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Abstract

In regression problems where the number of predictors greatly exceeds
the number of observations, conventional regression techniques may pro-
duce unsatisfactory results. We describe a technique called supervised
principal components that can be applied to this type of problem. Su-
pervised principal components is similar to conventional principal com-
ponents analysis except that it uses a subset of the predictors that are
selected based on their association with the outcome. Supervised prin-
cipal components can be applied to regression and generalized regression
problems such as survival analysis. It compares favorably to other tech-
niques for this type of problem, and can also account for the effects of
other covariates and help identify which predictor variables are most im-
portant. We also provide asymptotic consistency results to help support
our empirical findings. These methods could become important tools for
DNA microarray data, where they may be used to more accurately diag-
nose and treat cancer.

1 Introduction

In this paper we study a method for predicting an outcome variable Y from a set
of predictor variables X1, X2, . . .Xp, measured on each of N individuals. In the
typical scenario that we have in mind, the number of measurements p is much
larger than N . In the example that motivated our work, X1, X2, . . . Xp are gene
expression measurements from DNA microarrays. The outcome Y might be a
quantitative variable, that we might assume to be normally distributed. More
commonly in microarray studies, Y is a survival time, subject to censoring.
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Figure 1: Underlying conceptual model: there are two cell types and patients with
the good cell type live longer on the average. However there is considerable overlap in
the two sets of survival times. Hence it could be advantageous, to try to uncover the
cell types and use these to predict survival time, rather than to predict survival time
directly.

One approach to this kind of problem would be a “fully supervised” method.
For example we could use a form of regression applicable when p > N ; partial
least squares (Wold 1975) would be one reasonable choice, as would be ridge
regression(Hoerl and Kennard 1970). However Figure 1 illustrates why a more
semi-supervised approach may be more effective.

We imagine that there are two cell types, and patients with the good cell
type live longer on the average. However there is considerable overlap in the
two sets of survival times. We might think of survival time as a “noisy sur-
rogate” for cell type. A fully supervised approach would give the most weight
to those genes having the strongest relationship with survival. These genes are
partially, but not perfectly, related to cell type. If we could instead discover the
underlying cell types of the patients, often reflected by a sizable signature of
genes acting together in pathways, then we would do a better job of predicting
patient survival.

Now we can extract information about important cell types from both the
relationship between Y and X1, X2, . . . Xp, and the correlation among the pre-
dictors themselves. Principal components analysis is a standard method for
modeling correlation. Regression on the first few principal components would
seem like a natural approach, but this might not always work well. The fictitious
data in Figure 2 illustrates the problem (if we were we to use only the largest
principal component). It is a heatmap display with each gene represented by
a row, and each column gives the data from one patient on one microarray.
Gene expression is coded from blue (low) to yellow (high). In this example, the
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Figure 2: Fictitious microarray data for illustration. A heatmap display with each
gene represented by a row, and each column giving the data from one patient on one
microarray. Gene expression is coded from blue (low) to yellow (high). The largest
variation is seen in the genes marked A, with the second set of 10 patients having higher
expression in these genes. The set of genes marked B show different variation, with
the 2nd and fourth blocks of patients having higher expression in these genes. At the
bottom of the display are shown the first two singular vectors (principal components)
of the matrix of expression values (red points), and the actual grouping generators
for the data (dashed lines). If the outcome is highly correlated with either principal
component, the supervised principal component technique will discover this.



1 INTRODUCTION 4

largest variation is seen in the genes marked A, with the second set of 10 pa-
tients having higher expression in these genes than the first 10. The set of genes
marked B show different variation, with the 2nd and fourth blocks of patients
having higher expression in these genes. The remainder of the genes show no
systematic variation. At the bottom of the display, the red points are the first
two singular vectors u1, u2 (principal components) of the matrix of expression
values. In microarray studies, these are sometimes called “eigengenes” (Alter
et al. 2000). (The broken lines represent the “true” grouping mechanism that
generated the data in the two groups). Now if the genes in A are strongly related
to the outcome Y , then Y will be highly correlated with the first principal com-
ponent. In this instance we would expect that a model that uses u1 to predict
Y will be very effective. However the variation in genes A might reflect some
biological process that is unrelated to the outcome Y . In that case, Y might be
more highly correlated with u2 or some higher order principal component.

The “supervised principal component” technique that we describe in this
paper is designed to uncover such structure automatically. This technique was
described in a biological setting in Bair and Tibshirani (2004), in the context of
a related method known as “supervised clustering”. The supervised principal
component idea is simple: rather than perform principal component analysis
using all of the genes in a data set, we use only those genes with the strongest
estimated correlation with Y . In the scenario of Figure 2, if Y were highly
correlated with the second principal component u2, the genes in block B would
have the highest correlation with Y . Hence we would compute the first principal
component using just these genes, and this would yield u2.

As this example shows, the use of principal components helps to uncover
groups of genes that express together. Biologically, one or more cellular pro-
cesses, accompanied by their cadre of expressing genes, determine the survival
outcome. This same model underlies other approaches to supervised learning in
microarray studies, including supervised gene shaving (Hastie et al. 2000) and
tree harvesting (Hastie, Tibshirani, Botstein and Brown 2001). The supervised
principal component procedure can be viewed as a simple way to identify the
clusters of relevant predictors by (a) selection based on scores to remove the
irrelevant sources of variation, and b) application of principal components to
identify the groups of co-expressing genes.

In the next section we define the supervised principal components procedure.
Section 3 shows an example from a lymphoma study, while in section 4 we show
how the procedure can be generalized to allow adjustment for covariates. Sec-
tion 5 describes alternative approaches to semi-supervised prediction, including
“gene shaving”, and in section 6 we present a simulation study comparing the
various methods. In section 7 we summarize the results of supervised princi-
pal components on some survival studies. Section 8 shows that the standard
principal components regression is not consistent as the sample size and num-
ber of features grow, while supervised principal components is consistent under
appropriate assumptions. We conclude with some discussion in section 8.
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2 Supervised principal components

2.1 Description

We assume there are p features measured on N observations (e.g. patients). Let
X be an N times p matrix of feature measurements (e.g. genes), and y the N -
vector of outcome measurements. We assume that the outcome is a quantitative
variable; below we discuss other types of outcomes such as censored survival
times. Here in a nutshell is the supervised principal component proposal:

Supervised principal components

1. Compute (univariate) standard regression coefficients for each feature

2. Form a reduced data matrix consisting of only those features whose uni-
variate coefficient exceeds a threshold θ in absolute value (θ is estimated
by cross-validation)

3. Compute the first (or first few) principal components of the reduced data
matrix

4. Use these principal component(s) in a regression model to predict the
outcome

We now give details of the method. Assume that the columns of X (variables)
have been centered to have mean zero. Write the singular value decomposition
of X as

X = UDVT (1)

where U,D,V are N×m, m×m and m×p respectively, and m = min(N−1, p)
is the rank of X. D is a diagonal matrix containing the singular values dj ; the
columns of U are the principal components u1, u2, . . . um; these are assumed to
be ordered so that d1 ≥ d2 ≥ . . . dm ≥ 0.

Let s be the p-vector of standardized regression coefficients for measuring
the univariate effect of each gene separately on y:

sj =
xT

j y

||xj ||
, (2)

with ||xj || =
√

xT
j xj . Actually, a scale estimate σ̂ is missing in each of the sj ,

but since it is common to all, we can omit it. Let Cθ be the collection of indices
such that |sj | > θ. We denote by Xθ the matrix consisting of the columns of X
corresponding to Cθ. The SVD of Xθ is

Xθ = UθDθV
T
θ (3)
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Letting Uθ = (uθ,1, uθ,2, . . . uθ,m), we call uθ,1 the first supervised principal
component of X, and so on. We now fit a univariate linear regression model
with response y and predictor uθ,1,

ŷspc,θ = ȳ + γ̂ · uθ,1. (4)

Note that since uθ,1 is a left singular vector of Xθ, it has mean zero and unit
norm. Hence γ̂ = uT

θ,1y, and the intercept is ȳ, the mean of y (expanded here
as a vector of such means).

We use cross-validation to estimate the best value of θ. In most examples
in this paper we consider only the first supervised principal component; in the
examples of section 7, we allow the possibility of using more than one component.

Note that from (3),

Uθ = XθVθD
−1
θ

= XθWθ. (5)

So, for example, uθ,1 is a linear combination of the columns of Xθ: uθ,1 =
Xθwθ,1. Hence our linear regression model estimate can be viewed as a restricted
linear model estimate using all the predictors in Xθ:

ŷspc,θ = ȳ + γ̂ ·Xθwθ,1 (6)

= ȳ + Xθβ̂θ, (7)

where β̂θ = γ̂wθ,1. In fact, by padding wθ,1 with zeros (corresponding to the
genes excluded by Cθ), our estimate is linear in all p genes.

Given a test feature vector x∗, we can make predictions from our regression
model as follows:

1. We center each component of x∗ using the means we derived on the train-
ing data: x∗

j ← x∗
j − x̄j .

2. ŷ∗ = ȳ + γ̂ · x∗
θ
T wθ,1 = ȳ + x∗

θ
T β̂θ,

where x∗
θ is the appropriate sub-vector of x∗.

In the case of uncorrelated predictors, it is easy to verify that the supervised
principal components procedure has the desired behavior: it yields all predictors
whose standardized univariate coefficients exceed θ in absolute value.

Our proposal is also applicable to generalized regression settings, for ex-
ample survival data, classification problems, or data typically analyzed by a
generalized linear model. In these cases we use a score statistic in place of the
standardized regression coefficients in (2) and use a proportional hazards or ap-
propriate generalized regression in (4). Let `j(β) be the log-likelihood or partial
likelihood relating the data for a single predictor Xj and the outcome y, and
let Uj(β0) = d`/dβ|β=β0

, Ij(β0) = −d2`j/dβ2|β=β0
. Then the score statistic for

predictor j has the form

sj =
Uj(0)2

Ij(0)
. (8)
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Of course for the Gaussian log-likelihood, this quantity is equivalent to the
standardized regression coefficient (2).

2.2 An underlying model

We now consider a model to support the supervised principal component method.
Suppose we have a response variable Y which is related to an underlying latent
variable U by a linear model

Y = β0 + β1U + ε. (9)

In addition, we have expression measurements on a set of genes Xj indexed by
j ∈ P , for which

Xj = α0j + α1jU + εj , j ∈ P . (10)

We also have many additional genes Xk, k 6∈ P which are independent of U .
We can think of U as a discrete or continuous aspect of a cell type, which we
do not measure directly. P represents a set of genes comprising a pathway or
process associated with this cell type, and the Xj are noisy measurements of
their gene expression. We would like to identify P , estimate U and hence fit
the prediction model (9). This is a special case of a latent structure model, or
single-component factor analysis model (Mardia et al. 1979).

The supervised principle component algorithm (SPCA) can be seen as a
method for fitting this model:

1. The screening step estimates the set P by P̂ = Cθ;

2. Given P̂ , the SVD of Xθ estimates U in (10) by the largest principal
component uθ,1;

3. finally the regression fit (4) estimates (9).

Step (1) is natural, since under assumption Y is correlated with U , and hence
through U , each of the Xj , j ∈ P is correlated with Y . Step (2) is natural if
we assume the errors εj have a Gaussian distribution, with the same variance.
In this case the SVD provides the maximum likelihood estimates for the single
factor model (Mardia et al. 1979). The regression in (3) is an obvious final step.

In fact, given P , the model defined by (9) and (10) is a special structured
case of an errors-in-variables model (Miller 1986, Huffel and Lemmerling 2002).
One could set up a joint optimization criterion

min
β0,β1,{α0,j ,α1,j},u1,...,uN

∑N
i=1(yi − β0 − β1ui)

2

σ2
Y

+
∑

j∈P

∑N
i=1(xij − α0j − α1jui)

2

σ2
X

(11)
Then it is easy to show that (11) can be solved by an augmented and weighted
SVD problem. In detail, we form the augmented data matrix

Xa = (y : X) , (12)
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assign weight ω1 = σ2
X/σ2

Y to the first column, and ωj = 1 to the rest. Then
with

v0 =




β0

α0j1
...

α0jq


 , v1 =




β1

α1j1
...

α1jq


 , (13)

(with q = |P|) the rank-1 weighted SVD Xa ≈ 1vT
0 + uvT

1 fits model (11).
While this approach might seem more principled than our two-step procedure,
SPCA has a distinct advantage. ûθ,1 = Xθwθ,1, and hence can be defined for
future x∗ data and be used for predictions. In the errors-in-variables approach,
ûEV = XAwEV , which involves y as well, and leaves no obvious estimate for
future data. We return to this model in Section 5.

This latent-variable model can be extended easily to accommodate multiple
components U1, . . . , Um. One way is to assume

Y = β0 +
M∑

m=1

βmUm + ε (14)

Xj = α0j +

M∑

m=1

α1jmUm + εj , j ∈ P . (15)

Fitting this model proceeds as before, except now we extract M rather one
principal component from Xθ. We study this model more deeply in Section 8.

2.3 An example

The SPCA model anticipates other sources of variation in the data, unrelated
to the response. In fact these sources can be even stronger than those driving
the response, to the extent that principle components would identify them first.
By guiding the principal components, SPCA extracts the desired components.

We simulated data from a scenario like that of Figure 2. We used 1000 genes
and 40 samples, all with base error model being Gaussian with unit variance.
We then defined the mean vectors µ1 and µ2 as follows. We divide the samples
into consecutive blocks of 10, denoted by the sets (a, b, c, d). Then

µ1i =

{
−2 if i ∈ a ∪ b
+2 otherwise

(16)

µ2i =

{
−1 if i ∈ a ∪ c
+1 otherwise

(17)

The first 200 genes have the mean structure µ1:

xij = µ1i + εij , j = 1, . . . , 200; i = 1, . . . , 40. (18)

The next 50 genes had mean structure µ2:

xij = µ2i + εij , j = 201, . . . , 250; i = 1, . . . , 40. (19)
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In all cases, εij ∼ N(0, 1), which is also how the remaining 750 genes are defined.
Finally the outcome is generated as yi = α · µ1i

+ (1− α) · µ2i + εi where εi is
N(0, 1). The first two principal components of X are approximately µ1 and µ2

(see Figure 2).
We tried various values of α ∈ [0, 1] as shown in Figure 3. Plotted is the cor-

relation of the supervised principal component predictor with an independent
(test set) realization of y, as θ in the screening process |sj | > θ is varied. The
number of genes surviving the screening is shown on the horizontal axis. The
extreme right end of each plot represents standard principal components regres-
sion. When α = 0, so that the outcome is correlated with the 2nd principal
component, supervised PC easily improves upon principal components regres-
sion. When α reaches 0.5, the advantage disappears, but supervised PC does
no worse than principal components regression.

2.4 Importance scores and a reduced predictor

Having derived the predictor uθ,1, how do we assess the contributions of the
p individual features? It is not true that the features that passed the screen
|sj | > θ are necessarily important or are the only important features. Instead,
we compute the importance score as the correlation between each feature and
uθ,1:

impj = cor(xj , uθ,1) (20)

Features j with large values of |impj | contribute most to the prediction of y.
Typically all p genes will have non-zero importance scores. We can take this

idea further, and look for a reduced predictor that performs as well as uθ,1. We
define

ûred =
∑

s(impj , γ) · xj (21)

where s(x, t) is the soft-threshold function sign(x)(|x|−t)+, + indicating positive
part. With γ = 0 most or all features will get non-zero weight; for larger values
of γ, features with lower values of impj get zero weight. We illustrate this idea
in the next section.

The ability of supervised principal components to build a model based on
only a small number of inputs is very important for practical applications. For
example, a predictor that requires expression measurements for a few thousand
genes is not likely to be useful in a everyday clinical settings: microarrays are
too expensive and complex for everyday use, and simpler assays like RT-PCR
can only measure 50 or 100 genes at a time. In addition, isolation of a smaller
gene set could aid in biological understanding of the disease.

3 Example: survival of lymphoma patients

This data is taken from Rosenwald et al. (2002), consisting of 240 samples from
patients with diffuse large B-cell lymphoma (DLBCL), with gene expression
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Figure 3: Correlation between the first supervised principal component uθ,1 and a test
outcome y, as the weight α given to the first principal component in the data generation
is varied. The number of genes used by the procedure is shown on the horizontal axis
in each panel. The sharp switch in the first two panels corresponds to the point at
which the order of the principal components is reversed.
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Method Z-score P-value
1st principal component -1.04 0.2940
Partial least squares 2.49 0.0130
1st supervised principal component (25 genes) -2.92 0.0023

Table 1: Lymphoma data: Test sets results for the various methods

measurements for 7399 genes. The outcome was survival time, either observed
or right censored. We randomly divided the samples into a training set of size
160 and a test set of size 80. The results of various procedures are shown in
Table 1. We used the genes with top 25 Cox scores (cutoff of 3.53) in computing
the first supervised principal component. Although PLS (described in Section 5)
provides a strong predictor of survival, the supervised principal component is
even stronger. This performance is typical, as shown in the studies of Section 6
and 7.

The left panel of Figure 4 shows the importance scores for each gene, plotted
against the raw Cox score. The two sets of scores are correlated, but are far
from identical. The right panel shows the average test set Cox score for the
top k genes, when ranked on the training set by either supervised principal
components or Cox score. Remarkably, genes ranked by the first supervised
principal component exhibit higher test set Cox scores, than those obtained
using the Cox score itself to do the ranking.

Note that methods like “significance analysis of microarrays” (Tusher et al.
2001b) use the Cox score as the basis for determining the genes that are strongly
related to survival time. Figure 4 suggests that loading of each gene on the first
supervised principal component might provide a better measure of significance
than the Cox score.

Figure 5 shows the training set Cox score for the reduced predictor (21). We
see that the best predictions can be obtained using as few as about 50 genes.
The test set p-value from this reduced model is about the same as the raw model
in the first line of Table 1. Figure 6 shows the top 50 genes and their loadings.
Details are given in the figure caption.

4 Adjustment for covariates

Typically there may be covariates measured on each of the cases, and it might
be of interest to adjust for these. For example in gene expression survival
studies, in addition to the predictors X1, X2, . . . Xp, we might have available
covariates z = (z1, z2, . . . zk) such as tumor stage and tumor type. There might
be interest in finding gene expression predictors that work independently of
stage and tumor; that is, having adjusted for these factors, the gene expression
predictor is still strongly related to survival.

The supervised principal component procedure can be easily generalized to
incorporate covariate adjustment. Obviously we want to include the covariates
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Figure 4: Lymphoma data: left panel shows the importance scores for each gene,
plotted against the raw Cox score. The two sets of scores are correlated, but are far
from identical. The right panel shows the average test set Cox score for the top k

genes, when ranked on the training set by either supervised principal components or
Cox score.

•••••••••••••••••••••••••••••••
•••••••••••••••••

••••••
•••••••••••••••••••••

•••••••••••••••••••••••••

0 2 4 6 8 10

3.
0

3.
5

4.
0

4.
5

5.
0

3430 1211 545 297 170 115 69 45 30 10 5 4 2 1

PSfrag replacements

θ

T
ra

in
in

g
S
et

z
S
co

re

Figure 5: Lymphoma data: training set Cox score for the reduced predictor (21),
as the threshold θ is varied. The corresponding number of genes used in the reduced
predictor is shown along the top of the figure.



4 ADJUSTMENT FOR COVARIATES 13

0

0

Survival time

SPC

−5 10

10
20

30
40

1:
50

Figure 6: Lymphoma data: heatmap display of the top 50 genes. The top two rows
of the figure show the observed survival times and first supervised principal component
(SPC) uθ,1; for survival times T censored at time c, we show Ê(T |T ≥ c) based on
the Kaplan-Meier estimator. All columns have been sorted by increasing value of uθ,1.
On the right of the heatmap the “loadings” wθ,1 are shown (see (6)); the genes (rows)
are sorted by decreasing value of their loading. All genes but the last one have positive
loadings.
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z in the final regression (4). However we can potentially do better by adjusting
the predictor scores to account for the covariates z. In the case of the linear
regression model, these adjusted scores are the usual t-statistics associated with
the coefficient for xj in a joint linear-model fit of y on z and xj .

For likelihood models, we use the Rao score statistics, which generalize these
(and are the square of the t-statistics above). In detail, we denote by `j(β1, β2).
the log-likelihood for the model relating the outcome to predictor j and z, and
Uj(β1, β2) and Ij(β1, β2) the corresponding gradient and information matrix.
Here parameters β1 and β2 relate to predictor j and z respectively. Then in
place of the log-likelihood score (8) we use the adjusted score

s′j = Uj(0, β̂2)
T Ij(0, β̂2)Uj(0, β̂2) (22)

where β̂2 is the maximum likelihood estimator of β2. Large values of s′j corre-
spond to predictors that are strongly related to the outcome, having adjusted
for z. We then use these scores to define an adjusted first principal component
score.

Figure 7 shows the result of applying this procedure to the DLBCL data,
with z chosen to be the International Prognostic Index (IPI), a standard clinical
risk score, graded as “low”, “medium” or “high”. In the left column we have
stratified the (unadjusted) first principal component score into two groups, by
cutting at its median. The survival curves in each IPI group are shown. The
right column displays the survival curves using the adjusted first principal com-
ponent. The gap between the pairs of curves is similar for the low and medium
IPI groups, but is clearly larger for the high IPI group using the adjusted score.
These curves are computed on the training set and so could be the result of
over-fitting. In the test set there were very few patients in the high IPI group
and we found no real differences between the adjusted and unadjusted analysis.

5 Some alternative approaches

In this section we discuss some alternative approaches to this problem: some
classical, and some reflecting other approaches we have explored.

Ridge regression

Ridge regression (Hoerl and Kennard 1970) is a classical regression procedure
when there are many correlated predictors, and one that could reasonably be
applied in the present setting. Ridge regression fits the full linear regression
model, but manages the large number of predictors in these genomic settings
by regularization (Hastie and Tibshirani 2003). Ridge regression solves

min
β
||y − β0 −Xβ||2 + λ||β||2, (23)

where the second term shrinks the coefficients toward zero. The regularization
parameter λ controls the amount of shrinkage, and for even the smallest λ > 0,
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Figure 7: Adjusting for IPI in the lymphoma data. In the left column we have stratified
the (unadjusted) first principal component score into two groups, by cutting at its
median. The survival curves in each IPI group are shown. The right column displays
the survival curves using the adjusted first principal component.
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the solution is defined and is unique. It can also be shown that this form of
regularizations shrinks the coefficients of strongly correlated predictors toward
each other, an attractive property in this setting.

Using the singular value representation (1), the fitted values from a ridge
regression have the form

ŷRR = ȳ + X(XT X + λI)−1Xy

= ȳ +

m∑

j=1

uj

d2
j

d2
j + λ

uT
j y. (24)

Ridge regression is like a smooth version of principal components regression;
rather than retaining the first k principal components and discarding the rest,
it weights the successive components by a factor that decreases with decreas-
ing eigenvalue d2

j . Note that ridge regression is a linear method, i.e ŷRR is
a linear function of y; in contrast, SPCA is non-linear, because of the initial
gene-selection step.

We now consider several approaches to supervised principal components that
modify the optimization criterion behind PCA in a supervisory fashion.

Partial least squares

Partial Least Squares (PLS) is one such approach, with a long history (Wold
1975, Frank and Friedman 1993, Hastie, Tibshirani and Friedman 2001). PLS
works as follows

1. Standardize each of the variables to have zero mean and unit norm, and
compute the univariate regression coefficients w = XT y.

2. define uPLS = Xw, and use it in a linear regression model with y.

Although PLS goes on to find subsequent orthogonal components, one is suf-
ficient for our purposes here. PLS explicitly uses y in estimating its latent
variable. Interestingly, it can be shown that the (normalized) w in PLS solves
(Frank and Friedman 1993)

max
||w||=1

Corr2(y,Xw)Var(Xw), (25)

a compromise between regression and PCA. We include PLS among the com-
petitors in our comparisons in the next sections.

Mixed variance-covariance criterion

The largest principal component is that normalized linear combination z = Xv
of the genes with the largest sample variance. Another way to supervise this
would be to seek a linear combination z = Xv having both large variance and
a large (squared) covariance with y, leading to the compromise criterion

max
||v||=1

(1− α)Var(z) + αCov(z, y)2 s.t. z = Xv. (26)
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This is equivalent to

max
||v||=1

(1− α)vT XT Xv + αvT XT yyT Xv (27)

If y is normalized to unit norm, then the second term in (27) is a regression
sum of squares (regressing z on y), and has the interpretation “the variance of
z explained by y”. The solution v can be efficiently computed as the first right
singular vector of the augmented (N + 1)× p matrix

Xa =

(
(1− α)

1

2 X

α
1

2 yT X

)
(28)

By varying the mixing parameter α we control the amount of supervision. Al-
though the mixed criterion can guide the sequence of eigenvectors, all genes
have non-zero loadings which adds a lot of variance to the solution.

Supervised gene shaving

Hastie et al. (2000) proposed “gene shaving” as a method for clustering genes.
The primary focus of their method was to find small clusters of highly correlated
genes, whose average exhibited strong variance over the samples. They achieved
this through an iterative procedure, which repeatedly computed the largest
principal component of a subset of the genes, but after each iteration “shaved”
away a fraction of the genes with small loadings. This produces a sequence of
nested subsets of gene clusters, with successively stronger pairwise correlation
and variance of the largest principal component.

They also proposed a supervised version of gene shaving, which uses pre-
cisely a mixed criterion of the form (27). Although this method has two tuning
parameters, α and the subset size, here we fix α to the intermediate value of 0.5
and focus attention on the subset size. As in SPCA, for each subset the largest
principal component is used to represent its genes.

This method is similar in flavor SPCA; it produces principal components
of subset of genes, where the choice of subset is supervised. Simultaneously
searching for sparse components with high variance and correlation with y is
an attempt to omit features that might slip through the SPCA screening step.
Our experiments in the next section show that shaving can exhibit very similar
performance to SPCA, the latter having the advantage of being simpler to define,
and only one tuning parameter to select.

Another mixed criterion

The largest normalized principal component u1 is the largest eigenvector of
XXT . This follows easily from the SVD (1) and hence XXT = UD2UT .
Intuitively, since

uT
1 XXT u1 =

p∑

j=1

〈u1, xj〉2, (29)
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we are seeking the vector u1 closest on average to each of the xj . A natural
supervised modification is to perturb this criterion in a manner that encourages
the leading eigenvector to align with y:

max
u1,||u1||=1

(1− α)

p∑

j=1

〈u1, xj〉2 + α〈u1, y〉2 (30)

Solving (30) amounts to finding the largest eigenvector of

C(y; α) = (1− α)XXT + αyyT . (31)

Equivalently, one could form an augmented matrix Xa with y in the (p +
1)st column. If we assign weights α to this row and (1 − α) to first p rows,
then a weighted singular value decomposition of Xa is equivalent to an eigen-
decomposition of (30). We note that this is exactly the situation described in
the errors-in-variables model (11)–(13) in Section 2.2. As mentioned there, the
estimate u1 involves y as well as the xj , so cannot be used directly with test
data. This approach was not pursued further.

Discussion of methods

Figure 8 illustrates the methods discussed above on a simulation example with
N = 100 samples and p = 5000 features. The data are generated according
to the latent-variable model (34), where there are 4 dominant principal com-
ponents, and the one associated with the response is ranked number 3 (when
estimated from the data). The methods are identified in the figure caption.
The leftmost M point corresponds to principal component regression using the
largest PC. SPCA and shaving do much better than the other methods.

Figure 9 gives us a clue to what is going on. Shown are the first 1000 of 5000
feature loadings for two of the methods demonstrated in Figure 8 (chosen at the
best solution points). Both methods correctly identified the important compo-
nent (the one related to y involving the first 50 features). In a regular SVD of X
this important component was dominated by two other components. In detail,
the training data from model (34) has four built-in components, with singular
values computed to be 99.9, 88.3, 80.9 and 80.5 respectively. Empirically, we
verified that component three is identified with the response mechanism, but its
singular value is just above the noise level (the fifth singular value was 79.2).
However, the mixed criterion also brings with it noisy coefficients, somewhat
smaller, for ALL the other variables, while SPCA sets most of the other load-
ings to zero. The coefficients for shaving show a very similar pattern to SPCA,
while those for ridge and PLS are very similar to the mixed criterion, and are
not shown here.

Our experience on many similar examples is much the same, although the
shaving method occasionally gets the wrong component completely. SPCA
tends to be more reliable, is simpler to define, and hence our method of choice.
The simulations in the next section support this choice as well.
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Figure 8: One simulation example illustrating typical behavior of the different methods.
The data are generated according to the model (34) described in the next section, with
N = 100 and p = 5000. Ridge regression, PLS, and the mixed criterion all suffer from
the very high dimensions. Although not shown, the regularization parameter λ for the
ridge points increases to the right, as does the α for the mixed criterion, the leftmost
value being 0. Both shaving and SPCA are indexed by subset size. The line labeled
“truth” uses the known linear combination of 50 features as the regression predictor.

6 Simulation studies

We performed two simulation studies to compare the performance of the meth-
ods that we have considered. Each simulated data set X consisted of 5000
“genes” (rows) and 100 “patients” (columns). Let xij denote the “expression
level” of the ith gene and jth patient. In the first study we generated the data
as follows:

xij =





3 + εij if i ≤ 50, j ≤ 50

4 + εij if i ≤ 50, j > 50

3.5 + εij if i > 51

(32)

where the εij are independent normal random variables with mean 0 and vari-
ance 1. We also let

yj =

∑50
i=1 xij

25
+ εj (33)

where the εj ’s are independent normal random variables with mean 0 and stan-
dard deviation 1.5.

We designed this simulation so that there are two “tumor subclasses.” Pa-
tients 1 through 50 belong to “class 1,” and patients 51 through 100 belong to
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Figure 9: Feature loadings w for SPCA (left plot), and the mixed criterion (27)
(right plot). The first 1000 of 5000 are shown, at the “best” solution point. The
vertical line indicates that the first 50 variables generated the response. While both
these methods were able to overwhelm the first two dominant principal components
(which were unrelated to y), SPCA is able to ignore the majority of variables, while
the mixed criterion gives them all weight, albeit more weight to the first 50.

“class 2.” The first 50 genes have slightly lower average expression levels in the
patients with tumor class 1. Furthermore, since y is proportional to the sum
of the expression level of the first 50 genes, y is slightly lower for patients with
tumor class 1. The other 4950 genes are unrelated to y.

We applied seven methods to this simulated data set: (1) principal compo-
nents regression, (2) principal components regression using only the first prin-
cipal component, (3) partial least squares (one direction), (4) ridge regression
(see e.g. Hastie, Tibshirani and Friedman (2001), chapter 3), (5) supervised
principal components, (6) mixd variance-covariance, and (7) gene shaving. We
trained each of these models using a simulated data set generated as we de-
scribed above. We select the optimal value of the tuning parameters for each
method using 10-fold cross-validation. Then we used the same procedure to
generate an independent test data set and used the models we built to predict
y on the test data set. We repeated this procedure 10 times and averaged the
results. Table 2 shows the errors produced by each model.

We see that gene shaving and supervised principal components produced
smaller cross-validation and test errors than any of the other methods, with
the former holding a small edge. Principal components regression and partial
least squares gave comparable results (although principal components regression
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Method CV Error Test Error
PCR 290.5 (10.18) 227.0 (7.36)

PCR-1 315.3 (12.43) 252.1 (8.76)
PLS 284.9 (10.04) 219.8 (7.43)

Ridge regression 291.3 (10.94) 226.3 (7.89)
Supervised PC 242.0 (10.32) 184.6 (7.36)
Mixed var-cov. 282.5 (11.07) 221.6 (7.24)
Gene shaving 219.6 (8.34) 163.0 (4.34)

Table 2: Results of the simulation study based on the “easy” simulated data. Each
entry in the table represents the squared error of the the test set predictions averaged
over 10 simulations. The standard error of each error estimate is in parentheses.
The prediction methods are: (1) principal components regression, (2) principal com-
ponents regression restricted to using only one principal component, (3) partial least
squares, (4) ridge regression, (5) supervised principal components, (6) mixed variance-
covariance, and and (7) gene shaving.

performed slightly worse when restricted to one component).
Next, we generated a “harder” simulated data set. In this simulation, we

generated each xij as follows:

xij =





3 + εij if i ≤ 50, j ≤ 50

4 + εij if i ≤ 50, j > 50

3.5 + 1.5 · I(u1j < 0.4) + εij if 51 ≤ i ≤ 100

3.5 + 0.5 · I(u2j < 0.7) + εij if 101 ≤ i ≤ 200

3.5− 1.5 · I(u3j < 0.3) + εij if 201 ≤ i ≤ 300

3.5 + εij if i > 301

(34)

Here the uij are uniform random variables on (0, 1) and I(x) is an indicator
function. For example, for each of the genes 51–100, a single value u1j is gener-
ated for sample j; if this value is larger than 0.4, then all the genes in that block
get 1.5 added. The motivation for this simulation is that there are other clusters
of genes with similar expression patterns that are unrelated to y. This is likely
to be the case in real microarray data, since there are pathways of genes (that
probably have similar expression patterns) that are not related to y. Figures 8
and 9 illustrate some of the methods applied to a realization from this model.

We repeated the experiment described above using (34) to generate the data
sets instead of (32). The results are given in Table 3. Most of the methods
performed worse in this “harder” experiment. Once again gene shaving and
supervised principal components produced smaller errors than any of the com-
peting methods; gene shaving shows much more variability than supervised
principal components in this case.
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Method CV Error Test Error
PCR 301.3 (14.47) 303.3 (8.30)

PCR-1 318.7 (14.90) 329.9 (10.79)
PLS 308.3 (15.12) 300.0 (7.22)

Ridge regression 312.5 (14.50) 303.5 (8.30)
Supervised PC 231.3 (11.07) 255.8 (6.68)
Mixed var-cov. 301.6 (14.05) 303.1 (5.53)
Gene shaving 228.9 (12.02) 258.5 (11.35)

Table 3: Results of the simulation study based on the “hard” simulated data. Each
entry in the table represents the squared error of the the test set predictions averaged
over 10 simulations. The standard error of each error estimate is in parentheses. The
prediction methods are the same as in the previous table.

7 Application to various survival studies

Here we compare several methods for performing survival analysis on real DNA
microarray data sets.[Some of these results are also reported in Bair and Tib-
shirani (2004)]. We applied the methods to four different data sets. First,
we examined a microarray data set consisting of diffuse large B-cell lymphoma
(DLBCL) patients (Rosenwald et al. 2002). There are 7399 genes, 160 training
patients and 80 test patients in this data set. Second, we considered a breast
cancer data set (van ’t Veer et al. 2002). There were 4751 genes and 97 patients
in this data set. We partitioned this data set into a training set of 44 patients
and a test set of 53 patients.

Next, we examined a lung cancer data set (Beer et al. 2002). There were 7129
genes and 86 patients, which we partitioned into a training set of 43 patients
and a test set of 43 patients. Finally, we considered a data set of acute myeloid
leukemia (AML) patients (Bullinger et al. 2004). It consisted of 6283 genes and
116 patients. This data set was partitioned into a training set of 59 patients
and a test set of 53 patients.

In addition to supervised principal components, we examined the following
methods: principal components regression, partial least squares, and two other
methods that we call “median cut,” and “clustering-Cox”, described in (Bair
and Tibshirani 2004). Both of these methods turn the problem into a two-class
classification problem and then apply the nearest shrunken centroid classifier
of Tibshirani et al. (2001). The median cut method stratifies the patients into
high or low risk, depending on whether they survived past the median survival
time. The “clustering-Cox” method is like supervised principal components,
using 2-means clustering applied to the genes with highest Cox scores.

For methods (3), (4) and (5), we allowed the possibility of using more than
component, and chose this number by cross-validation. The results are shown
in Table 4. Supervised principal components again performs better than the
competing methods.
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(a) DLBCL (b) Breast Cancer
Method R2 p-val NC R2 p-val NC
(1) Median Cut 0.05 0.047 0.13 0.0042
(2) Clustering-Cox 0.08 0.006 0.21 0.0001
(3) SPCA 0.11 0.003 2 0.27 2.1 × 10−5 1
(4) PC Regression 0.01 0.024 2 0.22 0.0003 3
(5) PLS 0.10 0.004 3 0.18 0.0003 1

(c) Lung Cancer (d) AML
Method R2 p-val NC R2 p-val NC
(1) Median Cut 0.15 0.0016 0.07 0.0487
(2) Clustering-Cox 0.07 0.0499 0.08 0.0309
(3) SPCA 0.36 1.5 × 10−7 3 0.16 0.0013 3
(4) PC Regression 0.11 0.0156 1 0.08 0.0376 1
(5) PLS 0.18 0.0044 1 0.07 0.0489 1

Table 4: Comparison of the different methods on four different datasets from cancer
studies. The methods are (1) Assigning samples to a “low-risk” or “high-risk” group
based on their median survival time. (2) Using 2-means clustering based on the genes
with the largest Cox scores. (3) Using the supervised principal components method.
(4) Using principal components regression. (5) Using partial least squares regression.
Table lists the R2 (proportion of log-likelihood explained) and p-values for the test set
predictions as well as the number of components used.

8 Consistency of supervised principal compo-

nents

In this section we show that the standard principal components regression is
not consistent as the sample size and number of features grow, while supervised
principal components is consistent under appropriate assumptions.

8.1 Setup

Suppose that the rows of X are independent and identically distributed. Then
one can formulate a population model as follows. Denoting the rows by XT

i

(i = 1, ..., N) we have the model :

Xi
i.i.d.∼ Np(µ, Σ)

where Σ (p × p) is the covariance matrix. Without loss of generality we shall
assume µ = 0, since it can be quite accurately estimated from data.

Suppose X is partitioned as X = (X1,X2) where X1 is N × p1 and X2 is
N × p2 with p1 + p2 = p. We assume that the corresponding partition of Σ is
given by

Σ =

[
Σ1 O
O Σ2

]
(35)
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Suppose further that we can represent Σ1 (p1 × p1) as

Σ1 =

M∑

k=1

λkθkθT
k + σ2I (36)

where θk (k = 1, ..., M) are mutually orthonormal eigenvectors and the eigen-
values λ1 ≥ . . . ≥ λM > 0. σ2 > 0 represents the contribution of (isotropic)
“background noise” that is unrelated to the interactions among genes. This
model can be described as a covariance model for gene expressions that is an
M -rank perturbation of identity. Here 1 ≤M ≤ p1 − 1.

Our assumption is that X1 is the matrix containing all the columns whose
variations are related to the variations in y. First we assume that the selection
procedure is such that it selects X1 with probability 1. In section 8.5 we consider
the more realistic scenario in which we estimate this subspace from the data.
Our key assumptions regarding the matrix Σ1 are the following.

A1 The eigenvalues of Σ1 satisfy the identifiability condition :

λ1 > . . . > λM > 0

and M is a fixed positive integer.

A2 p1 →∞ as N increases to infinity in such a way that p1

N → 0.

Note that p1 could as well be fixed, but if not, our result still holds provided
that A2 holds. We may also let σ2 and λk’s vary with N . However, then we
need to replace conditions A1 and A2 by

A1’ The eigenvalues are such that λk

λ1

→ ρk for k = 1, . . . , M with 1 = ρ1 >

ρ2 > . . . > ρM > 0 and λ1 → c > 0 as N → ∞. Moreover, σ2 → σ2
0 ∈

[0,∞) as N →∞.

A2’ p1 varies with N in such a way that σ2p1(log N)2

Nλ1

→ 0 as N →∞.

8.2 The underlying regression model

In this setting we can denote the rows of X1 by XT
i , i = 1, . . . , N and express

them as

Xi =

M∑

k=1

ηik

√
λkθk + σwi, i = 1, . . . , N (37)

where ηik are i.i.d. N(0, 1) random variables, wi are i.i.d. Np(0, I) random vec-
tors and η’s and w’s are independent. Let ηk denote the vector (η1k, . . . , ηNk)T .

Observe that this model and the model for response (described in (39) below)
are closely related to the latent variables model considered in Section 2.2 (cf.
equations (9), (9), (14) and (15). However for identifiability purposes we now
require that ηk’s be uncorrelated, which was not necessary for the analogous
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variables Um’s in eqn. (15). In essence our results are stronger than we might
need in actual practice: we prove the consistency of not just the latent variance
subspace but also that of its separate components.

Remark : Notice that conditions A1’ and A2’ make allowance for the possi-
bility that λ1

σ2 → ∞ and p1

N converges to a positive limit. This particular fact
becomes relevant when we try to connect to the scenario that we describe now.
Suppose M = 1, and as before let P be the genes forming the columns of matrix
X1. Then |P| = p1, and

Xij =
√

λ1θj1ηi1 + σwij , j ∈ P

represent the expression for the genes in the set P of i-th array (replicate),
i = 1, . . . , N . (Compare with eqn. (10) in Section 2.2). In this case, if

√
λ1θj1

is of roughly the same magnitude for all j ∈ P , then λ1 ∼ p1 as p1 →∞. Even
otherwise, it is reasonable to think that the “signal-to-noise ratio” λ1

σ2 is going
to ∞ as p1 → ∞, since the presence of larger number of genes associated with
a common latent factor yields a greater amount of information.

Suppose the singular value decomposition of X1 is given by

X1 = UDV T where U is N×m, D is m×m and V is p1×m, with m = min(N, p1).
(38)

Here N is the number of observations (patients) and p1 is the dimension (number
of genes). Let u1, . . . , um denote the columns of U and v1, . . . , vm denote the

columns of V . For obvious reasons we set θ̂k = vk, k = 1, . . . , M . Also, we
denote the diagonal elements of D by d1 > . . . > dm.

The model for the outcome is:

y = β0
1√
N

1 +

K∑

k=1

βk
1√
N

ηk + Z (39)

where K ≤ M , 1 is the vector with 1 in each coordinate, and Z ∼ NN(0, τ2

N I)
independent of X for some τ ∈ [0,∞).

Remark : Note that we could as well have described the model in terms of
similar quantities for the full data set, i.e. X (correspondingly Σ). There are
two difficulties associated with this formulation. First, it is not at all likely
that all the systematic variation in the gene expressions is associated with the
variation in the response. So even if model (35) and (36) were true, there is no
guarantee that the largest K eigenvalues of Σ are the largest K eigenvalues of
Σ1. This will result in spurious (i.e., unrelated to the response y) components
being added to the model.

The second issue is to do with the accuracy of estimation. Since typically
p is very large, in fact much larger than, or at least comparable to, the sample
size N , it is almost never going to be the case that assumption A2’ is satisfied
(with p1 replaced by p). But the assumption for p1 is reasonable since only a
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few genes are expected to be associated with a certain type of disease. Violation
of this condition results in an inconsistency in the estimates of θk. (Details in
the next section). So the procedure of selecting the genes before performing the
PCA regression is not only sensible, it is in effect necessary.

8.3 Results on estimation of θk and λk

In order to discuss consistency of the eigenvectors θk we consider the quan-
tity dist(θ̂k, θk) where dist is a distance measure between two vectors on the
p1-dimensional unit sphere. One can either choose dist(a, b) = ∠(a, b) or
dist(a, b) =‖ a− sign(aT b) · b ‖2 for a, b ∈ S

p1 .
First suppose we perform PCA on the full data set X and estimate θk by

θ̃k, the restriction of the k-th right singular vector of X to the coordinates
corresponding to the set X1. Then the following result asserts that if p is very
large, then we may not have consistency.

Theorem 1 (Lu 2002), (Johnstone and Lu 2004): Suppose A1 holds (and
assume that σ2 and λk’s are fixed) and p

N → γ ∈ (0,∞) as N →∞. Then

dist(θ̃k, θk) 6→ 0 in probability as N →∞

i.e., the usual PCA based estimate of θk is inconsistent.

Under the same conditions as in Theorem 1, the sample eigenvalues are also
inconsistent estimates for the populations eigenvalues. However, the behavior
is rather complicated.

From now onwards we treat exclusively the singular value decomposition of
X1. We denote the PCA-based estimate of the k-th largest eigenvalue of Σ1

by ̂̀
k, k = 1, 2, . . . , m. Observe that ̂̀

k = 1
N d2

k. The corresponding population
quantity is `k := λk + σ2.

A natural estimator of λk is λ̂k = max{̂̀k − σ2, 0} if σ2 is known. However,
if σ2 is unknown one can estimate this by various strategies. One approach is
to use the median of the diagonal elements of 1

N XT
1 X1 as a (usually biased)

estimate of σ2 and then define λ̂k = max{̂̀k − σ̂2, 0}.
Next we establish consistency for principal components analysis restricted

to the matrix X1.

Theorem 2 (Paul 2004):

• Suppose that conditions A1’ and A2’ hold. Then

dist(θ̂k, θk) = OP




√
σ2p1

Nλ1


 as N →∞

If moreover, λ1

σ2 →∞, then ̂̀
k = λk(1 + oP (1)).
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• If σ2 and λk’s are fixed and A1 and A2 hold then

dist(θ̂k, θk) = OP

(√
p1

N

)
and ̂̀

k
P→ `k = λk+σ2 as N →∞

8.4 Estimation of βk

In this section we discuss the estimation of the parameters βk, k = 1. . . . , K.
To simplify matters we shall treat σ2 and λk ’s to be fixed and assume that A1
and A2 hold.

Suppose either σ2 is known or a consistent estimate σ̂2 is available. Then
define λ̂k = max{̂̀k−σ2, 0}. Let uk be as before and define ũk as 1√

bλk

1√
N

X1vk

if λ̂k > 0, and as any fixed unit vector (say (1, 0, . . . , 0)T ) otherwise. Define an

estimate of βk (for 1 ≤ k ≤ K) as β̃k = ũT
k y. One can compare its performance

with another estimate β̂k = uT
k y with uk as before. Also, define β̂0 = β̃0 =

1√
N

∑N
j=1 yj .

Observe that

uk =
1

dk
X1vk = (̂̀k)−1/2 1√

N
X1θ̂k = (̂̀k)−1/2

[
M∑

l=1

√
λl(θ

T
l θ̂k)

1√
N

ηl +
σ√
N

Wθ̂k

]

where W is the N × p1 matrix whose rows are wT
i (i = 1, . . . , N). Then since

θ̂k = θk + εk (as a convention assuming θ̂T
k θk > 0) where ‖ εk ‖2= OP (

√
p1

N ),

uk =

√
λk√

λk + σ2

1√
N

ηk(1 + oP (1)) +
σ√

λk + σ2

1√
N

Wθk(1 + oP (1)) + δk (40)

where ‖ δk ‖2= OP (
√

p1

N ). To prove this last statement we only need to use
Theorem 2 together with the well-known fact that ‖ 1

N W T W ‖2= 1 + oP (1)
(for an easy proof see Paul (2004)), since

‖ 1√
N

Wεk ‖22 ≤ ‖ 1

N
W T W ‖2‖ εk ‖22= OP (

p1

N
),

and |εT
k θl| ≤ ‖ εk ‖2‖ θl ‖2= OP (

√
p1

N
), for 1 ≤ l 6= k ≤M,

and finally, ‖ ηl ‖2=
√

N(1 + oP (1)) for all l = 1, . . . , M .
From this it follows that

ũk =
1√
N

ηk(1 + o(1)) +
σ√
λk

1√
N

Wθk(1 + o(1)) + δ̃k (41)

where ‖ δ̃k ‖2= OP (
√

p1

N ). Note that the vectors {Wθk : k = 1, . . . , M} are
independent NN (0, I) and independent of {ηk : k = 1, . . . , M} since θk’s are
mutually orthonormal.
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To establish consistency of β̃k, 1 ≤ k ≤ K note that

β̃k = β0
1√
N

ũT
k 1 +

K∑

l=1

βl
1

N
[(ηk +

σ√
λk

Wθk)(1 + oP (1)) +
√

Nδ̃k]T ηl + ũT
k Z (by (41))

= β0(OP (
1√
N

) + oP (1)) + βk(1 + oP (1) + δ̃T
k

1√
N

ηk)

+
∑

l6=k

βl(OP (
1√
N

) + δ̃T
k

1√
N

ηl) + OP (
1√
N

)

= βk(1 + oP (1))

since 1
N ηT

k ηl = OP ( 1√
N

) if k 6= l, and 1
N ηT

l Wθk = OP ( 1√
N

) for all k, l (by

independence), ‖ δ̃k ‖2= oP (1), and ũT
k Z =‖ ũk ‖2 〈 euk

‖euk‖2

, Z〉. Note that the

second term in the last product is a N(0, τ2

N ) random variable and the first term

is
√

λk+σ2

λk
(1 + oP (1)) by (41).

It is easy to verify that β̂0 = β0(1 + oP (1)). However, from the above

analysis it is clear that the estimator β̂k = uT
k y, for 1 ≤ k ≤ K, is not consistent

in general. In fact β̂k =
√

λk

λk+σ2 βk(1 + oP (1)) when λk’s and σ2 are fixed.

However, as we indicated in the remark following equation (37), it is reasonable
to assume that λ1

σ2 → ∞ as p1, N → ∞. This will ensure (via the first part of

Theorem 2) that the factor
√

λk

b̀
k

→ 1 in probability as N → ∞ when A1’

and A2’ hold. And therefore we shall have β̂k = βk(1 + oP (1)) for 1 ≤ k ≤ K.
This in a way validates the claim that having more genes (larger p1) associated
with a common latent factor gives better predictability.

8.5 Consistency of the coordinate selection scheme

Until now we have been working under the assumption that we are capable of
selecting X1 exactly (or a superset with few spurious coordinates) and therefore
treating these coordinates as fixed. However, when one employs a coordinate
selection scheme, in order that the theoretical analysis to go through, we have
to assume that at least asymptotically the selection scheme described in the
paper is “consistent” (we elaborate on it later), and that the selection is made
on an independent sample so that there is no selection bias involved. This last
requirement is desirable because otherwise one will come across difficulties aris-
ing due to complex dependency structures, and even the notion of consistency
will becomes somewhat more complicated since the set of selected coordinates
itself is a random quantity. In practice, at least for N moderately large, this is
not a big problem because of the massive averaging that goes on in the PCA
step.

The issue of consistency of a coordinate selection scheme is rather tricky.
Let us first consider the case when p1 < ∞ is fixed (that is does not change
with growing N). In this case by consistency we mean being able to select the
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set of p1 coordinates that determine (35) and discarding all the coordinates that
are not a part of this subset.

Now suppose p1 is growing with N . In this case Σ1 (and Σ2) are matrices
of growing dimension satisfying (35) and (36) such that model (39) also holds.
Now the issue becomes complicated because, since each eigenvector is of unit
norm, inevitably certain coordinates will tend to zero as N and p1 increase.
This will prevent a coordinate selection sheme from selecting all the “signifi-
cant” coordinates. In this context “consistency” of a selection scheme should
be treated as equivalent to ensuring consistency of the estimators of first K
eigenvectors and eigenvalues. This boils down to being able to recover all the
“big” coordinates (i.e., the coordinates with large value for at least one among
{
√

λkθk : k = 1, . . . , K}) among the first p1 (under appropriate “mild” restric-
tions on the vectors {θk : k = 1, . . . , K}). A proof of this nontrivial fact is
provided in (Paul 2004).

Let us see what the selection scheme in this paper attempts to recover. Since
the rows of X2 are independent Np2

(0, Σ2) r.v. independent of X1, invoking
(37), we can express s = XT y in the following form

s =

[
(
∑M

k=1

√
λkθkηT

k + σW T )y

Σ
1/2
2 Cy

]
(42)

where C is a p2 ×N matrix whose entries are i.i.d. N(0, 1) independent of X1

and Z (and hence y). Observe that W T is independent of y.
This shows that if we consider the j-th element of s for 1 ≤ j ≤ p1, then

1√
N

sj =
1

N
(

M∑

k=1

√
λkθjkηT

k )(β01 +

K∑

k′=1

βk′ηk′ +
√

NZ) +
σ√
N

(W T y)j

= β0

M∑

k=1

√
λkθjkOP (

1√
N

) +

K∑

k=1

βk

√
λkθjk(1 + OP (

1√
N

))

+

M∑

k=1

√
λkθjk

K∑

k′ 6=k

βk′OP (
1√
N

) + σ(

K∑

k=0

βk)OP (
1√
N

)

=

K∑

k=1

βk

√
λkθjk + OP (

1√
N

)

On the other hand, if p1 + 1 ≤ j ≤ p then assuming that ‖ Σ2 ‖2 is bounded
above

1√
N

sj =
1√
N

(Σ
1/2
2 Cy)j = (Σ

1/2
2 )T

j

1√
N

Cy = OP (
1√
N

)

Thus, in order that the “signal” ζK
j :=

∑K
k=1 βk

√
λkθjk is detectable, it must

be � 1√
N

. Large deviation bounds suggest that we can recover with enough

accuracy only those coordinates j for which |ζK
j | ≥ c0

√
log N

N for some constant

c0 > 0 (which depends on σ, λk’s and βk’s and ‖ Σ2 ‖2).
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Potentially, a lot of ζK
j could be smaller than that and hence those coordi-

nates will not be selected with a high probability. If we make the threshold too
small we will include a lot of “fake” coordinates (i.e., the ones with j > p1) and
that can spell trouble in various ways that we discussed already.

If K = 1, j-th component of the signal vector ζK is proportional to
√

λ1θj1.
So the scheme will select only those coordinates j for which

√
λ1|θj1| is big.

This may not exhaust the set {1, . . . , p1}, but as far as consistent estimation of
θ1 and λ1 is concerned, this is adequate. Thus, when K = 1 the coordinate
selection scheme is consistent.

In the case K > 1, a simple argument shows that there is no guarantee
that the selection strategy is consistent. In other words, even when at least
one of the entries among

√
λ1θj1, . . . ,

√
λKθjK is quite big, we may miss that

coordinate. This has to do with the fact that we are focussing on one specific
linear combination of these numbers. A remedy, involving K different linear
combinations, can be easily worked out as a generalization of our coordinate
selection scheme. But since we have no occasion to use it in our paper, we omit
the details.

9 Discussion

Supervised principal components represents a promising tool for prediction in
regression and generalized regression problems. Here we have explored its ap-
plication to gene expression studies.

Cancer diagnosis and prognosis is an especially important area for which gene
expression studies hold promise. It is often difficult to choose the appropriate
treatment for cancer patients. Cancer is a life-threatening disease, so it must
be treated aggressively. However, the most aggressive possible treatment is not
appropriate for all patients. Many forms of treatment for cancer have extremely
toxic side effects. (Indeed, in some cases patients will die as a result of the
treatment rather than the cancer itself.) If the disease can be cured using a
less aggressive form of treatment, then such a treatment would be preferable.
However, some tumors will not respond to a less aggressive therapy, meaning
that a more intensive treatment must be used.

Unfortunately, it is not always obvious when a more aggressive treatment is
needed. Some tumors immediately go into remission when a certain treatment
is applied, but other seemingly identical tumors do not respond to the same
treatment. This can occur because two tumors that appear to be identical may
be entirely different diseases at the genetic level (Alizadeh et al. 2000, Sorlie
et al. 2001, van ’t Veer et al. 2002, van de Vijver et al. 2002, Lapointe et al.
2004, Bullinger et al. 2004).

Until recently, there was no way to detect differences between two tumors
at the molecular level. This is changing, however, with the advent of DNA
microarrays. If subtypes of cancer are known to exist, various methods have
been proposed that use microarrays to classify future tumors into the appro-
priate subtype (Golub et al. 1999, Hedenfalk et al. 2001, Hastie, Tibshirani,
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Botstein and Brown 2001, Khan et al. 2001, Ramaswamy et al. 2001, Nguyen
and Rocke 2002a, Nguyen and Rocke 2002b, Shipp et al. 2002, van ’t Veer
et al. 2002, van de Vijver et al. 2002, Tibshirani et al. 2001, Nutt et al. 2003).
However, these methods are only useful if the subtypes have already been iden-
tified. For most types of cancer, however, no subtypes are known to exist, lim-
iting the utility of these methods. Identifying such subtypes can be a difficult
problem. Techniques such as hierarchical clustering have successfully identified
cancer subtypes in several studies (Alizadeh et al. 2000, Sorlie et al. 2001, Bhat-
tacharjee et al. 2001, Beer et al. 2002, Lapointe et al. 2004, Bullinger et al. 2004).
Unfortunately, subtypes identified using hierarchical clustering are often uncor-
related with the prognosis of the patient as we demonstrated in an earlier study
(Bair and Tibshirani 2004). Identification of cancer subtypes that are clinically
useful remains a difficult challenge.

Supervised principal components is a technique that can be used to identify
subtypes of cancer that are both biologically meaningful and clinically useful.
In DNA microarray data, there are often groups of genes involved in biological
processes that are not related to the survival of a cancer patient. Since the
expression levels of such genes can vary from patient to patient, techniques such
as hierarchical clustering may identify clusters of patients that are unrelated
to the patients’ survival (or other outcome of interest). Supervised principal
components overcomes this problem by considering only those genes that are
related to the outcome of interest. By pre-screening genes prior to performing
principal component analysis, we greatly increase the likelihood that the result-
ing principal components are associated with the outcome of interest. Indeed,
we have demonstrated that supervised principal components produces more ac-
curate predictions than several competing methods on both simulated and real
microarray data sets.

In order for a microarray predictor to be useful, it must provide information
beyond what is observable using conventional diagnostic techniques. For exam-
ple, clinicians routinely consider the grade and stage of a tumor when choosing
the appropriate treatment for a cancer patient. If a diagnostic tool based on
gene expression is not independent of the grade and stage of the tumor, the
utility of such a diagnostic would be limited. As we discussed in Section 4,
supervised principal components can incorporate other clinical parameters into
the model to ensure that a predictor based on supervised principal components
is independent of these parameters.

Identification of the most “significant” genes is an important problem in
microarray analysis; several methods have been proposed for this (Ideker et al.
2000, Kerr et al. 2000, Newton et al. 2001, Tusher et al. 2001b). Supervised
principal components allows us to calculate an “importance score” for each
gene to help identify biologically significant genes. We observed in Section 3
that ranking genes based on their importance scores may produce fewer false
positives than ranking genes on their raw Cox scores, a technique which is used
in the “significance analysis of microarrays” procedure of Tusher et al. (2001a).
Further research is needed to understand the relative merits of these approaches.

Finally, we note that the supervised principal components idea can be ap-
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plied to other types of outcome measures, for example, classification outcomes.
While this procedure seems promising, we have not yet found examples where
it improves upon supervised methods such as the nearest shrunken centroid ap-
proach (Tibshirani et al. 2001). The explanation may lie in the soft-thresholding
inherent in nearest shrunken centroids: it may have the same beneficial effect
as the thresholding in supervised principal components.

We are currently developing an R language package superpc implementing
supervised principal components for survival and regression data. It will be
freely available on the last author’s website.
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