Statistical Learning with Sparsity

Trevor Hastie
Department of Statistics
Department of Biomedical Data Science
Stanford University
Linear Models for Wide Data

As datasets grow \textit{wide}—i.e. many more features than samples—the linear model has regained favor as the tool of choice.

\textbf{Document classification:} bag-of-words easily leads to $p = 20K$ features and $N = 5K$ document samples. Much more if bigrams, trigrams etc, or documents from Facebook, Google, Twitter!

\textbf{Genomics, microarray studies:} $p = 40K$ genes are measured for each of $N = 300$ subjects.

\textbf{Genome-wide association studies:} $p = 1–2M$ SNPs measured for $N = 2000$ case-control subjects.

\textbf{Web activity:} Millions of possible webpages visited, search terms used.
Linear Models for Wide Data

As datasets grow *wide*—i.e. many more features than samples—the linear model has regained favor as the tool of choice.

Document classification: bag-of-words easily leads to $p = 20K$ features and $N = 5K$ document samples. Much more if bigrams, trigrams etc, or documents from Facebook, Google, Twitter!

Genomics, microarray studies: $p = 40K$ genes are measured for each of $N = 300$ subjects.

Genome-wide association studies: $p = 1–2M$ SNPs measured for $N = 2000$ case-control subjects.

Web activity: Millions of possible webpages visited, search terms used.

In examples like these we tend to use linear models — e.g. linear regression, logistic regression, Cox model. Since $p \gg N$, we cannot fit these models using standard approaches.
Forms of Regularization

\[\eta(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j \]

We cannot fit linear models with \(p > N \) without some constraints. Common approaches are

Forward stepwise adds variables one at a time and stops when overfitting is detected. Regained popularity for \(p \gg N \), since it is the only feasible method among it’s subset cousins (backward stepwise, best-subsets).

Ridge regression fits the model subject to constraint
\[\sum_{j=1}^{p} \beta_j^2 \leq t. \] Shrinks coefficients toward zero, and hence controls variance. Allows linear models with arbitrary size \(p \) to be fit.
Lasso regression (Tibshirani, 1995) fits the model subject to constraint \(\sum_{j=1}^{p} |\beta_j| \leq t \).
Lasso does variable selection and shrinkage, while ridge only shrinks.
Lasso: \(\hat{\beta}(\lambda) = \arg\min_{\beta} \frac{1}{N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda \| \beta \|_1 \)

fit using LARS package in R (Efron, Hastie, Johnstone, Tibshirani 2002)
Ridge versus Lasso

Coefficients

$\beta(\lambda)$

$\beta(0)$

$\|\beta(\lambda)\|_1 / \|\beta(0)\|_1$
K-fold cross-validation is easy and fast. Here $K=10$, and the true model had 10 out of 100 nonzero coefficients.
History of Path Algorithms

Efficient path algorithms for $\hat{\beta}(\lambda)$ allow for easy and exact cross-validation and model selection.

- In 2001 the LARS algorithm (Efron et al) provides a way to compute the entire lasso coefficient path efficiently at the cost of a full least-squares fit.
History of Path Algorithms

Efficient path algorithms for $\hat{\beta}(\lambda)$ allow for easy and exact cross-validation and model selection.

- In 2001 the LARS algorithm (Efron et al) provides a way to compute the entire lasso coefficient path efficiently at the cost of a full least-squares fit.

- 2001 – 2008: path algorithms pop up for a wide variety of related problems: Group lasso (Yuan & Lin 2006), support-vector machine (Hastie, Rosset, Tibshirani & Zhu 2004), elastic net (Zou & Hastie 2004), quantile regression (Li & Zhu, 2007), logistic regression and glm's (Park & Hastie, 2007), Dantzig selector (James & Radchenko 2008), ...
History of Path Algorithms

Efficient path algorithms for $\hat{\beta}(\lambda)$ allow for easy and exact cross-validation and model selection.

- In 2001 the LARS algorithm (Efron et al) provides a way to compute the entire lasso coefficient path efficiently at the cost of a full least-squares fit.

- 2001 – 2008: path algorithms pop up for a wide variety of related problems: Group lasso (Yuan & Lin 2006), support-vector machine (Hastie, Rosset, Tibshirani & Zhu 2004), elastic net (Zou & Hastie 2004), quantile regression (Li & Zhu, 2007), logistic regression and glms (Park & Hastie, 2007), Dantzig selector (James & Radchenko 2008), ...

- Many of these do not enjoy the piecewise-linearity of LARS, and seize up on very large problems.
GLMNET and coordinate descent

• Solve the lasso problem by coordinate descent: optimize each parameter separately, holding all the others fixed. Updates are trivial. Cycle around till coefficients stabilize.
• Do this on a grid of \(\lambda \) values, from \(\lambda_{max} \) down to \(\lambda_{min} \) (uniform on log scale), using warms starts.
• Can do this with a variety of loss functions and additive penalties.

Coordinate descent achieves dramatic speedups over all competitors, by factors of 10, 100 and more.

Example: Newsgroup data: 11K obs, 778K features (sparse), 100 values \(\lambda \) across entire range, lasso logistic regression; time 29s on Macbook Pro.

References: Friedman, Hastie and Tibshirani 2010 + long list of other who have also worked with coordinate descent.
GLMNET package in R

Fits coefficient paths for a variety of different GLMs and the *elastic net* family of penalties.

Some features of glmnet:

- Models: linear, logistic, multinomial (grouped or not), Poisson, Cox model, and multiple-response grouped linear.
- Elastic net penalty includes *ridge* and *lasso*, and hybrids in between (more to come)
- **Speed!**
- Can handle large number of variables p. Along with screening rules we can fit GLMs on GWAS scale (more to come)
- Cross-validation functions for all models.
- Can allow for sparse matrix formats for X, and hence massive problems (eg $N = 11K$, $p = 750K$ logistic regression).
GLMNET package in R (continued)

Fits coefficient paths for a variety of different GLMs and the elastic net family of penalties.

- Can provide lower and upper bounds for each coefficient; eg: positive lasso
- Useful bells and whistles:
 - Offsets — as in glm, can have part of the linear predictor that is given and not fit. Often used in Poisson models (sampling frame).
 - Penalty strengths — can alter relative strength of penalty on different variables. Zero penalty means a variable is always in the model. Useful for adjusting for demographic variables.
- Observation weights allowed.
- Can fit no-intercept models
- Session-wise parameters can be set with new glmnet.options command.
Coordinate descent for the lasso

\[
\min_{\beta} \frac{1}{2N} \sum_{i=1}^{N} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|
\]

Suppose the \(p \) predictors and response are standardized to have mean zero and variance 1. Initialize all the \(\beta_j = 0 \).

Cycle over \(j = 1, 2, \ldots, p, 1, 2, \ldots \) till convergence:

- Compute the partial residuals \(r_{ij} = y_i - \sum_{k \neq j} x_{ik} \beta_k \).
- Compute the simple least squares coefficient of these residuals on \(j \)th predictor: \(\beta_j^* = \frac{1}{N} \sum_{i=1}^{N} x_{ij} r_{ij} \)
- Update \(\beta_j \) by soft-thresholding:

\[
\beta_j \leftarrow S(\beta_j^*, \lambda) = \text{sign}(\beta_j^*)(|\beta_j^*| - \lambda)_+
\]
Elastic-net penalty family

Family of convex penalties proposed in Zou and Hastie (2005) for $p \gg N$ situations, where predictors are correlated in groups.

$$\min_{\beta} \frac{1}{2N} \sum_{i=1}^{N} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} P_\alpha(\beta_j)$$

with $P_\alpha(\beta_j) = \frac{1}{2} (1 - \alpha) \beta_j^2 + \alpha |\beta_j|$.

α creates a compromise between the lasso and ridge.

Coordinate update is now

$$\beta_j \leftarrow S(\beta_j^*, \lambda \alpha) \frac{S(\beta_j^*, \lambda \alpha)}{1 + \lambda (1 - \alpha)}$$

where $\beta_j^* = \frac{1}{N} \sum_{i=1}^{N} x_{ij} r_{ij}$ as before.
Leukemia Data, Logistic, N=72, p=3571, first 10 steps shown
Sparser than Lasso — Concave Penalties

Work with past PhD student Rahul Mazumder and Jerry Friedman (2010).
Extends elastic net family into concave domain
Many approaches. We propose family that bridges ℓ_1 and ℓ_0
based on MC+ penalty (Zhang 2010), and a coordinate-descent
scheme for fitting model paths, implemented in SPARSENET. See
also recent PICASSO package.
Screening Rules

Logistic regression for GWAS: \(p \sim \) million, \(N = 2000 \) (Wu et al, 2009)

- Compute \(|\langle x_j, y - \bar{y} \rangle| \) for each Snp \(j = 1, 2, \ldots, 10^6 \), where \(\bar{y} \) is the mean of (binary) \(y \).

Note: the largest of these is \(\lambda_{max} \) — smallest value of \(\lambda \) for which all coefficients are zero.
Screening Rules

Logistic regression for GWAS: $p \sim \text{million}, \ N = 2000$ (Wu et al, 2009)

- Compute $|\langle x_j, y - \bar{y} \rangle|$ for each Snp $j = 1, 2, \ldots, 10^6$, where \bar{y} is the mean of (binary) y.

 Note: the largest of these is λ_{max} — smallest value of λ for which all coefficients are zero.

- Fit lasso logistic regression path using only largest 1000 (typically fit models of size around 20 or 30 in GWAS)

- Simple confirmations check that omitted Snps would not have entered the model.
Strong Rules

For lasso fit, with active set \mathcal{A}:

$$\left| \langle x_j, y - X \hat{\beta} (\lambda_\ell) \rangle \right| = \lambda_\ell \quad \forall j \in \mathcal{A}$$

$$\leq \lambda_\ell \quad \forall j \notin \mathcal{A}$$

So variables *nearly in* \mathcal{A} will have inner-products with the residuals *nearly* equal to λ_ℓ.
Strong Rules

For lasso fit, with active set \mathcal{A}:

$$\left| \langle x_j, y - X\hat{\beta}(\lambda_\ell) \rangle \right| = \lambda_\ell \quad \forall j \in \mathcal{A}$$

$$\leq \lambda_\ell \quad \forall j \notin \mathcal{A}$$

So variables *nearly in* \mathcal{A} will have inner-products with the residuals *nearly* equal to λ_ℓ.

Suppose fit at λ_ℓ is $X\hat{\beta}(\lambda_\ell)$, and we want to compute the fit at $\lambda_{\ell+1} < \lambda_\ell$.
Strong rules only consider set

$$\left\{ j : |\langle x_j, y - X\hat{\beta}(\lambda_\ell) \rangle| > \lambda_{\ell+1} - (\lambda_\ell - \lambda_{\ell+1}) \right\}$$

GLMNET screens at every λ step, and after convergence, checks if any violations.
Microarray classification: tissue of origin
3220 samples
22K genes
17 classes (tissue type)
Multinomial regression model with
$17 \times 22K = 374K$ parameters
Elastic-net ($\alpha = 0.25$)
Coordinate Descent in General

Many problems have the form

\[
\min_{\{\beta_j\}_1^p} \left[R(y, \beta) + \lambda \sum_{j=1}^p P_j(\beta_j) \right].
\]

- If \(R \) and \(P_j \) are convex, and \(R \) is differentiable, then coordinate descent converges to the solution (Tseng, 1988).
- Often each coordinate step is trivial. E.g. for lasso, it amounts to soft-thresholding, with many steps leaving \(\hat{\beta}_j = 0 \).
- Decreasing \(\lambda \) slowly means not much cycling is needed.
- Coordinate moves can exploit sparsity.
Other Applications

Undirected Graphical Models — learning dependence structure via the lasso. Model the inverse covariance Θ in the Gaussian family with L_1 penalties applied to elements.

$$\max_{\Theta} \log \det \Theta - \text{Tr}(S\Theta) - \lambda \|\Theta\|_1$$

GLASSO: modified block-wise lasso algorithm, which we solve by coordinate descent (FHT 2007). Algorithm is very fast, and solve moderately sparse graphs with 1000 nodes in under a minute.
Example: flow cytometry: \(p = 11 \) proteins measured in \(N = 7466 \) cells (Sachs et al 2003)
Group Lasso (Yuan and Lin, 2007, Meier, Van de Geer, Buehlmann, 2008) — each term $P_j(\beta_j)$ applies to sets of parameters:

$$R(y, \sum_{j=1}^{J} X_j \beta_j) + \lambda \sum_{j=1}^{J} \gamma_j \|\beta_j\|_2.$$

Example: each block X_j represents the levels for a categorical predictor.

- entire groups are zero, or all elements are nonzero.
- γ_j is penalty modifier for group j; $\gamma_j = \|X_j\|_F$ is good choice.
- Leads to a block-updating form of coordinate descent.
- Strong rules apply here: $\|X_j^T r\|_2 > \gamma_j [\lambda_{\ell+1} - (\lambda_\ell - \lambda_{\ell+1})]$
Mixed Graphical Models

Allows for both continuous and categorical variables. With past PhD student Jason Lee (JCGS 2014).
General Markov random field representation, with edge and node potentials.

\[
p(x, y; \Theta) \propto \exp \left(\sum_{s=1}^{p} \sum_{t=1}^{p} -\frac{1}{2} \beta_{st} x_s x_t + \sum_{s=1}^{p} \alpha_s x_s + \sum_{s=1}^{p} \sum_{j=1}^{q} \rho_{sj}(y_j) x_s + \sum_{j=1}^{q} \sum_{r=1}^{q} \phi_{rj}(y_r, y_j) \right)
\]

Pseudo likelihood allows simple inference with mixed variables. Conditionals for continuous are Gaussian linear regression models, for categorical are logistic regressions.
Parameters come in symmetric blocks, and the inference should respect this symmetry (next slide)
Mixed Graphical Model: group-lasso penalties

Parameters in blocks. Here we have an interaction between a pair of quantitative variables (red), a 2-level qualitative with a quantitative (blue), and an interaction between the 2 level and a 3 level qualitative.

Maximize a pseudo-likelihood with lasso and group-lasso penalties on parameter blocks.

\[
\max_{\Theta} \ell(\Theta) - \lambda \left(\sum_{s=1}^{p} \sum_{t=1}^{s-1} |\beta_{st}| + \sum_{s=1}^{p} \sum_{j=1}^{q} \|\rho_{sj}\|_2 + \sum_{j=1}^{q} \sum_{r=1}^{j-1} \|\phi_{rj}\|_F \right)
\]

Solved using proximal Newton algorithm for a decreasing sequence of values for \(\lambda\) [Lee and Hastie, JCGS 2013].
Glinternet

Project with past PhD student Michael Lim (JCGS 2014)
Hierarchical linear + first-order interaction models using group lasso

Example: GWAS with $p = 27K$ Snps, each a 3-level factor, and a binary response, $N = 3500$.

- Let X_j be $N \times 3$ indicator matrix for each Snp, and $X_{j:k} = X_j \star X_k$ be the $N \times 9$ *interaction* matrix.
- We fit model

$$\log \frac{\Pr(Y = 1|X)}{\Pr(Y = 0|X)} = \alpha + \sum_{j=1}^{p} X_j \beta_j + \sum_{j<k} X_{j:k} \theta_{j:k}$$

- note: $X_{j:k}$ encodes main effects and interactions.
- Maximize group-lasso penalized likelihood:

$$\ell(y, p) - \lambda \left[\sum_{j=1}^{p} \|\beta_j\|_2 + \sum_{j<k} \|\theta_{j:k}\|_2 \right]$$
• Solutions map to traditional hierarchical main-effects/interactions model (with effects summing to zero).

• Strong rules for feature filtering essential here — parallel and distributed computing useful too. GWAS search space of 729M interactions!

• Formulated for all types of interactions, not just categorical variables.

• Suitable for *personalized medicine*: look for interactions with treatment variable.

• **Glinternet** very fast — two-orders of magnitude faster than competition, with similar performance.
Sparse Generalized Additive Models

Work with Alexandra Chouldechova.
Automatic, *sticky* selection between zero, linear or nonlinear terms in GAMs:

$$\eta(x) = \alpha_0 + \sum_{j=1}^{p} f_j(x_j)$$

minimize $$\frac{1}{N} \sum_{i=1}^{N} L(y_i, \eta(x_i)) + \lambda \sum_{j=1}^{p} P_j(f_j)$$
Sparse Generalized Additive Models

Work with Alexandra Chouldechova. Automatic, *sticky* selection between zero, linear or nonlinear terms in GAMs:

\[
\eta(x) = \alpha_0 + \sum_{j=1}^{p} f_j(x_j)
\]

\[
\text{minimize} \quad \frac{1}{N} \sum_{i=1}^{N} L(y_i, \eta(x_i)) + \lambda \sum_{j=1}^{p} P_j(f_j)
\]

Here \(P_j(f_j) \) is an *overlap group lasso* penalty that enables state selection, as well as degree of roughness if nonlinear.
Sparse Generalized Additive Models

Work with Nick Boyd and others . . .
Adaptive GAMs using saturated piecewise-linear splines. Automatic feature and knot selection; saturation means constant beyond boundaries for each variable.

\[
\eta(x) = \alpha_0 + \sum_{j=1}^{p} f_j(x_j)
\]

\[
\text{minimize} \quad \frac{1}{N} \sum_{i=1}^{N} L(y_i, \eta(x_i)) + \lambda \sum_{j=1}^{p} \text{TV}(f_j')
\]

s.t. \(f_j'(t) = 0, \ t \not\in \mathcal{D}_j, \ j = 1, \ldots, p \)
Example: ALS challenge data

Predict rate of progression of ALS functional rating score.
Data supplied by Lester Mackey (challenge winner)

369 input features
1197 train
625 test

SatGam competitive with winner.
Matrix Completion

- Observe matrix X with (many) missing entries.
- Inspired by SVD, we would like to find $Z_{n \times m}$ of (small) rank r such that training error is small.

$$\minimize_{Z} \sum_{\text{Observed}(i,j)} (X_{ij} - Z_{ij})^2 \quad \text{s.t. rank}(Z) \leq r$$

- Note solution of the form $Z = AB$, a fully observed matrix. We would then impute the missing X_{ij} with Z_{ij}
Matrix Completion

• Observe matrix X with (many) missing entries.
• Inspired by SVD, we would like to find $Z_{n \times m}$ of (small) rank r such that training error is small.

$$\minimize_{Z} \sum_{\text{Observed}(i,j)} (X_{ij} - Z_{ij})^2 \quad \text{s.t. \ rank}(Z) \leq r$$

• Note solution of the form $Z = AB$, a fully observed matrix. We would then impute the missing X_{ij} with Z_{ij}

• Problem — this is a nonconvex optimization problem, and unlike SVD for complete X, no closed-form solution.
Nuclear Norm and SoftImpute

Use convex relaxation of rank (Candes and Recht, 2008, Mazumder, Hastie and Tibshirani, 2010)

\[
\text{minimize} \sum_{\text{Observed}(i,j)} (X_{ij} - Z_{ij})^2 + \lambda \|Z\|_*
\]

where *nuclear norm* \(\|Z\|_* \) is the sum of singular values of \(Z \).

- Nuclear norm is like the lasso penalty for matrices.
- Solution involves iterative soft-thresholded SVDs of current completed matrix.
- More efficient solutions using alternating ridge regressions. Package *softImpute* in R.
Can become Bayesian! Lasso penalty corresponds to Laplacian prior. However, need priors for everything, including λ (variance ratio).

- Bootstrap. Easier to do, with similar results.
- Covariance test for LARS sequence.
- Conditional inference with Lasso.
 “Exact Post-Selection Inference, with application to the Lasso” — Jason Lee, Dennis Sun, Yuekai Sun, Jonathan Taylor (AoS, 2016)
- “Optimal Inference after Model Selection” — Will Fithian, Dennis Sun, Jonathan Taylor (2015, arXiv)
Conditional Inference with Lasso

“Exact Post-Selection Inference with the Lasso” — Jason Lee, Dennis Sun, Yuekai Sun, Jonathan Taylor (2013) arXiv

\[y = \mu + \epsilon; \quad \epsilon \sim N(0, \sigma^2 I) \]

- Characterize a lasso solution set \(\hat{E} \) via a set of linear inequalities \(\{Ay \leq b\} \).
- Make inference on \(\eta^T \mu \), where \(\eta \) can depend on \(\hat{E} \); eg \(\eta \) extracts \(j \)th coefficient in projection of \(\mu \) on \(X_{\hat{E}} \).
- Characterize conditional distribution of \(\eta^T y \) as one-dimensional truncated Gaussian (exact, non-asymptotic).
Figure 6.9. Schematic illustrating result (6.13), for the case $N = 2$ and $||\eta||_2 = 1$ (due to Will Fithian). The yellow region is the selection event \{Ay \leq b\}. We decompose y as the sum of two terms: its projection $P_{\eta}y$ onto η (with coordinate $\eta^T y$) and its projection onto the $(N-1)$-dimensional subspace orthogonal to η: $y = P_{\eta}y + P_{\eta^\perp}y$. Conditioning on $P_{\eta^\perp}y$, we see that the event \{Ay \leq b\} is equivalent to the event \{$\mathcal{V}^-(y) \leq \eta^T y \leq \mathcal{V}^+(y)$\}. Furthermore $\mathcal{V}^+(y)$ and $\mathcal{V}^-(y)$ are independent of $\eta^T y$ since they are functions of $P_{\eta^\perp}y$ only, which is independent of y.

\[
\begin{align*}
\mathcal{V}^-(y) & = \max_{j} : \alpha_j < 0 \quad b_j - (Ay)_j + \alpha_j \eta^T y \\
\mathcal{V}^+(y) & = \min_{j} : \alpha_j > 0 \quad b_j - (Ay)_j + \alpha_j \eta^T y \\
\mathcal{V}^0(y) & = \min_{j} : \alpha_j = 0 \quad (b_j - (Ay)_j)
\end{align*}
\]
Summary

• Coordinate descent effective, especially when models are sparse.
• Screening rules allow for massive computational savings.
• Group lasso and overlap group lasso allow for interesting specializations: Gam selection, mixed graphical model selection, interaction selection.
• Sparsity via convex optimization all the rage.
• Exciting recent work at Stanford (Taylor, Tibshirani, Candes), CMU (Tibshirani), Wharton (Buja et al) on post-selection inference.

Thank you!