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Abstract

We propose a statistical model for signature verification by com-
puter. Our model recognizes that repeated signatures by the “owner”
are similar but not identical. Our model consists of a template signa-
ture for each individual, and several factors which allow for variations
in each rendition of this template. These variations include the speed
of writing, as well as slowly varying affine transformations such as size,
rotation and shear. The estimated template represents the “mean” of
a sample of signatures from an individual, and the variations in the
factors can be used to establish several measures of “variance”. These
quantitative measures are essential for reliable signature verification.

1 Introduction

In this paper we propose a statistical model for human signature recogni-
tion and verification by computer. Our model recognizes that repeated test
signatures by the “owner” are similar but not identical. The model involves
a template signature which is fixed for an individual. Each time he signs
he traces out this template, not exactly but with small stochastic variations
on each occasion. These variations include the speed of writing, as well



as slowly varying affine transformations such as rotation, scale, and shear.
While the estimated template serves as the “mean” of a writer’s signature,
the variations about this mean can be used to establish the “variance”.

The signature data is obtained on-line from a digitizer, instrumented pen
or similar device. Typically, the output of such a device gives the position
(in (X,Y) co-ordinates relative to an arbitrary origin) of the pen at equi-
spaced time intervals. Along with each location measurement, our digitizer
also records the downward pressure on the pen, or the force exerted on the
tip of the pen.

In the prototype system already developed, a database is constructed
from say 5 to 10 specimen signatures from each of W writers. For each
writer, a template signature is estimated, and for each the variations of their
sample signatures about this template are recorded. Given a new signature
claiming to belong to writer w, our system compares it to the template
signature for writer w. If the variations in the factors are beyond the ranges
established for these factors for writer w, the verification fails.

There is an extensive literature on automatic signature verification and
writer identification by computer (see [P89] for a recent review).

The methodology for dynamic signature verification falls into two main
groups:

e methods that use functions to represent an entire signature. Here the
complete signal is represented as a function of time, and the values of
the function at different time points are considered to be the features.

e methods that summarize the original signal by a number of low-dimen-
sional parameters or features. These parameters represent the signa-
ture for the purpose of representation and recognition.

An enormous number of signature features have been proposed. In
[CO 83] a sequence of 44 different features are used, derived from 3 signals
generated by a force-sensitive pen. Some papers have also applied specific
transformations to the signals and then used as features a truncated set of
coefficients from these transformations. For example, [ZV 85] used the first
40 low-frequency coefficients of the power spectra obtained using a Walsh
transform. At first it seems very attractive to reduce the task of signature
verification to the two steps of low-level feature detection, followed by some
standard method of feature-vector comparison. The price one pays for this
simplification is that the overall result is only as good as the features se-
lected. It is difficult to find a set of features that adequately describe all



the important aspects of the behavior of a signature. Given such a (large)
set, there is the additional problem of assimilating these features into a
classification scheme. We believe these feature extraction methods are lim-
ited in scope, because too much information is discarded during the initial
processing stages.

Our work is more aligned with the first class of methods mentioned
above, methods that deal with entire functions, and make use of all the
available data. A large volume of data is recorded for each signature. One
not only gets a reproducible rendering (shape) of each signature, but also
the speed and pressure with which they were produced. It soon became
apparent that with the abundance of data, we needed a model to bind
all the information together. The model should conform with the physical
process that takes place when someone signs their name, and the individual
components and parameters should be accessible and useful.

Our model draws on two sets of methodology in the literature. The first
is a general non-linear correlation method called Dynamic Time Warping
(DTW) which is extensively used in speech recognition. The second is the
area of geometric shape analysis.

Handwriting, much like speech, is time dependent. No two signatures will
have exactly the same timing pattern, and these timing differences will not
be linear. Time warping allows one to get a point-to-point correspondence
between two signals which is relatively insensitive to small differences in
their timing patterns. Our model uses DTW to match the speed signals
of two signatures. We do not believe, however, that DTW should be used
to compensate for other variations between signatures (such as Euclidean
shape transformations). In [H 78] and [Y 77] DTW was used to match the
(X4, Y;) co-ordinates of two signatures. In doing so they introduced nonlinear
distortions in the time domain to compensate for rotation, scaling and shear
which are linear transformations in the X,Y domain. The speed signal, on
the other hand, is effectively invariant under these transformations. We deal
with the shape analysis separately.

The second area which is of relevance to this work is concerned with the
analysis of geometric shapes. There is a vast amount of literature in differ-
ential geometry and computer vision that deals with the problems of shape
similarities under different transformations, such as projections, perspective
and affine transformations. However, in the signature verification literature
this problem has received hardly any attention ([S 82], [P 87]).

Our model represents each of several renditions of an individuals signa-
ture by a single template, together with an individual part that describes



deviations from the template. These individual parts are in turn modeled
using some natural rules that describe how different versions of a person’s
signature might be expected to differ, i.e. in size, orientation and shear.
The speed with which the signature is rendered is a separable part of the
model; so even if a forger can mimic the shape of his victim’s signature very
accurately, it is unlikely that he will have mastered the relative speed with
which the letters are traversed.

Here follows a broad overview of an algorithm to fit our model to a
sample of size J of an individual’s signatures (in practice J = 5 seems
reasonable). We first smooth the (X,Y’) pairs against time using a cubic
smoothing spline; not so much to smooth out rough anomalies but rather
to have a differentiable-function representation of the entire curve. Next
we align and segment each signature into a series of corresponding sub-
curves or letters. This is achieved in several steps. First the speed signals
of the signatures are time-warped against a reference curve. The particular
signature (and its associated speed signal) that is chosen as a reference is
somewhat arbitrary; we choose the “best behaved” in a sense described
below. This time warping establishes a correspondence between points on
the reference signature and each of the other signatures. The speed signal
of the reference signature is then used to segment it into distinct pieces or
letters, and using the correspondences the other signatures are segmented
accordingly. The template is computed at the letter level: for each set of J
letters, an average shape is estimated up to an affine transformation, which
allows for differences in location, scaling, orientation, and shear. These
template letters are glued together to form the template signature.

When a new signature arrives for verification, it needs only to be com-
pared to the template signature. The same set of techniques are used to
validate a new signature as are used to fit the model to the training signa-
tures:

e its speed signal is time-warped against the reference;
e it is segmented into letters;

e each letter is affinely transformed to match the template letter as well
as possible.

Typically a forger can be identified at the time-warping stage, although
the deviations that accumulate at each of the steps outlined above produce
overwhelming evidence against authenticity. Figure 1 shows three signatures



Euclidean Distance: 515.7095

Figure 1: The top two signatures are genuine, and the bottom one is a
forgery of Suresh Goyal’s signature. Superimposed on each is the the tem-
plate signature F (dashed curves), after an optimal, piece-wise-constant,

affine transformation in each case. This superimposition is much worse for
the third signature.



of the name Suresh Goyal, the last of which is a forgery. Superimposed on
each is the template derived from Suresh’s 5 training signatures. There is a
clear mismatch in the case of the forgery.

This paper is organized as follows. Section 2 describes our stochastic
signature model, and Section 3 gives a step by step description of our algo-
rithm for fitting the model. We deliberately avoid excessive technical details
in this section, with the hope that it reads easily. Section 4 gives some of
the technical details and justifications omitted in section 3. The model and
fitting process are illustrated using examples throughout the paper.

We do not provide extensive test results in this paper. Our experience so
far has been limited to about 10 samples each from 20 colleagues, who also
provided the forgeries for each others’ signatures. Although these prelimi-
nary results appear promising, we are accumulating a much more extensive
data base to exercise and calibrate our model.

2 Statistical Model

The two-dimensional image of a signature may be regarded as a piecewise
continuous and locally smooth path, i.e. a vector function

parametrized by some scalar parameter u. Although the choice of the pa-
rameter is arbitrary, we typically identify it with time: the time taken as
the signature is traced out. Since the timing is likely to be different for
two different renderings of exactly the same signature, it is useful in some
expressions to use the same parametrization throughout; for these purposes
we regard u as a universal parameter.

Successive signatures by the same writer are not identical but will differ,
both globally and locally, in location, scale and orientation. A plausible
model for this process is

Y(u) = A(w)F(u) + p(u) +e(u), 0<u<l (1)

where Y, F, u and e are each 2-vectors, whose elements are functions of u.
Such vector functions are known as parametrized curves. Similarly A is a
2 x 2 affine transformation matrix whose elements are functions of u. These
components have the following interpretation:



e the fixed non-random function F(-) may be regarded as the idealized
template or “mean” signature for the writer in question.

e the functions A(-) and p(+) vary more slowly than F(-) and are stochas-
tic in nature.

e ¢(-) is a stochastic vector of departures from the model; we expect | e||
to be much smaller than ||F||, where || - || is the Euclidean norm.

Model (1) describes the rendered signature, as we might see it on a piece
of paper, and does not have any information about how it was signed. Next
we describe the dynamic aspect of our model; an aspect that tradition-
ally has not been a worry to forgers. In practice, we do not record the
signature Y(-) as a function of u. Instead, our data consists of N points
X1, Xs,..., Xy of the signature sampled at discrete time points £, ts,...,tnN
(usually equi-spaced), where

X; = X(t), i=1,2,...,N
= Y[h(ti])-i-ei
= AR(E)F[A(E)] + plh(t)] + elh(t)] + & (2)

Here, the monotone function h(t) defines the transformation, known as a
time-warp, needed to convert from the time parametrization of the recorded
signature to units of the universal parameter . This time-warp function is
related to the speed at which the signature is written; as such it will change
from one rendition to the next, and should also be regarded as stochastic.
Finally, the €;’s denote the errors in measuring the signature at times {t;}.
In order to spare the reader from “his/her” contortions, we hereafter assume
that our generic writer is male.

The non-random template function F(-) characterizes the intrinsic shape
of the signature, involving both the spelling of the writer’s name and his
style of writing (e.g. curly versus straight capital letters, curly or crossed
t’s, etc.). The random functions h(-), A(-) and p(-) characterize how he
writes his signature, and how it changes from one occasion to the next:

e relative to some fixed axis on an electronic pad, he will start at a
different point each time, and at a particular angle. The model is
invariant under such rigid body transformations, which are captured
in the transformations A and p.



e his writing speed will change from one signature to the next, as will
its consistency over different regions of the signature; the function h
reflects these speed variations

e he might sign slightly bigger or smaller on different occasions, and

e when he signs faster, the letters may slant more (in matrix language
this is known as shear)

The last two items are also captured by the affine transformation functions
A(-) and p(-), which allow these deformations to vary slowly along the
signature.

Apart from providing the mechanism for deforming the template F, the
functions h(-) and A(-) usefully focus the deviations between each signature
and the template. For example, a sample of realizations of the time-warping
functions h; for J different signatures might exhibit more variation in some
regions of the signature than in others. Similarly, the variations in the
transformations A;(-) can be characterized, and broken down even further
to pure scale changes, rotations and shear. These functions and knowledge
of their their typical behavior can be used to detect forged signatures, since
forgers are usually unable to reproduce these dynamic features of the genuine
signature.

Our data-base for any given writer is based on J specimen signatures
Yi1,Ys,---,Y; by that writer, where

Yj(u) = Aj(u)F(u) + pj(u) + ej(u) (3)

0<u<l, j=1,2...,J

There is one template F(-) for all specimen signatures by that writer, whereas
the A;’s, p,’s and e;’s are assumed to be independent realizations of the
corresponding random functions.

Once again, we do not observe the functions Y (-) directly. Instead, we
observe the j-th signature Y;(-) at N; discrete time points {t;;}, i.e., we
observe

Xji = Y;(hj(ti)) + €;i (4)
t=1,2,...,N;, j=1,2,...,J

where for j =1,2,...,J, the monotone functions {h;(-)} convert the times
tj; to equivalent values of the universal parameter u.



The model proposed is very general—too general in fact to be useful
without some additional restrictions. The location functions p;, if allowed
to vary in an arbitrary fashion, would be sufficient to model any given sig-
nature, and therefore any deviation from the template F. The restriction
that occurs naturally in our method of estimation is to assume that both
Aj(u) and p;(u) are piecewise constant over segments of the signature. For
convenience we will refer to these segments as letters, although they may
encompass more or less than a single letter of the alphabet. In retrospect,
this piecewise-constant restriction seems natural from a physical point of
view as well. The physical action of sweeping out a single letter, such as an
£, is ballistic in nature and is likely to be smooth. The size, orientation and
slant may differ slightly at each attempt, but the concept of a fixed template
seems plausible. The change-points between letters, on the other hand, may
exhibit some discontinuities.

3 Fitting the Model

In this section we give a more detailed and illustrated account of the steps
in our algorithm for fitting (1) or (2). Most of the discussion concerns
fitting the model to a set of J training signatures for a given person. To
help tie the somewhat complicated sequence of operations together, we then
give a summary of how each step is focused at a particular aspect of the
model. Finally we describe how a new candidate signature is compared to
the model signature. We deliberately leave out excessive technical details in
this section to make it more readable; subsequent sections will hopefully fill
in some of these technical gaps.

Step 1: Smoothing

Each signature is recorded as a sequence of (X,Y’) coordinate pairs recorded
at a uniform frequency of about 300 points per second. Along with the spa-
tial coordinates, a third coordinate, pressure, is recorded at the same time
points. First the pressure signal is used to segment the signature into sepa-
rate words, based on the pen up-down sequences. In Figure 2 the pressure
signal easily separates the two words “Suresh” and “Goyal”. The first two
signatures are genuine, the third a forgery.

Although the recorded data is typically smooth, there are occasional
gross outliers and noisy points which need to be removed (less than 1% of the
total). These are easily identified by their large Euclidean distance from the
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Figure 2: The first two signatures are genuine reproductions of Suresh’s
signature, while the third is a forgery . The top row shows the signatures
themselves, the second row shows the speed signal, and the third the pressure
signal for each signature



neighboring points. We then fit a smooth path through the remaining (X,Y)
coordinates for each word in each signature. This is done by smoothing each
coordinate separately against time using a cubic smoothing spline.

The amount of smoothing is chosen automatically by global cross-vali-
dation of the integrated Euclidean distance between the observed and fitted
points. Typically very little smoothing is performed, which is what is in-
tended, and the fitted curves usually come close to interpolating the observed
sequences. There are three reasons for smoothing the signature sequences
in this way:

e even though the amount of smoothing is small, it tends to eliminate
small discontinuities introduced by measurement error due to the dis-
cretization during the recording process, or small movements during
the signing.

e the cubic spline representation turns the sequence into a function that
can be evaluated at any point ¢; this has consequences later on in the
algorithm.

e the cubic spline has two continuous derivatives, the first of which is
used in the speed computation.

Section 4.1 gives more details on the use of smoothing splines in this context.

Step 2: Computing the Speed Signal

We compute the speed signal V;(t) as a function of ¢ for each smoothed sig-
nature using the derivatives available from the cubic spline representation.
Our plan is to use the speed signal for time warping and further segmenta-
tion, but first a bit of background.

An essential aspect in fitting our model is in estimating the time-warp
functions h;(t), which establish a correspondence between the parametriza-
tion of the recorded signatures X; and the universal parameter u. They
also establish a similar correspondence between two different recorded sig-
natures. Estimating these h; boils down to establishing correspondences
between segments on two different curves. For example, suppose a par-
ticular piece of the S on the first signature consists of the point sequence
recorded between times 25 and 39 milliseconds; the corresponding piece on
the second signature, although slightly tilted and larger, might consist of
the sequence recorded between 33 and 54 milliseconds. To establish such
a correspondence, we need some function defined along each signature that
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Figure 3: The top panel shows the speed function computed from the cubic
spline representation of one of Suresh Goyal’s signatures, the bottom panel
shows the curvature.

reflects their intrinsic shape, irrespective of their orientation and location in
the Euclidean plane defined by the recording pad.

The curvature function of a signature seems to fit the bill. Not only is
it location and rotation invariant, but it does not depend on the particular
parametrization used in defining the signature. Points of high curvature
indicate big changes in shape, and should therefore be useful for segmenting
a signature into logical pieces, irrespective of its orientation. By matching
the curvature functions of two similarly shaped curves, each measured us-
ing different time parametrizations, one should be able to extract the time
correspondences or time-warp functions. Figure 5 shows the results of such
a matching.

In practice the curvature signal tends to be numerically unstable because

12
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Figure 4: The inverse relationship between speed and curvature based on the
first five signatures of Suresh Goyal (taken from [N 91]).

it is based on second derivative information, despite the fact that it is derived
from the smoothed signature curves. This is specially true around points of
high curvature, which are the areas of interest for segmentation. The speed
function, on the other hand, involves first rather than second derivatives,
and behaves in a more stable fashion. The speed function of a signature
tends to have an inverse relationship with the curvature, such that points
of high curvature correspond to points of low speed. Figure 4 shows an
example of this inverse relationship for the speed and curvature signals of
Figure 3. It seems then that we can use speed as a surrogate for the more
invariant but noisy curvature. For each signature the speed is sampled from
the spline representation of its coordinates uniformly in time. Section 4.2
gives a more rigorous justification for using the speed signal rather than
curvature for time warping.
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Figure 5: The top panel shows the speed signals for the two genuine signa-
tures in Figure 1 superimposed. The curves are connected pointwise by lines
to emphasize their differences in height and phase. The bottom panel shows
them time-warped against each other.

Step 3: Time-Warping Speed Signals

The next step is to use the speed functions from any two signatures (or
corresponding words from two signatures) to align them in such a way that
corresponding points and regions on each can be identified. The technique
we use is known as Dynamic Time- Warping, and is heavily used in speech
recognition ([S 83]). It is a dynamic programming method used to obtain
a nonlinear, rubber-sheet transformation between two p-dimensional signals
(p = 1 in our case). The transformation consists of local stretching or
compression of the time-axis of either signal relative to the time-axis of
the other. The aim of these local adjustments is the minimization of some
global measure used to quantify the difference between the two signals, such

14



as the least-squared error summed over the transformation path in the case
of discrete time units. The transformation path represents the point corre-
spondences established between the two signals.

Apart from providing the correspondences between two signatures, the
time-warping algorithm produces an important distance measure in the
speed domain between the two signatures.

All possible pairs of the J signatures for a given person are time-warped
against each other, producing J(J — 1)/2 sets of time correspondences, and
their associated least-squares distances. From these the single most repre-
sentative signature is selected: we choose the one whose mean time-warped
speed distance from all the other J — 1 signatures is smallest. We use a
trimmed mean in this calculation, in the event that the individual perhaps
had one bad signature in the batch. Note that this representative signature
is not what we have been calling the template signature; it is simply a base
signature for establishing correspondences. Suppose this representative sig-
nature is the first (j = 1). Figure 6 shows a piece of a typical correspondence
curve, and we see it fairly rough; in fact close inspection shows that it is
piecewise linear. Each speed signal is represented at a set of time points, not
necessarily the same number. Two or more adjacent points on one signature
may be found to correspond to a single point on the other, which explains
the sometimes flat regions in both the vertical and horizontal directions.
Each of the J — 1 correspondence curves is similarly plotted as a function
of the time values for the representative signature, and each is smoothed to
break the ties. For each time point of the representative speed curve Vi, the
corresponding times for each of the other J — 1 speed curves V; can be read
off from these smoothed correspondence curves. If there are Ny speed values
sampled from signature 1 at Ny times, we get N; corresponding time points
from each of the other J — 1 signatures. These can then be used to retrieve
the (X,Y’) coordinates for the signatures themselves from their cubic-spline
representations. If the time-warping did a good job, we might now expect
to have corresponding sets of (X,Y") pairs for each of the J signatures for
the individual.

Step 4: Segmentation

The representative curve is segmented at regions of low speed (high cur-
vature). Figure 7 shows the points of segmentation based on the speed
signal for the representative curve for the Suresh word. The lower speed
threshold is chosen to be 15% of the mean speed, and as can be seen in the
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Figure 6: The correspondences between two signatures is a piece-wise linear
function, giving for each time point on one signature, the corresponding
point(s) on the other. A smooth curve is fit to the correspondences to break
the ties, and corresponding time points (the time warp function) can simply
be read off this smooth curve. Here we show a small portion of the time-
warp function between one of Suresh Goyal’s signatures and his reference
signature.
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figure, the portion of the signature associated with the local minima below
this threshold are removed during the segmentation. This has little spatial
consequence, since by definition points of low speed are close together in
space. We have implemented a dynamic modification to this 15% thresh-
old, which checks if any new local minima are discovered between the 15%
and (15 4 1)% threshold; if so the threshold is incremented to 16% and the
step is repeated. In practice this results in thresholds between 15-18%, and
the segmentation process is more stable. The lower panel in figure 7 shows
the segments themselves, separated by some white space. This is known
as “self-segmentation” in the speech recognition literature ([R 82]). Once
the segmentation has been performed for the representative signature, it is
automatically defined for all the other signatures because of the correspon-
dences. We refer to each of the segments as letters; in many cases they are
single letters, but this is not a requirement.

Step 5: Affine Invariant Averaging

In this step we estimate the template signature at the letter level, and the
optimal affine transformation between each letter and its template.

From the previous step we have a parallel sequence of letters for each of
the J signatures; Figure 8 (right three panels, thicker curves) shows three
S’s from Suresh Goyal’s signature, which were obtained from the automatic
segmentation in the way described.

We denote these J renditions of the /th letter by Lj, each an m, x 2
matrix of (X,Y) coordinates ordered by row, and with a correspondence
across rows. We define the average letter Ly to be the minimizer of

J
3 [[(Lje— 0j0)Bje — Ly|? (5)
j=1

over Ly, B;, and O, where L, is an my X 2 matrix, 0, = 1p]T a location
shift and the B, are 2 X 2 nonsingular transformations. The solution has a
concise mathematical description in terms of the smallest eignevectors of an
average projection operator (see section 4.4). There are two ways to compare
the individual letters to the average. We can either superimpose Lj, and
O]’[‘}‘]—:J[Bj_el for each j separately, or else superimpose all the (L, —O,7)B ¢
on L;. Figure 8 compares the S’s with the average S in both ways, and we
see the correspondence is close.

At this point the average letters L, can be joined up sequentially and
saved as the template signature F for Suresh.

17
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tive Suresh Goyal signature, and indicates the segmentation threshold. The
lower panel shows the segments themselves.
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Figure 8: The left most panel shows the affinely averaged template “S” letter
(thick curve) from Suresh Goyal’s signature, with the projections of three
of his signatures superimposed. The remaining panels show the individual
signatures, with the projected template superimposed.

Relating the Five Steps to the Model

We now summarize the five steps described above according to their role in
estimating the components of the model 2.

Step 1: Smoothing Although this smoothing step is primarily aimed at
getting a function representation of the signature curves, it also serves
to average out the measurement errors €; in the recorded signatures.

Step 2: Speed The speed function for each signature is an intermediate
step towards computing the transformations h;(t); they can also be
viewed as an additional component of the model, as is the pressure
signal.

Step 3: Time Warping This step produces estimates of the functions
h;(t) which for each signature convert time to a value for the univer-
sal parameter u that indexes the template signature F. The universal
parameter is identified with the time parameter of the representative
signature in step 3. The correspondences derived there provided a
mapping from time points in that signature to time points on each of
the other signatures; these mappings are then estimates of hj_l.

Step 4: Segmentation The reference signature is segmented at points of
low speed into a sequence of letters. Using the correspondences estab-
lished in step 3, all the signatures are similarly segmented.

Step 5: This step computes the template F and the piecewise constant
functions A;(u) and p;(u) for each signature. For values of u cor-
responding to the £th letter, AT (u) = B]-_Z1 and p;(u) = pjp. The

19



residuals from the affine averaging in step 5 are the remainder terms
€;.

Verification of a New Signature

When a new signature presents for verification, steps 1-4 are repeated: It
is smoothed and its speed signal is computed. This speed signal is then
time warped against the speed signal for the template signature, and the
correspondence is established. Typically a forgery can be identified at this
stage because of the large speed discrepancy reported by the time warping
procedure. If not, the new signature is segmented, the letters are affinely
transformed to match the template, and least square distances are computed
on a letter basis between the two. These distance statistics can be compared
to the J similar distances for the original signatures from the template. It
is extremely unlikely that a forger can mimic both the shape and relative
speed with which a person signs their name. Figure 1 on page 5 shows the
results of such a verification using a forgery.

4 Technical Details

In this section we elaborate on some of the technical details glossed over in
the previous section.

4.1 Smoothing

We smooth the signature by smoothing each coordinate separately using
a cubic smoothing spline smoother [W 90]. If the observed signature se-
quence is denoted by X;, 1 = 1,..., N, measured at time points ¢;, then the
smoothed signature S(¢) minimizes the criterion

N
S = S+ 2 [ 8] de ()
=1

over a suitable Sobolev space of functions, and for some value of the smooth-
ing parameter A. This criterion and its solution is interesting for several
reasons:

e the first part of the criterion encourages fidelity to the data, while
the second part encourages smoothness by penalizing regions of high
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curvature; the penalty A measures these two conflicting goals against
each other.

e The criterion is rotation invariant, and hence its solution is rotation
equivariant. So if we rotate the points X; prior to smoothing, we get
exactly the rotated smooth of the unrotated points. Similarly, the
solution is equivariant under uniform scale changes.

e The criterion separates into the sum of two criteria, one for each coor-
dinate. These each have as a solution the univariate smooth of their
coordinate values against time.

e The solution coordinate functions are cubic splines with knots at each
of the time points ¢;; as such they can be evaluated at ANY time points,
not just the original ¢;. Since they are piecewise cubic polynomials,
their first and second derivatives are available everywhere as well.

The solution varies dramatically with the value of the smoothing parameter,
which has to be supplied. We use the cross-validated, integrated, Euclidean
squared distance

N 2
OV =3 [[xi - 83 ()] 7)
1=1

as a criterion for selecting A. Here SE\Z.) (t;) is the value of the smooth curve
evaluated at ¢;; the subscript (i) indicates that the ith point itself was omit-
ted in the fitting of the curve. This criterion serves us well, since it recognizes
the signal in the signature, and selects a value for A such that only enough
smoothing is performed to eliminate the small amount of measurement error.

4.2 Using Speed for Time-Warping

Here we give additional justification for using the speed signals extracted
from two signatures as a basis for establishing a correspondence, or time-
warping.

The speed of a differentiable curve parametrized by u is the amount of
arc-length covered per small unit of u, and is computed as the norm of the
coordinate derivative function:

vio = o]
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The curvature function measures the normal component of acceleration rela-
tive to speed, and involves the second derivatives of the coordinate functions
([T 79], page 62):

_ (F(),N(t))

= {EU-TE0) ®
=]

Here N(t) is a normal vector to the curve at ¢. For a plane curve, the
curvature at a point is also given by the inverse radius of the circle, tangent
to the curve at that point, that matches the curve to second order (or more
simply, that fits snugly into the curve at that point). As can be seen from
their formulae the speed and curvature of a parametrized curve are invariant
under rigid body transformations (location shifts and rotations). What is
not so apparent from (8) is that the curvature function is independent of
the parametrization of the curve F; this is not true for the speed function in
general. This invariance is clearly a desirable feature for a candidate function
for time warping. For example, one can reparametrize a smooth curve to
have constant speed; although the shapes of the curves would be identical,
their speed functions would be useless for the purpose of time-warping.

Next we introduce scale in addition to the rigid-body transformations.
Suppose then that signature 2 is simply a scaled, rotated and translated
version of signature 1, at least over a small segment of each.

Yi(u) = F(u)
Yo(u) = pRF(u)+p ©)

where R is orthogonal. Note that p, u and R do not depend on u.
It is easy to check that both their speed and curvature functions are
proportional
Wi(u) = pVy(u)
kyi(u) = Kyy(u)/p

Now, if instead of observing the Y as a function of u, we observe X;(t) =
Y,[hj(t)], j = 1,2, then from the above

(10)

kx, (t1) = kx,(t2)/p (11)

if h1(t1) = h2(t2). In other words the curvatures at the two corresponding
points on the signatures remain the same (up to the factor p), despite the
fact that they have been parametrized differently. It also seems intuitive
that, if we know p and if k¥ is non-constant, we should be able to solve
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t = hfl(hz (t2)) for to given any value of ¢;. This operation of solving such
equations for all values of ¢; by matching values of a common function is
time-warping.

As mentioned the speed function does not in general have this paramet-
rization invariance,

Vi, (t) = ||[F()]| |22
) = oFou)] |4 g
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Figure 9: For three of Suresh Goyal’s signatures, we show the effect of speed
segmentation. The left column of plots has the signatures themselves, the
middle column the parts of the signature for which Vx, > 6ecm/s, and the
right column those pieces for which Vx; < 6cm/s. The figure gives additional
evidence that the high speed portions are smooth, while the low speed portions
correspond to high curvature pieces of the signatures.

However, empirical evidence, as exhibited in figure 4, suggests that for

23



signatures, parametrized by writing time, speed and curvature are inversely
related (curvature has a sign, which accounts for the symmetric pair of
relationships with speed in figure 4). This makes intuitive sense: we need
to slow down to turn sharp corners. Earlier we suggested that the action of
signing is ballistic in nature, and we can push this argument a bit further
here. When we swing a weight tied to the end of a string in a circle, the
normal acceleration is constant and is proportional to the constant force
we need to exert in maintaining the motion. By analogy, if we exert a
nearly constant force (normal to the curve) when we sweep out the arc of
a letter, the normal acceleration will be constant. But from (8) we see
that since the numerator is precisely this normal acceleration, this implies
kx(t) o< 1/VZ(t). This argument is presented in more detail in [N 91].

Of course real signatures do not behave exactly in the manner idealized
here. Our model (2) allows other deformations besides rotation and global
scaling, and allows them to vary with u as well. Our model also allows
for errors uj(u) which we ignored here, and the constant acceleration con-
cept will at most be locally true. Fortunately, the time-warping algorithm
operates in a local fashion as well.

4.3 Time Warping

Suppose we have two signatures (curves)

X1(t) = Yi(ha(t))
Xo(t) = Ya(ha(t))

where both Y7 and Y5 are parametrized by u. We wish to identify “match-
ing points” on both signatures, i.e., pairs of points with the same u-value.
We need to do this on a reasonably-fine grid of u-values, not just for a few
isolated “anchor-points” or “landmarks”. This amounts to estimating the
time-warping functions hi(-) and ho(-). This will only be possible if the
two curves Y7 and Yy, although different, share some intrinsic characteris-
tic that varies in parallel along their respective paths, that can serve as a
basis for matching. In the previous section we argued that speed and cur-
vature are such characteristics, given the sorts of differences we anticipate
between the Y;. However, an additional requirement is that this character-
istic should be invariant to the parametrization, so it can be computed using
the X; rather than the Y; representation. Although speed fails in general in
this regard while curvature does not, we argued that for signature sequences
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X; parametrized by time, curvature is approximately inversely proportional
to the square of speed. This means that speed is also eligible as a basis for
matching, and since it is more reliably computed, it is the measure we chose.

Symmetric Dynamic Time Warping

Dynamic time-warping (DTW) is a dynamic programming method used to
obtain a nonlinear, rubber-sheet transformation between two p-dimensional,
time-varying signals ([S 83]). The transformation consists of local stretching
or compression of the time-axis of either signal relative to the time-axis of
the other. The aim of these local adjustments is the minimization of some
global measure used to quantify the difference between the two signals, such
as the least-squared error summed over the transformation path in the case
of discrete time units. The transformation path, which is simply a sequence
of ordered pairs of corresponding time instances in the two functions, may
easily be determined in a dynamic fashion so that the global measure is
minimized.

In speech recognition asymmetric DTW has been the method of choice;
the word asymmetric in this context means that one signal is being warped
to fit a predetermined reference signal. However, we have chosen to use
symmetric DTW for our work. Symmetric DTW allows for simultaneous
stretching and compression of the two signals being compared; the mapping
obtained may be applied to either signal and result in a good match to the
other. We prefer the symmetric approach because this method does not
assume in any given comparison that either signal is the template. A better
correspondence may also be achieved due to the fact that both signals are
being simultaneously adjusted to fit each other in the symmetric case.

Dynamic time warping has already been used in a limited capacity in
signature verification systems( [H 78] and [Y 77]), to match the X (¢) and
Y (t) signals. The results of these algorithms were less than satisfactory
(see [PS 89]), due to the fact that the X(¢) and Y (¢) representation of
the signature is not invariant under rotation and scaling. Hence, the time
warping algorithm would try to compensate for deviations in rotation and
scaling by successive modifications in the time axis. We on the other hand
use the speed function of the signature; it can be computed in a stable
fashion, is invariant under rotation, and equivariant to global scaling. Since
the time-warping algorithm allows for slowly varying scale differences in the
signals, the scale equivariance is not an issue.
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Implementation

The two speed signals are evaluated on a grid of time points (we use a
grid with resolution one fifth that of the original data). This results in
two sequences Vy; and Vo, of lengths n; and ny. Typically the numbers of
sampled points n; are within 15% of each other. The goal of the algorithm
is to find a sequence-correspondence mapping between the two signals. We
denote this correspondence-mapping by a sequence of ordered pairs (j, k).
The symmetric DTW algorithm which we use is a basic one. Given a
correspondence (7,7) between Vy; and V5, allowable future correspondences
include those between V1 ;41 and V3 5, V1,41 and V511, and V1 ; and Vo j41.
As a global constraint we enforce the correspondence between sequence val-
ues (1,1) and (n1,n2). The desired overall correspondence is determined
using dynamic programming to minimize the total weighted least-squared
error between the speed signal over the correspondence path, allowing for
local scale adjustment. Each pair (7, 7) therefore has a scaled squared dis-
tance associated with it, and these are simply added over the path. These
squared distances in our case are simply (Vy; — V2j)2 adjusted in two ways:

e The distances associated with correspondences of the form (i + 1, 5)
or (i,7 + 1) are weighted by a factor 0.5, while those of the form
(14 1,7 + 1) are not, during the computation of the weighted least-
squared error. This weighting guarantees that correspondence paths
which traverse routes such as (i,j5) - (i +1,7) — (i+ 1,7+ 1) or
(4,7) = (4,7 + 1) = (i + 1,7 + 1) will not be penalized relative to the
direct path (i,7) = (1 4+ 1,7 + 1) (see [K 83]).

e The speed signals are initially scaled to lie in (0,1). Furthermore,
a local rescaling takes place before distances are computed: in effect
one entire speed curve is scaled so that their local means (computed
over a window around the target points) coincide, before the distance
between the speeds in question is computed.

This latter adjustment reflects our interest in the rises and falls of the speed
function as a basis for matching, rather than the actual levels attained.

We have altered the basic algorithm by adding additional local con-
straints, which prohibit more than one horizontal or vertical move in a row.
The purpose of these local constraints is to prevent the mapping of a single
time instant in one signal to many time instants in the other signal. In par-
ticular, having these restrictions allows for much improved segmentation and
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shape analysis due to the fact that the mapping function does not distort
the original functions to the same degree as in the case of warping without
local constraints.

4.4 Affine Invariant Averaging

Here we give more details on the computations in step 6 in computing the
average letter. Recall that the L; are m x 2 matrices representing different
versions of the same letter, and with a correspondence between each of their
rows. For notational simplicity we drop the subscript £. We define the
average (preshape) letter L to be the minimizer of

J
; IL;B; — L|* (13)

over Ly,x2 and Bj. We have omitted the terms Oj, since they are trivially
estimated as 1;1,? using the centroid of L; for p;. The standard practice in
shape analysis ([G 75]) is to allow at most similarity transformations BI';
rather than general non-singular transformations B;, where I'; are orthogo-
nal rotation matrices. Forcing the B; to be similarity transformations seems
too restrictive, since an individual may not only sign bigger or smaller, but
may also squash or stretch his signature. Allowing him to alter the shear as
well seems to call for unrestricted B;. Although it would seem more natural
to have applied the transformation A; to L rather than B, to Lj, in keep-
ing with our model, the form we have chosen admits a far cleaner solution.
To avoid degeneracies we impose the constraint LTL = I, although other
equivalent constraints are possible.

If L; = Q,;R; is the Q-R decomposition of the jth letter, then it is
easy to show that the optimal B, is given by B; = RJ-_IQ]TI_J and hence
L;B; = QjQ?Ij. So at the minimum (13) is

> [let-nef’ - Yuwmn

7j=1
_ Jtr(LTML)

where M is the average of the residual projection operators M; = (I,_
QjQJT). Since each of the M; are symmetric and nonnegative, so is M.
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Now minimizing tr(LT ML) subject to LTL = I is a well known eigenvector
problem, with solution L being a basis for the eigenspace corresponding to
the two smallest eigenvalues of M. Since each of the projection operators
QjQ? has eigenvalues of zero or one, their average P has eigenvalues in
[0,1], and thus the solution also corresponds to the two largest eigenvalues

of P.

Figure 10 shows the template estimated in this fashion from five of Suresh
Goyal’s signatures.

Figure 10: The top panel shows the estimated template signature for Suresh
Goyal, based on five of his signatures. The template letters are simply placed
alongside each other, since the affine-invariant averaging leaves them loca-
tion invariant. The lower panel shows, for comparison, one of the signatures

from the training set.
Some additional features of this approach are worth noting;:

e QOur problem has a closed form solution; had we used the similarity
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transformations, an iterative solution would have been required (al-
though admittedly eigendecompositions are iterative).

The solution L is a matrix, and represents the average letter at time
points implicit for each row of the individual letters L;. In practice
we need to represent the letter as a function. A simple solution that
we have adopted is to smooth the average using the cubic smoothing
spline smoother.

Although each of the individual signatures is smooth, it may happen
that the affine invariant average is not as smooth. One can impose
a smoothness penalty on the criterion (13), by adding a quadratic
roughness penalty of the form MrL” L. A natural candidate for £2
is the integrated, second-squared-derivative matrix corresponding to a
smoothing spline. In this case the solution is a basis for the eigenspace
corresponding to the two smallest eigenvalues of JM +\{2. In practice
our unconstrained solutions are smooth enough not to require this
additional constraint. Of course the simpler but less elegant solution
is to once again smooth the columns of L.

Although our average requires an eigendecomposition of an m x m
matrix, the problem lends itself naturally to a simplified iterative so-
lution. Iterative algorithms for finding eigen-subspaces of an operator
(matrix) typically operate by repeatedly applying the matrix to the
current guess, followed by a renormalization ([GvL 83]). Although P
is m X m, it is the sum of projection operators (onto a 2-dimensional
space), and thus each can be applied in O(m) operations. The same is
true for the constrained problem outlined in the previous item, since
12 is composed of banded matrices. Our implementation uses this trick
and results in a dramatic speedup in computation time.

5 Discussion

We have tested our model on a small sample of signatures, taken from a
group of ten colleagues at AT&T Bell laboratories. Although the results
should be regarded as preliminary, they have been promising. Most forg-
ers will be detected using the dynamic aspect of the model alone—using
the distances reported by the time-warping routine. An experienced static-
signature forger has little concern for the dynamic aspect of the signature,
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and is likely to be foiled when his speed function is compared to that of
the owner of the signature. This is especially true when he has to learn
to reproduce exotic flourishes, often illegible, but consistent in the victims
signature. The signature of Suresh Goyal, on the other hand, is very even
and neatly written. A forger might do well to simply write this name in
their own natural style, and thereby mimic the speed function inherent in
cursive handwriting. The forger in the examples used in this paper did a
reasonable job, and in fact his signature segmented in much the same places
as did those of his victim. However, to mimic both the speed and shape of
the signatures proved too much in this case.

We need still to experiment with our model in many ways. Some of the
items on our agenda are:

e we need to gather statistics on a letter basis in forming our rules for
discrimination:

— Some letters have longer arc-lengths, and /or involve more recorded
points, than others. The shorter and simpler the letter, the more
eagy it is to transform it using the affine-transformations. Such
letters are likely to appear stable in the training set, and are less
likely to be detectable in the forgery.

— Some letters will vary little in the training set (even longer, less
simple ones), and will be strong candidates for discrimination;
alternatively, others will have high variance and are likely to be
poor discriminators.

— The 2 x 2 transformation matrices contain additional informa-
tion about the variability in each signature. They can be further
decomposed into rotation, scale and shear factors, and analyzed
separately.

e We are currently exploring alternative time-warping schemes, espe-
cially candidates that can be computed more efficiently.

e We plan to exercise the model on a large database of signatures, in
order to evaluate its performance with some confidence.
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