
Multi-class AdaBoost

Ji Zhu∗

Department of Statistics
University of Michigan
Ann Arbor, MI 48109

Saharon Rosset
Data Analytics Group
IBM Research Center

Yorktown Heights, NY 10598

Hui Zou
School of Statistics

University of Minnesota
Minneapolis, MN 55455

Trevor Hastie
Department of Statistics

Stanford University
Stanford, CA 94305

January 12, 2006

Abstract

Boosting has been a very successful technique for solving the two-class classification problem.
In going from two-class to multi-class classification, most algorithms have been restricted to
reducing the multi-class classification problem to multiple two-class problems. In this paper, we
propose a new algorithm that naturally extends the original AdaBoost algorithm to the multi-
class case without reducing it to multiple two-class problems. Similar to AdaBoost in the two-
class case, this new algorithm combines weak classifiers and only requires the performance of each
weak classifier be better than random guessing (rather than 1/2). We further provide a statistical
justification for the new algorithm using a novel multi-class exponential loss function and forward
stage-wise additive modeling. As shown in the paper, the new algorithm is extremely easy to
implement and is highly competitive with the best currently available multi-class classification
methods.
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1 Introduction

Boosting has been a very successful technique for solving the two-class classification problem. It
was first introduced by Freund & Schapire (1997), with their AdaBoost algorithm. In going from
two-class to multi-class classification, most boosting algorithms have been restricted to reducing the
multi-class classification problem to multiple two-class problems, e.g. Freund & Schapire (1997),
Schapire (1997), Schapire & Singer (1999), Allwein, Schapire & Singer (2000), Friedman, Hastie &
Tibshirani (2000), Friedman (2001).

In this paper, we develop a new algorithm that directly extends the AdaBoost algorithm to the
multi-class case without reducing it to multiple two-class problems. Similar to AdaBoost in the
two-class case, this new algorithm combines weak classifiers and only requires the performance of
each weak classifier be better than random guessing (rather than 1/2).

We believe this new algorithm covers a significant gap in the literature, as it is statistically
motivated by a novel multi-class exponential loss function. In addition, similar to the original
AdaBoost algorithm for the two-class classification, it fits a forward stagewise additive model.

As we will see, the new algorithm is extremely easy to implement, and is highly competitive
with the best currently available multi-class classification methods, in terms of both practical
performance and computational cost.

1.1 AdaBoost

Before delving into the new algorithm for multi-class boosting, we briefly review the multi-class
classification problem and the AdaBoost algorithm (Freund & Schapire 1997). Suppose we are
given a set of training data (x1, c1), . . . , (xn, cn), where the input (predictor variable) xi ∈ R

p, and
the output (response variable) ci is qualitative and assumes values in a finite set, e.g. {1, 2, . . . , K}.
K is the number of classes. The goal is to find a classification rule C(x) from the training data, so
that when given a new input x, we can assign it a class label c from {1, . . . , K}.

The question, then, is what is the best possible classification rule. To answer this question,
we need to define what we mean by best. A common definition of best is to achieve the lowest
misclassification error rate. Usually it is assumed that the training data are independently and
identically distributed samples from an unknown probability distribution Prob(X, C). Then the
misclassification error rate for C(x) is:

EX,CIC(X) �=C = EXProb(C(X) �= C|X)
= 1 − EXProb(C(X) = C|X)

= 1 −
K∑

k=1

EX

[
IC(X)=kProb(C = k|X)

]
.

It is clear that
C∗(x) = arg max

k
Prob(C = k|X = x)

will minimize this quantity with the misclassification error rate equal to 1 − EX maxk Prob(C =
k|X). This classifier is known as the Bayes classifier, and the error rate it achieves is the Bayes
error rate.

The AdaBoost algorithm is an iterative procedure that combines many weak classifiers to ap-
proximate the Bayes classifier C∗(x). Starting with the unweighted training sample, the AdaBoost
builds a classifier, for example a classification tree (Breiman, Friedman, Olshen & Stone 1984),
that produces class labels. If a training data point is misclassified, the weight of that training

1



data point is increased (boosted). A second classifier is built using the new weights, which are no
longer equal. Again, misclassified training data have their weights boosted and the procedure is
repeated. Typically, one may build 500 or 1000 classifiers this way. A score is assigned to each
classifier, and the final classifier is defined as the linear combination of the classifiers from each
stage. Specifically, let T (x) denote a weak multi-class classifier that assigns a class label to x, then
the AdaBoost algorithm proceeds as follows:

Algorithm 1 AdaBoost (Freund & Schapire 1997)

1. Initialize the observation weights wi = 1/n, i = 1, 2, . . . , n.

2. For m = 1 to M:

(a) Fit a classifier T (m)(x) to the training data using weights wi.

(b) Compute

err(m) =
n∑

i=1

wiI

(
ci �= T (m)(xi)

)
/

n∑
i=1

wi.

(c) Compute

α(m) = log
1 − err(m)

err(m)
.

(d) Set
wi ← wi · exp

(
α(m) · I

(
ci �= T (m)(xi)

))
, i = 1, 2, . . . , n.

(e) Re-normalize wi.

3. Output

C(x) = arg max
k

M∑
m=1

α(m) · I(T (m)(x) = k).

When applied to two-class classification problems, AdaBoost has been proved to be extremely
successful in producing accurate classifiers. In fact, Breiman (1996) called AdaBoost with trees
the “best off-the-shelf classifier in the world.” However, it is not the case for multi-class problems,
although AdaBoost was also proposed to be used in the multi-class case (Freund & Schapire 1997).
Notice that in order for the misclassified training data to be boosted, it is required that the error
of each weak classifier err(m) be less than 1/2 (with respect to the distribution on which it was
trained), otherwise α(m) will be negative and the weights of the training samples will be updated in
the wrong direction in Algorithm 1 (2d). For two-class classification problems, this requirement is
about the same as random guessing, but when K > 2, accuracy 1/2 may be much harder to achieve
than the random guessing accuracy rate 1/K. Hence, AdaBoost may fail if the weak classifier T (x)
is not chosen appropriately.

To illustrate this point, we consider a simple three-class simulation example. Each input
x ∈ R

10, and the ten input variables for all training examples are randomly drawn from a ten-
dimensional standard normal distribution. The three classes are defined as:

c =

⎧⎪⎨
⎪⎩

1, if 0 ≤
∑

x2
j < χ2

10,1/3,

2, if χ2
10,1/3 ≤

∑
x2

j < χ2
10,2/3,

3, if χ2
10,2/3 ≤

∑
x2

j ,
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where χ2
10,k/3 is the (k/3)100% quantile of the χ2

10 distribution, so as to put approximately equal
numbers of observations in each class. In short, the decision boundaries separating successive classes
are nested concentric ten-dimensional spheres. The training sample size is 3000 with approximately
1000 training observations in each class. An independently drawn test set of 10000 observations is
used to estimate the error rate.

Figure 1 (upper row) shows how AdaBoost breaks using ten-terminal node trees as weak clas-
sifiers. The results are averaged over ten independently drawn training-test set combinations. As
we can see (upper left panel), the test error of AdaBoost decreases for a few iterations, then levels
off around 0.53. What has happened can be understood from the upper middle and upper right
panels: the err(m) starts below 0.5; after a few iterations, it overshoots 0.5 (α(m) below 0), then
quickly hinges onto 0.5. Once err(m) is equal to 0.5, the weights of the training samples do not get
updated (α(m) = 0), hence the same weak classifier is fitted over and over again but is not added
to the existing fit, and the test error rate stays the same.
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Figure 1: Comparison of AdaBoost and the new algorithm SAMME on a simple three-class simulation exam-
ple. The training sample size is 3000, and the testing sample size is 10000. Ten-terminal node trees are used
as weak classifiers. The results are averaged over ten independently drawn training-test set combinations.
The upper row is for AdaBoost and the lower row is for SAMME.
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1.2 Multi-class AdaBoost

Before delving into technical details, we propose our new algorithm for multi-class boosting and
compare it with AdaBoost. We refer to our algorithm as SAMME — Stagewise Additive Modeling
using a Multi-class Exponential loss function — this choice of name will be clear in Section 2.

Given the same setup as that of AdaBoost, SAMME proceeds as follows:

Algorithm 2 SAMME

1. Initialize the observation weights wi = 1/n, i = 1, 2, . . . , n.

2. For m = 1 to M:

(a) Fit a classifier T (m)(x) to the training data using weights wi.

(b) Compute

err(m) =
n∑

i=1

wiI

(
ci �= T (m)(xi)

)
/

n∑
i=1

wi.

(c) Compute

α(m) = log
1 − err(m)

err(m)
+ log(K − 1). (1)

(d) Set
wi ← wi · exp

(
α(m) · I

(
ci �= T (m)(xi)

))
, i = 1, . . . , n.

(e) Re-normalize wi.

3. Output

C(x) = arg max
k

M∑
m=1

α(m) · I(T (m)(x) = k).

Notice Algorithm 2 (SAMME) is very similar to AdaBoost with a major difference in (1). Now in
order for α(m) to be positive, we only need (1−err(m)) > 1/K, or the accuracy of each weak classifier
be better than random guessing rather than 1/2. As a consequence, the new algorithm puts more
weight on the misclassified data points in (2d) than AdaBoost, and the new algorithm also combines
weak classifiers a little differently from AdaBoost, i.e. differ by log(K − 1)

∑M
m=1 I(T (m)(x) = k).

It is worth noting that when K = 2, SAMME reduces to AdaBoost. As we will see in Section 2,
the extra term log(K − 1) in (1) is not artificial; it makes the new algorithm equivalent to fitting
a forward stagewise additive model using a multi-class exponential loss function. The difference
between AdaBoost and SAMME (when K = 3) is also illustrated in Figure 1. As we have seen
(upper left panel), AdaBoost breaks after the err(m) goes above 1/2. However this is not the case
for SAMME (lower row): although err(m) can be bigger than 1/2 (or equal to 1/2), the α(m) is
still positive; hence, the mis-classified training samples get more weights, and the test error keeps
decreasing even after 600 iterations.

The rest of the paper is organized as follows: In Section 2 and 3, we give theoretical justification
for our new algorithm SAMME. In Section 4, we present numerical results on both simulation and
real-world data. Summary and discussion regarding the implications of the new algorithm are in
Section 5.
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2 Theoretical Justification

In this section, we are going to show that the extra term log(K − 1) in (1) is not artificial; it
makes Algorithm 2 equivalent to fitting a forward stagewise additive model using a multi-class
exponential loss function. Friedman et al. (2000) developed a statistical perspective on the original
two-class AdaBoost algorithm, which ultimately leads to viewing the two-class AdaBoost algorithm
as forward stagewise additive modeling using the exponential loss function

L(y, f) = e−yf(x),

where y = (I(c = 1) − I(c = 2)) ∈ {−1, 1} in a two-class classification setting. It is not difficult
to show that the population minimizer of this exponential loss function is one half of the logit
transform

f∗(x) = arg min
f(x)

L(y, f)

=
1
2

log
Prob(c = 1|x)
Prob(c = 2|x)

.

The Bayes optimal classification rule then agrees with the sign of f∗(x), i.e.

arg max
y

Prob(Y = y|X = x) = sign(f∗(x)).

We note that besides Friedman et al. (2000), Breiman (1999) and Schapire & Singer (1999) also
made connections between the original two-class AdaBoost algorithm and the exponential loss
function. We acknowledge that these views have been influential in our thinking for this paper.

2.1 A new multi-class exponential loss function

In the multi-class classification setting, we can recode the output c with a K-dimensional vector y,
with all entries equal to − 1

K−1 except a 1 in position k if c = k, i.e. y = (y1, . . . , yK)T, and:

yk =
{

1, if c = k,
− 1

K−1 , if c �= k.
(2)

Lee, Lin & Wahba (2004) used the same coding for a version of the multi-class support vector
machine.

A generalization of the exponential loss function to the multi-class case then follows naturally:

L(y, f) = exp
(
− 1

K
(y1f1 + · · · + yKfK)

)
= exp

(
− 1

K
yTf

)
, (3)

where fk corresponds to class k, and its meaning will be clear shortly. Notice that we need some
constraint on f in order for it to be estimable, otherwise adding any constant to all fk’s does not
change the loss. We choose to use the symmetric constraint: f1 + · · · + fK = 0, so when K = 2,
this multi-class exponential loss function reduces to the two-class exponential loss.

Similar to the two-class case, it is of interest to investigate what this multi-class exponential
loss function estimates. This can be answered by seeking its population minimizer. Specifically, we
are interested in

arg min
f(x)

EY |x exp
(
− 1

K
(Y1f1 + · · · + YKfK)

)
subject to f1 + · · · + fK = 0.
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The Lagrange of this constrained optimization problem can be written as:

exp
(
− f1(x)

K − 1

)
Prob(c = 1|x) + · · · + exp

(
−fK(x)

K − 1

)
Prob(c = K|x) − λ (f1(x) + · · · + fK(x)) ,

where λ is the Lagrange multiplier. Taking derivatives with respect to fk and λ, we reach

− 1
K − 1

exp
(
− f1(x)

K − 1

)
Prob(c = 1|x) − λ = 0,

...
...

− 1
K − 1

exp
(
−fK(x)

K − 1

)
Prob(c = K|x) − λ = 0,

f1(x) + · · · + fK(x) = 0.

Solving this set of equations, we obtain the population minimizer

f∗
k (x) = (K − 1)

(
log Prob(c = k|x) − 1

K

K∑
k′=1

log Prob(c = k′|x)

)
, k = 1, . . . , K. (4)

Thus,
arg max

k
f∗

k (x) = arg max
k

Prob(c = k|x),

which is the Bayes optimal classification rule in terms of minimizing the misclassification error.
This justifies the use of this multi-class exponential loss function. Equation (4) also provides a way
to recover the class probability Prob(c = k|x) once f∗

k (x)’s are estimated, i.e.

Prob(c = k|x) =
e

1
K−1

f∗
k (x)

e
1

K−1
f∗
1 (x) + · · · + c

1
K−1

f∗
K(x)

, k = 1, . . . , K.

2.2 Forward stagewise additive modeling

We now show that Algorithm 2 is equivalent to forward stagewise additive modeling using the loss
function (3). We start with the forward stagewise additive modeling using a general loss function
L(·, ·), then apply it to the multi-class exponential loss function (3).

Given the training data, we wish to find f(x) = (f1(x), . . . , fK(x))T such that

min
f(x)

n∑
i=1

L(yi, f(xi)) (5)

subject to f1(x) + · · · + fK(x) = 0. (6)

We consider f(x) that has the following form:

f(x) =
M∑

m=1

β(m)g(m)(x),

where β(m) ∈ R are coefficients, and g(m)(x) are basis functions. We require g(x) to satisfy the
symmetric constraint:

g1(x) + · · · + gK(x) = 0.
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For example, the g(x) that we consider in this paper takes value in one of the K possible K-
dimensional vectors in (2); specifically, at a given x, g(x) mapps x onto Y:

g : x ∈ R
p → Y,

where Y is the set containing K K-dimensional vectors:

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1,− 1

K−1 , . . . ,− 1
K−1

)T

,(
− 1

K−1 , 1, . . . ,− 1
K−1

)T

,

...(
− 1

K−1 , . . . ,− 1
K−1 , 1

)T

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (7)

Forward stagewise modeling approximates the solution to (5) – (6) by sequentially adding new
basis functions to the expansion without adjusting the parameters and coefficients of those that
have already been added. Specifically, the algorithm starts with f (0)(x) = 0, sequentially selecting
new basis functions from a dictionary and adding them to the current fit:

Algorithm 3 Forward stagewise additive modeling

1. Initialize f (0)(x) = 0.

2. For m = 1 to M :

(a) Compute

(β(m), g(m)(x)) = arg min
β,g

n∑
i=1

L(yi, f
(m−1)(xi) + βg(xi)).

(b) Set
f (m)(x) = f (m−1)(x) + β(m)g(m)(x).

The crucial step in the above algorithm is (2a). Now, using the multi-class exponential loss
function (3), one wants to find g(m)(x) (and β(m)) to solve:

(β(m), g(m)) = arg min
β,g

n∑
i=1

exp
(
− 1

K
yT

i (f
(m−1)(xi) + βg(xi))

)
(8)

= arg min
β,g

n∑
i=1

wi exp
(
− 1

K
βyT

i g(xi)
)

, (9)

where wi = exp
(
− 1

K yT
i f

(m−1)(xi)
)

are the unnormalized observation weights.
Notice that every g(x) as in (7) has a one-to-one correspondence with a multi-class classifier

T (x) in the following way:
T (x) = k, if gk(x) = 1, (10)

and vice versa:

gk(x) =
{

1, if T (x) = k,
− 1

K−1 , if T (x) �= k.
(11)

Hence, solving for g(m)(x) in (9) is equivalent to finding the multi-class classifier T (m)(x) that can
generate g(m)(x).
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Lemma 1 The solution to (9) is

T (m)(x) = arg min
n∑

i=1

wiI(ci �= T (xi)), (12)

β(m) =
(K − 1)2

K

(
log

1 − err(m)

err(m)
+ log(K − 1)

)
, (13)

where err(m) is defined as

err(m) =
n∑

i=1

wiI

(
ci �= T (m)(xi)

)
/

n∑
i=1

wi.

Proof First, for any fixed value of β > 0, using the definition (10), one can express the criterion
in (9) as: ∑

ci=T (xi)

wie
− β

K−1 +
∑

ci �=T (xi)

wie
β

(K−1)2

= e−
β

K−1

∑
i

wi + (e
β

(K−1)2 − e−
β

K−1 )
∑

i

wiI(ci �= T (xi)). (14)

Since only the last sum depends on the classifier T (x), we get that (12) holds. Now plugging
(12) into (9) and solving for β, we obtain (13) (note that (14) is a convex function of β).

The model is then updated

f (m)(x) = f (m−1)(x) + β(m)g(m)(x),

and the weights for the next iteration will be

wi ← wi · exp
(
− 1

K
β(m)yT

i g
(m)(xi)

)
.

This is equal to

wi · e−
(K−1)2

K2 α(m)yT
i g(m)(xi) =

{
wi · e−

K−1
K

α(m)
, if ci = T (xi),

wi · e
1
K

α(m)
, if ci �= T (xi),

(15)

where α(m) is defined as in (1) with the extra term log(K−1), and the new weight (15) is equivalent
to the weight updating scheme in Algorithm 2 (2d) after normalization.

It is also a simple task to check that arg maxk f (m)(x) = arg maxk(f
(m)
1 (x), . . . , f (m)

K (x))T is
equivalent to the output C(x) = arg maxk

∑M
m=1 α(m) · I(T (m)(x) = k) in Algorithm 2. Hence,

Algorithm 2 can be considered as forward stagewise additive modeling using the multi-class expo-
nential loss function.

2.3 Computational cost

Suppose one uses a classification tree as the weak learner, which is the most popular choice, and the
depth of each tree is fixed as d, then the computational cost for building each tree is O(dpn log(n)),
where p is the dimension of the input x. The computational cost for our SAMME algorithm is then
O(dpn log(n)M) since there are M iterations. As a comparison, the computational cost for either
the one vs. rest scheme or the pairwise scheme (Friedman 2004) is O(dpn log(n)MK), which is K
times larger than the computational cost of SAMME.
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3 A Variant of the SAMME Algorithm

The SAMME algorithm expects the weak learner to deliver a classifier T (x) ∈ {1, . . . , K}. An
alternative is to use real-valued confidence-rated predictions such as weighted probability estimates,
to update the additive model, rather than the classifications themselves.

Section 2.2 is based on the empirical loss, this time we consider the population version of the
loss, derive the update for the additive model using the weighted probability, and then apply it to
data.

Suppose we have a current estimate f (m−1)(x) and seek an improved estimate f (m−1)(x)+h(x)
by minimizing the loss at each x:

min
h(x)

E
(

exp
(
− 1

K
Y T(f (m−1)(x) + h(x))

)
|x

)
subject to h1(x) + · · · + hK(x) = 0.

The above expectation can be re-written as

e−
h1(x)
K−1 E

(
e−

1
K

Y Tf(m−1)(x)
Ic=1|x

)
+ · · · + e−

hK (x)

K−1 E
(
e−

1
K

Y Tf(m−1)(x)
Ic=K |x

)
= e−

h1(x)
K−1 Probw(c = 1|x) + · · · + e−

hK (x)

K−1 Probw(c = K|x),

where w(x, Y ) = exp(− 1
K Y Tf (m−1)(x)), and

Probw(c = k|x) = E
(
e−

1
K

Y Tf(m−1)(x)
Ic=k|x

)
.

Taking the symmetric constraint into consideration and optimizing the Lagrange will lead to the
solution (details skipped)

hk(x) = (K − 1)

(
log Probw(c = k|x) − 1

K

K∑
k′=1

log Probw(c = k′|x)

)
.

The algorithm as presented would stop after one iteration. In practice, we can use approximations to
the conditional expectation, such as probability estimates from decision trees, and hence many steps
are required. It naturally leads to a variant of the SAMME algorithm, which we call SAMME.R
(R for Real).

Algorithm 4 SAMME.R

1. Initialize the observation weights wi = 1/n, i = 1, 2, . . . , n.

2. For m = 1 to M:

(a) Fit a classifier T (m)(x) to the training data using weights wi.

(b) Obtain the weighted class probability estimates

p
(m)
k (x) = Probw(c = k|x), k = 1, . . . , K.

(c) Set

h
(m)
k (x) ← (K − 1)

(
log p

(m)
k (x) − 1

K

∑
k′

log p
(m)
k′ (x)

)
, k = 1, . . . , K.
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(d) Set

wi ← wi · exp
(
−K − 1

K
yT

i log p(m)(xi)
)

, i = 1, . . . , n.

(e) Re-normalize wi.

3. Output

C(x) = arg max
k

M∑
m=1

h
(m)
k (x).

The lower row of Figure 1 (left panel) shows the result of SAMME.R on the simple three-class
simulation example. As we can see, for this particular simulation example, SAMME.R converges
more quickly than SAMME and also performs slightly better than SAMME.

4 Numerical Results

In this section, we use both simulation data and real-world data to demonstrate our algorithms.
For comparison, a single decision tree (CART; Breiman et al. (1984)) and AdaBoost.MH

(Schapire & Singer 1999) are also fit. We have chosen to compare with the AdaBoost.MH algorithm
since it seemed to have dominated other proposals in empirical studies (Schapire & Singer 1999).
The AdaBoost.MH algorithm converts the K-class problem into that of estimating a two-class clas-
sifier on a training set K times as large, with an additional feature defined by the set of class labels.
It is essentially the same as the one vs. rest scheme (Friedman et al. 2000), hence the computational
cost is O(dpn log(n)MK), which can be K times larger than the computational cost of SAMME.

We note that there have been many other multi-class extensions of the boosting idea, for
example, the ECOC in Schapire (1997), the uniform approach in Allwein et al. (2000), the logit-
boost in Friedman et al. (2000), and the MART in Friedman (2001). We do not intend to make
a full comparison with all these approaches. We would like to emphasize that the purpose of our
numerical experiments is not to argue that SAMME is the ultimate multi-class classification tool,
but rather to illustrate it is a sensible algorithm, and it is the natural extension of the AdaBoost
algorithm to the multi-class case.

4.1 Simulation

We mimic a popular simulation example found in Breiman et al. (1984). This is a three-class
problem with twenty one variables, and it is considered to be a difficult pattern recognition problem
with Bayes error equal to 0.140. The predictors are defined by

xj =

⎧⎨
⎩

u · v1(j) + (1 − u) · v2(j) + εj , Class 1,
u · v1(j) + (1 − u) · v3(j) + εj , Class 2,
u · v2(j) + (1 − u) · v3(j) + εj , Class 3,

(16)

where j = 1, . . . , 21, u is uniform on (0, 1), εj are standard normal variables, and the v� are the
shifted triangular waveforms: v1(j) = max(6 − |j − 11|, 0), v2(j) = v1(j − 4) and v3(j) = v1(j + 4).
Figure 2 shows some example waveforms from each class with εj = 0.

The training sample size is 300 so that approximately 100 training observations are in each
class. We use the classification tree as the weak classifier for SAMME and SAMME.R. The trees
are built using a greedy, top-down recursive partitioning strategy, and we restrict all trees within
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Figure 2: Some examples of the waveforms generated from model (16) before the Gaussian noise is added.
The horizontal axis corresponds to the 21 predictor variables, and the vertical axis corresponds to the values
of 21 predictor variables.

each method to have the same number of terminal nodes. This number is chosen via five-fold cross-
validation. We use an independent test sample of size 5000 to estimate the error rate. Averaged
results over ten such independently drawn training-test set combinations are shown in Figure 3 and
Table 1.

As we can see, for this particular simulation example, SAMME performs slightly better than
the AdaBoost.MH algorithm. A paired t-test across the ten independent comparisons indicates a
significant difference with p-value around 0.003. We can also see that the SAMME.R algorithm
performs closely to the SAMME algorithm.

Table 1: Test error rates % of different methods on the waveform data. The results are averaged
over ten independently drawn datasets. For comparison, a single decision tree is also fit.

Iterations
Method 200 400 600
Waveform CART error = 28.4 (1.8)

Ada.MH 17.1 (0.6) 17.0 (0.5) 17.0 (0.6)
SAMME 16.7 (0.8) 16.6 (0.7) 16.6 (0.6)
SAMME.R 16.8 (0.3) 16.6 (0.4) 16.6 (0.4)
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Figure 3: Test errors for SAMME, SAMME.R and AdaBoost.MH on the waveform simulation example.
The training sample size is 300, and the testing sample size is 5000. The results are averages over ten
independently drawn training-test set combinations.

4.2 Real data

In this section, we show the results of running SAMME and SAMME.R on a collection of datasets
from the UC-Irvine machine learning archive (Merz & Murphy 1998). Seven datasets were used:
Letter, Nursery, Pendigits, Satimage, Segmentation, Thyroid and Vowel. These datasets come
with pre-specified training and testing sets, and are summarized in Table 2. They cover a wide
range of scenarios: the number of classes ranges from 3 to 26, and the size of the training data
ranges from 210 to 16, 000 data points. The types of input variables include both numerical and
categorical, for example, in the Nursery dataset, all input variables are categorical variables. We
used a classification tree as the weak classifier in each case. Again, the trees were built using a
greedy, top-down recursive partitioning strategy. We restricted all trees within each method to
have the same number of terminal nodes, and this number was chosen via five-fold cross-validation.

Figure 4 compares SAMME and AdaBoost.MH. Since the SAMME.R algorithm performs closely
to the SAMME algorithm, for exposition clarity, the test error curves for the SAMME.R algorithm
are not shown. The test error rates are summarized in Table 3. The standard errors are approx-
imated by

√
te.err · (1 − te.err)/n.te, where te.err is the test error, and n.te is the size of the

testing data.
The most interesting result is on the Vowel dataset. This is a difficult classification problem, and

the best methods achieve around 40% errors on the test data (Hastie, Tibshirani & Friedman 2001).
The data was collected by Deterding (1989), who recorded examples of the eleven steady state
vowels of English spoken by fifteen speakers for a speaker normalization study. The International
Phonetic Association (IPA) symbols that represent the vowels and the words in which the eleven
vowel sounds were recorded are given in the following table:
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Table 2: Summary of seven benchmark datasets

Dataset #Train #Test #Variables #Classes
Letter 16000 4000 16 26
Nursery 8840 3790 8 3
Pendigits 7494 3498 16 10
Satimage 4435 2000 36 6
Segmentation 210 2100 19 7
Thyroid 3772 3428 21 3
Vowel 528 462 10 11

vowel word vowel word vowel word vowel word
i: heed O hod I hid C: hoard
E head U hood A had u: who’d
a: hard 3: heard Y hud

Four male and four female speakers were used to train the classifier, and another four male and
three female speakers were used for testing the performance. Each speaker yielded six frames of
speech from eleven vowels. This gave 528 frames from the eight speakers used as the training data
and 462 frames from the seven speakers used as the testing data. The ten predictors are derived
from the digitized speech in a rather complicated way, but standard in the speech recognition
world. As we can see from Figure 4 and Table 3, for this particular dataset, the SAMME algorithm
performs almost 15% better than the AdaBoost.MH algorithm.

For other datasets, the SAMME algorithm performs slightly better than the AdaBoost.MH
algorithm on Letter, Pendigits, and Thyroid, while slightly worse on Segmentation. In the
Segmentation data, there are only 210 training data points, so the difference might be just due
to randomness. It is also worth noting that for the Nursery data, both the SAMME algorithm
and the AdaBoost.MH algorithm are able to reduce the test error to zero, while a single decision
tree has about 0.8% test error rate. Overall, we are comfortable to say that the performance of
SAMME is comparable with that of the AdaBoost.MH.

For the purpose of further investigation, we also merged the training and the testing sets, and
randomly split them into new training and testing sets. We then applied different methods on these
new training and testing sets. The procedure was repeated ten times. The means of the test errors
and the corresponding standard errors (in parentheses) are summarized in Table 4 and Figure 5.
Again, the performance of SAMME is comparable with that of the AdaBoost.MH. We can see that
for the Vowel data, the SAMME algorithm performs about 10% better than the AdaBoost.MH
algorithm. A paired t-test across the ten independent comparisons indicates a significant difference
with p-value around 0.001. For the Segmentation data, the test error rates are reversed: SAMME
performs slightly better than AdaBoost.MH for this dataset. It is also interesting to note that
the test error rate for the Pendigits data drops dramatically from 3% to about 0.6%. It turns
out that in the original training-test split, the training digits were written by 30 writers, while the
testing digits were written by 14 different writers. Unfortunately, who wrote which digits in the
original data was not recorded. Therefore, in the re-split data, the 44 writers were mixed in both
the training and testing data, which caused the drop in the test error rate.
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Figure 4: Test errors for SAMME and AdaBoost.MH on six benchmark datasets. These datasets come with
pre-specified training and testing splits, and they are summarized in Table 2. The results for the Nursery
data are not shown for the test error rates are reduced to zero for both methods. For exposition clarity, the
results for SAMME.R are not shown because they are very close to SAMME.
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Figure 5: Test error for SAMME and AdaBoost.MH on six benchmark datasets. The results are averages
over ten random training-test splits. The results for the Nursery data are not shown for the test error
rates are reduced to zero for both methods. For exposition clarity, the results for SAMME.R are not shown
because they are very close to SAMME.
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5 Discussion

The statistical view of boosting, as illustrated in Friedman et al. (2000), shows that the two-class
AdaBoost builds an additive model to approximate the two-class Bayes rule. Following the same
statistical principle, we have derived SAMME, the natural and clean multi-class extension of the
two-class AdaBoost algorithm, and we have shown that

• SAMME adaptively implements the multi-class Bayes rule by fitting a forward stagewise
additive model for multi-class problems;

• SAMME follows closely to the philosophy of boosting, i.e. adaptively combining weak clas-
sifiers (rather than regressors as in logit-boost (Friedman et al. 2000) and MART (Friedman
2001)) into a powerful one;

• at each stage, SAMME returns only one weighted classifier (rather than K), and the weak
classifier only needs to be better than K-class random guessing;

• SAMME shares the same simple modular structure of AdaBoost.

We note that although AdaBoost was proposed to solve both the two-class and the multi-class
problems (Freund & Schapire 1997), it sometimes can fail in the multi-class case. AdaBoost.MH
is an approach to convert the K-class problem into K two-class problems. As we have seen,
AdaBoost.MH in general performs very well on both simulation and real-world data. SAMME’s
performance is comparable with that of the AdaBoost.MH, and sometimes slightly better. However,
we would like to emphasize that our goal is not to argue that SAMME is the ultimate multi-class
classification tool, but rather to illustrate it is the natural extension of the AdaBoost algorithm to
the multi-class case. We believe our numerical and theoretical results make SAMME an interesting
and useful addition to the toolbox of multi-class methods. The SAMME algorithm has been
implemented in the R computing environment, and will be publicly available from the first author’s
website.

The multi-class exponential loss function (3) is a natural generalization of the two-class expo-
nential loss function. Using the symmetry in y and f , we can further simplify (3) as

exp

(
− 1

K − 1

K∑
k=1

I(c = k)fk

)
= exp

(
− 1

K − 1
fc

)
.

This naturally leads us to consider a general multi-class loss function that has the form:

K∑
k=1

I(c = k)φ(fk) or equivalently φ(fc).

Hence, there are several interesting directions where our work can be extended: (1) For this general
loss function to be sensible, we would like to find conditions on φ such that the classification rule
given by the population minimizer agrees with the Bayes optimal rule. Lin (2004) studied a similar
problem for the two-class classification case, and proposed very general conditions (Theorem 3.1).
Along the lines of Lin (2004), we plan to design more multi-class loss functions that can be used in
practice. (2) The principal attraction of the multi-class exponential loss function in the context of
additive modeling is computational; it leads to our simple modular reweighting SAMME algorithm.
We intend to develop algorithms for other members of the multi-class loss functions family as well.
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One example is the multi-class logit loss, which can be more robust to outliers and misspecified
data. However, other multi-class loss functions may not lead to a simple closed form reweighting
scheme. The computational trick used in Friedman (2001) and Bühlmann & Yu (2003) should
prove useful here.
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Table 3: Test error rates % on seven benchmark real datasets. The datasets come with pre-
specified training and testing splits. The standard errors (in parentheses) are approximated by√

te.err · (1 − te.err)/n.te, where te.err is the test error, and n.te is the size of the testing data.
For comparison, a single decision tree was also fit, and the tree size was determined by five-fold
cross-validation.

Iterations
Method 200 400 600
Letter CART error = 13.5 (0.5)

Ada.MH 3.0 (0.3) 2.8 (0.3) 2.6 (0.3)
SAMME 2.6 (0.3) 2.4 (0.2) 2.3 (0.2)
SAMME.R 2.6 (0.3) 2.5 (0.2) 2.4 (0.2)
Nursery CART error = 0.79 (0.14)

Ada.MH 0 0 0
SAMME 0 0 0
SAMME.R 0 0 0
Pendigits CART error = 8.3 (0.5)

Ada.MH 3.0 (0.3) 3.0 (0.3) 2.8 (0.3)
SAMME 2.5 (0.3) 2.5 (0.3) 2.5 (0.3)
SAMME.R 2.8 (0.3) 2.8 (0.3) 2.7 (0.3)
Satimage CART error = 13.8 (0.8)

Ada.MH 8.7 (0.6) 8.4 (0.6) 8.5 (0.6)
SAMME 8.6 (0.6) 8.2 (0.6) 8.5 (0.6)
SAMME.R 8.8 (0.6) 8.8 (0.6) 8.6 (0.6)
Segmentation CART error = 9.3 (0.6)

Ada.MH 4.5 (0.5) 4.5 (0.5) 4.5 (0.5)
SAMME 4.9 (0.5) 5.0 (0.5) 5.1 (0.5)
SAMME.R 5.3 (0.5) 4.9 (0.5) 5.0 (0.5)
Thyroid CART error = 0.64 (0.14)

Ada.MH 0.67 (0.14) 0.67 (0.14) 0.67 (0.14)
SAMME 0.58 (0.13) 0.61 (0.13) 0.58 (0.13)
SAMME.R 0.61 (0.13) 0.70 (0.14) 0.67 (0.14)
Vowel CART error = 53.0 (2.3)

Ada.MH 52.8 (2.3) 51.5 (2.3) 51.5 (2.3)
SAMME 43.9 (2.3) 43.3 (2.3) 43.3 (2.3)
SAMME.R 43.9 (2.3) 46.3 (2.3) 46.7 (2.3)
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Table 4: Test error rates % on seven benchmark real datasets. The results are averages over ten
random training-test splits. For comparison, a single decision tree was also fit, and the tree size
was determined by five-fold cross-validation.

Iterations
Method 200 400 600
Letter CART error = 13.5 (0.7)

Ada.MH 2.8 (0.3) 2.6 (0.3) 2.5 (0.3)
SAMME 2.5 (0.3) 2.5 (0.2) 2.4 (0.2)
SAMME.R 2.5 (0.3) 2.5 (0.2) 2.4 (0.2)
Nursery CART error = 0.68 (0.21)

Ada.MH 0 0 0
SAMME 0 0 0
SAMME.R 0 0 0
Pendigits CART error = 4.6 (0.3)

Ada.MH 0.57 (0.10) 0.54 (0.13) 0.52 (0.12)
SAMME 0.59 (0.12) 0.57 (0.11) 0.54 (0.11)
SAMME.R 0.61 (0.12) 0.57 (0.15) 0.57 (0.15)
Satimage CART error = 13.3 (0.8)

Ada.MH 8.2 (0.5) 8.2 (0.3) 8.1 (0.3)
SAMME 7.7 (0.5) 7.6 (0.4) 7.5 (0.3)
SAMME.R 8.0 (0.3) 7.9 (0.3) 7.8 (0.3)
Segmentation CART error = 10.9 (2.1)

Ada.MH 6.9 (1.2) 6.9 (1.2) 6.9 (1.3)
SAMME 5.8 (0.8) 5.7 (0.9) 5.8 (0.9)
SAMME.R 6.1 (0.8) 6.1 (0.8) 6.1 (0.9)
Thyroid CART error = 0.46 (0.05)

Ada.MH 0.35 (0.12) 0.34 (0.12) 0.34 (0.12)
SAMME 0.37 (0.10) 0.36 (0.10) 0.35 (0.11)
SAMME.R 0.38 (0.07) 0.34 (0.09) 0.34 (0.10)
Vowel CART error = 58.1 (4.2)

Ada.MH 46.5 (5.5) 46.5 (4.9) 46.2 (4.9)
SAMME 41.8 (3.4) 41.6 (3.3) 41.8 (3.6)
SAMME.R 43.2 (4.2) 43.8 (3.8) 43.0 (3.7)
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