with
respect to XS and Y , then the causal effect of XS on Y is identifiable and is given by

P(Y |do(XS = xS)) =

∫
P(Y |XS = xS , XC = xC) dP (xC). (3)

Here P(Y |do(XS = xS)) stands for the distribution of Y after we make an intervention
on XS that sets it equal to xS (Pearl, 2009). We can take expectation on both sides of
(3) and obtain

E[Y |do(XS = xS)] =

∫
E[Y |XS = xS , XC = xC] dP (xC). (4)

Typically, the black-box function g is the expectation of the response variable Y .
Therefore the definition of PDP (2) appears to be the same as the back-door adjustment
formula (4), if the conditioning set C is the complement of S.

Readers who are more familiar with the potential-outcome notations may interpret
E[Y |do(XS = xS)] as E[Y (xS)], where Y (xS) is the potential outcome that would be
realized if treatment xS is received. When XS is a single binary variable (0 or 1), the
difference E[Y (1)]−E[Y (0)] is commonly known as the average treatment effect (ATE)
in the literature. We refer the reader to Holland (1986) for some introduction to the
Neyman-Rubin potential outcome framework and the Ph.D. thesis of Zhao (2016) for
an overview of the different languages of causality.

The coincidence above suggests that PDP is perhaps an unintended attempt to
causally interpret black-box models. In the rest of this paper, we shall use several
illustrative examples to discuss under what circumstances we can make causal inter-
pretations by PDP and other visualization tools for machine learning algorithms.
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3. Causal Model

3.1. Structural Equation Model. First of all, we need a causal model to talk about
causality. In this paper we will use the non-parametric structural equation model
(NPSEM) of Pearl (2009, Chapter 5). In the NPSEM framework, each random variable
is represented by a node in a directed acyclic graph (DAG) G = (V , E), where V is the
node set (in our case V = {X1, X2, . . . , Xp, Y }) and E is the edge set. A NPSEM
assumes that the observed variables are generated by a system of nonlinear equations
with random noise. In our case, the causal model is

Y = f(pa(Y ), εY ), (5)

Xj = fj(pa(Xj), εj), (6)

where pa(Y ) is the parent set of Y in the graph G and the same for pa(Xj).

Notice that (5) and (6) are different from regression models in the sense that they
are structural (the law of nature). To make this difference clear, consider the following
hypothetical example:

Example 1. Suppose a student’s grade is determined by the hours she studied via

Grade = α + β · (Hours studied) + ε. (7)

This corresponds to the following causal diagram

Hours studied Grade

If we are given the grades of many students and wish to estimate how many hours they
studied, we can invert (7) and run a linear regression:

Hours studied = α′ + β′ ·Grade + ε′. (8)

Equation (7) is structural but Equation (8) is not. To see this, (7) means that if a
student can study one more hour (either voluntarily or asked by her parents), her grade
will increase by β on average. However, we cannot make such interpretation for (8).
The linear regression (8) may be useful for the teacher to estimate how many hours
a student spent on studying, but that time will not change if the teacher gives the
student a few more points since “hours studied” is not an effect of “grade” in this
causal model. Equation (8) is not structural because it does not have any predictive
power in the interventional setting. For more discussion on the differences between
a structural model and a regression model, we refer the reader to Bollen and Pearl
(2013).

Notice that it is not necessary to assume a structural equation model to derive the
back-door adjustment formula (3). Here we use NPSEM mainly because it is easy to
explain and is close to what a black-box model tries to capture.

3.2. The Back-Door Criterion. Pearl (1993) shows that the adjustment formula
(3) is valid if the variables XC satisfy the following back-door criterion (with respect
to XS and Y ) in the DAG G:
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(1) No node in XC is a descendant of XS ; and
(2) XC blocks every “back-door” path between XS and Y . (A path is any consecu-

tive sequence of edges, ignoring the direction. A back-door path is a path that
contains an arrow into XS . A set of variables block or d-separates a path if the
path contains a chain Xi → Xm → Xj or a fork Xi ← XmXj such that the
middle node Xm is in the set, or the path contains a collider Xi → Xm ← Xj

such that Xm nor its descendant is in the set.)

More details about the back-door criterion can be found in Pearl (2009, Section 3.3).
Heuristically, each back-door path corresponds to a common cause of XS and Y . To
compute the causal effect of XS on Y from observational data, one needs to adjust
for all back-door paths including those with hidden variables (often called unmeasured
confounders).

Figure 1 gives two examples where we are interested in the causal effect of X1

on Y . In the left panel, X1 ← X3 ← X4 → Y (in red color) is a back-door path
but X1 → X2 → Y is not. The set XC to adjust can be {X3} or {X4}. In the
right panel X1 ← X4 → Y and X1 ← X3 → X4 ← X5 → Y are back-door paths,
but X1 → X2 ← Y is not. In this case, applying the adjustment formula (3) with
XC = {X4} is not enough because X4 is a collider in the second back-door path.

X1

X3 X4

X2

Y X1

X5X3 X4

X2

Y

Figure 1. Two examples: the red thick edges are back-door paths from
X1 to Y . {X4} blocks all the back-door paths in the left panel but not
the right panel (because X4 is a collider in the path X1 ← X3 → X4 ←
X5 → Y indicated using the blue color).

Thus the PDP of black-box models estimates the causal effect of XS on Y , given that
the complement set C satisfies the back-door criterion. This is indeed a fairly strong
requirement as no variables in XC can be a causal descendant of XS . Alternatively if C
does not satisfy the back-door criterion, PDP does not have a clear causal interpretation
and domain knowledge is required to select the appropriate set C.
Example 2 (Boston housing data1). We next apply PDP for three machine learning
algorithms in our first real data example. In an attempt to quantify people’s willingness
to pay for clean air, Harrison and Rubinfeld (1978) gathered the housing price and other

1Taken from https://archive.ics.uci.edu/ml/datasets/Housing.

https://archive.ics.uci.edu/ml/datasets/Housing
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attributes of 506 suburb areas of Boston. The primary variable of interest XS is the
nitrix oxides concentration (NOX, in parts per 10 million) of the areas, and the response
variable Y is the median value of owner-occupied homes (MEDV, in $1000). The other
measured variables include the crime rate, proportion of residential/industrial zones,
average number of rooms per dwelling, age of the houses, distance to the city center
and highways, pupil-teacher ratio, the percentage of blacks and the percentage of lower
class.

In order to obtain causal interpretations from the PDP, we shall assume that NOX is
not a cause of any other predictor variables.2 This assumption is quite reasonable as air
pollution is most likely a causal descendant of the other variables in the dataset. If we
further assume these predictors block all the back-door paths, PDP indeed estimates
the causal effect of air quality on housing price.

Three predictive models for the housing price are trained using random forest (Liaw
and Wiener, 2002, R package randomForest), gradient boosting machine (Ridgeway,
2015, R package gbm), and Bayesian additive regression trees (Chipman and McCulloch,
2016, R package BayesTree). Figure 2a shows the smoothed scatter plot (top left
panel) and the partial dependence plots. The PDPs suggest that the housing price
seem to be insensitive to air quality until it reaches certain pollution level around 0.67.
The PDP of BART has some abnormal behaviors when NOX is between 0.6 and 0.7.
These observations do not support the presumption in the theoretical development in
Harrison and Rubinfeld (1978) that the utility of a house is a smooth function of air
quality. Whether the drop around 0.67 is actually causal or due to residual confounding
requires further investigation.

4. Finer visualization

The lesson so far is that we should average the black-box function over the marginal
distribution of some appropriate variables XC. A natural question is: if the causal
diagram is unavailable and hence the confounder set C is hard to determine, can we
still peek into the black box and give some causal interpretations?

4.1. Individual Curves. The Individual Conditional Expectation (ICE) of Goldstein
et al. (2015) is an extension to PDP and can help us to extract more information about
the nature f . Instead of averaging the black-box function g(x) over the marginal
distribution of XC, ICE plots the curves g(xS , XiC) for each i = 1, . . . , n, so PDP
is simply the average of all the individual curves. ICE is first introduced to discover
interaction between the predictor variables and visually test if the function g is additive
(i.e. g(x) = gS(xS) + gC(xC)).

Example 3 (Boston housing data, continued). Figure 2b shows the ICE of the black-
box model trained by random forest for the Boston housing data. All the individual
curves drop sharply around NOX = 0.67 and are quite similar throughout the entire

2This statement, together with all other structural assumptions in the real data examples of this
paper, are only based on the authors’ subjective judgment.
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(a) Scatter plot and partial dependence plots using differ-
ent black-box algorithms. The blue curves in the BART
plot are Bayesian credible intervals of the PDP.
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the PDP)

Figure 2. Boston housing data: impact of the nitrix oxides concentration
(NOX) on the median value of owner-occupied homes (MEDV). The PDPs
suggest that the housing price could be (causally) insensitive to air quality
until it reaches certain pollution level. The ICE plot indicates that the effect
of NOX is roughly additive.
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region. This indicates that NOX might have (or might be a proxy for another variable
that has) an additive and non-smooth causal impact on housing value.

As a remark, the name “individual conditional expectation” given by Goldstein et al.
(2015) can be misleading. If the response Y is truly generated by g (i.e. g = f), the
ICE curve g(xS , XiC) is the conditional expectation of Y only if none of XC is a causal
descendant of XS (the first criterion in the back-door condition). There is perhaps some
degree of causal consideration when the name “individual conditional expectation” was
invented by Goldstein et al. (2015).

4.2. Mediation analysis. In many problems, we already know some variables in the
complement set C are causal descendants ofXS , so the back-door criterion in Section 3.2
is not satisfied. If this is the case, quite often we are interested in learning how the
causal impact of XS on Y is mediated through these descendants. For example, in the
left panel of Figure 1, we may be interested in how much X1 directly impacts Y and
how much X1 indirectly impacts Y through X2.

Formally, we can define these causal targets through the NPSEM (Pearl, 2014, Van-
derWeele, 2015). Let XC be some variables that satisfy the back-door criterion and
XM be the mediation variables. Suppose XM is determined by the structural equation
XM = h(XS , XC, εM) and Y is determined by Y = f(XS , XM, XC, ε). In this paper, we
are interested in comparing the following two quantities (xS and x′S are fixed values):

Total effect: TE = E[f(xS , h(xS , XC, εM), XC, ε)]−E[f(x′S , h(x′S , XC, εM), XC, ε)]. The
expectations are taken over XC, εM and ε. This is how much XS causally im-
pacts Y in total.

Controlled direct effect: CDE(xM) = E[f(xS , xM, XC, ε)]−E[f(x′S , xM, XC, ε)]. The
expectations are taken over XC and ε. This is how much XS causally impacts
Y when XM is fixed at xM.

In general, these two quantities can be quite different. When a set C (not necessarily
the complement of S) satisfying the back-door condition is available, we can visualize
the total effect by the PDP. For the controlled direct effect, the ICE is more useful
since it essentially plots CDE(xM) at many different levels of xM. When the effect
of XS is additive, i.e. f(XS , XM, XC, ε) = fS(XS) + fM,C(XM, XC, ε), the controlled
direct effect does not depend on the mediators: CDE(xM) ≡ fS(xS) − fS(x′S). The
causal interpretation is especially simple in this case.

Example 4 (Boston housing data, continued). Here we consider the causal impact of the
weighted distance to five Boston employment centers (DIS) on housing value. Since
the geographical location is unlikely a causal descendant of any other variables, the
total effect of DIS can be estimated by the conditional distribution of housing price.
From the scatter plot in Figure 3a, we can see that the suburban houses are preferred
over the houses close to city center. However, this effect is probably indirect (e.g.
urban districts may have higher criminal rate, which lowers the housing value). The
ICE plot for DIS in Figure 3b shows that the direct effect of DIS has an opposite
trend. This suggests that when two districts have the same other attributes, people
are indeed willing to pay more for the house closer to city center. However, this effect
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is substantial only when the house is very close to the city (DIS < 2), as indicated by
Figure 3b.
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(b) ICE plot. The thick curve in the
middle is the average of all the individual
curves, i.e. the PDP.

Figure 3. Boston housing data: impact of weighted distance to the five
Boston employment centers (DIS) on median value of owner-occupied homes
(MEDV). The ICE plot shows that longer distance to the city center has a
negative causal effect on housing price. This is opposite to the trend in the
marginal scatter plot.

5. More examples

Finally, We provide two more examples to illustrate how causal interpretations may
be obtained after fitting black-box models.

Example 5 (Auto MPG data3). Quinlan (1993) used a dataset of 398 car models from
1970 to 1982 to predict the miles per gallon (MPG) of a car from its number of cylin-
ders, displacement, horsepower, weight, acceleration, model year and origin. Here we
investigate the causal impact of acceleration and origin.

First, acceleration (measured by the number of seconds to run 400 meters) is a causal
descendant of the other variables, so we can use PDP to visualize its causal effect. The
top left panel of Figure 4a shows that acceleration is strongly correlated with MPG.
However, this correlation can be largely explained by the other variables. The other
three panels of Figure 4a suggest that the causal effect of acceleration on MPG is quite
small. However, different black-box algorithms disagree on the trend of this effect. The
ICE plot in Figure 4b shows that the effect acceleration perhaps has some interaction

3Taken from https://archive.ics.uci.edu/ml/datasets/Auto+MPG.

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
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with the other variables (some curves decrease from 15 to 20 while some other curves
increase).

Next, origin (US for American, EU for European and JP for Japanese) are causal
ancestors of all other variables, so its total effect can be inferred from the box plot in
Figure 5a. It is apparent from this plot that Japanese cars have the highest MPG,
followed by European cars. However, this does not necessarily mean Japanese man-
ufacturers have the technological advantage of saving fuel. For example, the average
displacement of American cars in this dataset is 245.9 cubic centimeters, but this num-
ber is only 109.1 and 102.7 for European and Japanese cars. To single out the direct
effect of manufacturer origin, we can use the ICE plots of a random forest model, shown
in Figure 5b. From these plots, one can see Japanese cars seem to be slightly more
fuel-efficient and American cars seem to be slightly less fuel-efficient than European
cars even after considering the indirect effects of displacement and other variables.

Example 6 (Online news popularity dataset4). Fernandes et al. (2015) gathered 39, 797
news article published by Mashable and used 58 predictor variables to predict the
number of shares in social networks. For a complete list of the variables, we refer the
reader to their dataset page on the UCI machine learning repository. In this example,
we study the causal impact of the number of keywords and title sentiment polarity.
Since both of them are usually decided near the end of the publication process, we
treat all other variables as potential confounders and use the partial dependence plots
to estimate the causal effect.

The results are plotted in Figure 6. For the number of keywords, the left panel of
Figure 6a shows that it has a positive marginal effect on the number of shares. The
PDP in the right panel shows that the actual causal effect might be much smaller and
only occur when the number of keywords is less than 4.

For the title sentiment polarity, both the LOESS plot of conditional expectation and
the PDP suggest that articles with more extreme titles get more shares, although the
inflection points are different. Interestingly, sentimentally positive titles attract more
reshares than negative titles on average. The PDP shows that the causal effect of title
sentiment polarity (no more than 10%) is much smaller than the marginal effect (up
to 30%) and the effect seems to be symmetric around 0 (neutral title).

6. Conclusion

In contrast to the conventional view that machine learning algorithms are just black-
box predictive models, we have demonstrated that it is possible to extract causal infor-
mation from these models using the partial dependence plots (PDP) and the individual
conditional expectation (ICE) plots. In summary, we think a successful attempt of
causal interpretation requires at least three elements:

(1) A good predictive model, so the estimated black-box function g is (hopefully)
close to the law of nature f .

4Taken from https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity.

https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity
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Figure 4. Auto MPG data: impact of acceleration (in number of seconds to
run 400 meters) on MPG. The PDPs show that the causal effect of acceleration
is smaller than what the scatter plot may suggest. The ICE plot shows that
there are some interactions between acceleration and other variables.
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(2) Some domain knowledge about the causal structure to assure the back-door
condition is satisfied.

(3) Visualization tools such as the PDP and its extension ICE.

There are several other directions of research at the crossing of machine learning and
causal inference. One relatively well explored direction is to use machine learning to
flexibly model nuisance functions in causal inference (van der Laan and Rose, 2011,
Chernozhukov et al., 2018). This is important in reducing the model misspecification
bias in the semiparametric inference (Dorie et al., 2017). Another useful application of
machine learning in causal inference is to aid the discovery of treatment effect hetero-
geneity (Zhao et al., 2012, Athey and Imbens, 2016). A new and interesting research
direction is to use causality to define fairness of the machine learning algorithms (Kil-
bertus et al., 2017, Kusner et al., 2017).

Lastly, we want to emphasize that although PDPs have been shown in the examples
to be useful to visualize and possibly make causal interpretations about the black-box
models, it should not replace a randomized controlled trial or a carefully designed
observational study. Verifying the back-door condition often requires considerable do-
main knowledge and deliberation, which is usually neglected when collecting data for
a predictive task. PDPs can suggest causal hypotheses which should be verified by a
more carefully designed study. When a PDP behaves unexpectedly (such as the PDP
of BART in Figure 2a), it is important to dig into the data and look for unmeasured
confounding. Our hope is this article can encourage more practitioners to peek into
their black-box models and discover useful causal relations.
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(b) ICE plots. The baseline (level 0) in both plots is origin
being EU. For clarity, only 50% of the ICE curves in the left
panel are shown.

Figure 5. Auto MPG data: impact of origin on MPG. Marginally, Japanese
cars have much higher MPG than American cars. This trend is maintained in
the ICE plots but the difference is much smaller.
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Figure 6. Results of online news popularity dataset.
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