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‘Overview and Outline'

Supervised learning with p > N is a slippery game. Its easy to fool
yourself that you are doing well. We need to be vigilant against the
temptations of finding ghosts in the data.

e Pitfalls of supervised learning with P > N.
e Biological signatures.

e Supervised principal components.
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Outline '

e Pitfalls of supervised learning with P > N.
e DBiological signatures.

e Supervised principal components.
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Cross-Validation Misused'

Ref: Christophe Ambroise and Geoff McLachlan, PNAS April 2002

Consider a simple classifier for microarrays:

1. Starting with 20,000 genes, find the 200 genes having the
largest correlation with the class labels.

2. Compute the gene averages (centroids) in each class for these

200 genes.

3. Classify a new sample to the nearest-centroid using only these

200 genes

Cross-validation divides the data into a training set and a test set

(many times) to evaluate the validity of a procedure.
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Two ways to cross-validate this simple Classiﬁerl

Wrong: Apply cross-validation to step 2, after the gene selection.
Right: Apply cross-validation to steps 1 and 2.

It is easy to simulate realistic data with the class labels
independent of the gene expression so that the true (and right) test
error is 50%, but where the wrong CV error estimate is zero!

We have seen this error made in several high-profile papers in the
last couple of years.
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‘A recent experience of colleague Rob Tibshirani.

e Dave et al (NEJM Nov 2004) published a high-profile study in
NEJM, reporting that they had found two sets of genes whose

expression were highly predictive of survival in patients with
Follicular Lymphoma.

e the paper got a lot of attention, because the genes in the
clusters were largely expressed in non-tumor cells, suggesting

that the host-response was the important factor

e One of our medical collaborators — Ron Levy, asked Rob to
look over their paper — he wanted to apply their model to the
Stanford FL patient population.
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Summary of their ﬁndings'

e They started with the expression of approximately 49,000

genes measured on 191 patient samples, derived from DNA
microarrays. A survival time (possibly censored) was available

for each patient

e they randomly split the data into a training set of 95 patients
and a test set of 96 patients

e using a fairly complex multi-step procedure, they extracted two
clusters of genes, called IR1 (immune response 1) and IR2

(immune response 2).

e They averaged the gene expression of the genes in each cluster,

to create two “super-genes”.
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... continued '

e They then fit these super-genes together in a Cox model for
survival, and applied it to the training and test sets. The
p-value in the training set was < 10~ and 0.003 in the test set.
IR1 correlates with good prognosis; IR2 with poor prognosis

e In the remainder of the paper they interpret the genes in their
model
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What happened next...'

e Tibshirani downloaded the data

e Applied some familiar statistical tools — eg SAM (Significance
Analysis of Microarrays), less familiar ones — supervised
principal components. His initial finding — no significant

correlation between gene expression and survival.

e He spent 2-3 weeks emailing back and forth with their
statistician (George Wright) and programming in R, to recreate
their analysis

e He tweaked their analysis (separately) in two simple ways:

e Swapped training and test sets
e Changed their cluster-size thresholds slightly
In both cases their findings disappeared!
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Swapping Train and Test Sets'
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Cluster size ranges (30,60) rather than (25,50)'

Cluster size range (25,50)
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The Aftermath I

e Tibshirani published a short letter to NEJM in March 2005;

full details of his re-analysis appear on his website
e The authors published a rebuttal in the same issue. Their
arguments:

1. we followed standard statistical procedures, found a small

p-value on the test set, therefore our finding is correct;
2. our method found an interaction, which SAM can’t find

3. we get small p-values if we apply our original model
coefficients to random halves of the data (7777!11111)
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General comments '

e Their finding is fragile. We don’t believe that it is real or
reproducible

e This experience uncovers a problem that is of general
importance to our field:

e with many predictors, it is too easy to overfit the data and

find spurious results
e we can inadvertently mislead the reader, and mislead

ourselves. We have been guilty of this too

e Important to be very explicit about methodology used, provide

scripts etc. Reproducible research

15
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Outline '

e Pitfalls of supervised learning with P > N.
e DBiological signatures.

e Supervised principal components.

16
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Biological Signatures I

e Using in vitro biology, signatures of genes are hypothesized to
play a role in cancer prognosis

e The signature is used to score each human cancer sample in a

separate study

e These signatures (each one degree of freedom), are compared to
traditional prognostic factors.

17
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Robustness, scalability, and integration of a
wound-response gene expression signature
in predicting breast cancer survival

Howard Y. Chang®<, Dimitry S. A. Nuyten<9, Julie B. Sneddon®, Trevor Hastief, Robert Tibshiranif, Therese Sorlie9,
Hongyue DaiM, Yudong D. HeM, Laura J. van't Veerdi, Harry Bartelink®, Matt van de Rijn}, Patrick O. Brownb:<!,

and Marc J. van de Vijverd!

aprogram in Epithelial Biology, Departments of PBiochemistry, fHealth Research and Policy, and iPathology, and kHoward Hughes Medical Institute, Stanford
University School of Medicine, Stanford, CA 94305; Departments of 9Diagnostic Oncology and ¢Radiation Oncology, The Netherlands Cancer Institute,
Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; "Rosetta Inpharmatics, Seattle, WA 98109; and 9Norwegian Radium Hospital,

0310 Oslo, Norway
Contributed by Patrick O. Brown, January 5, 2005

Based on the hypothesis that features of the molecular program of
normal wound healing might play an important role in cancer
metastasis, we previously identified consistent features in the
transcriptional response of normal fibroblasts to serum, and used
this “wound-response signature” to reveal links between wound
healing and cancer progression in a variety of common epithelial
tumors. Here, in a consecutive series of 295 early breast cancer
patients, we show that both overall survival and distant
metastasis-free survival are markedly diminished in patients
whose tumors expressed this wound-response signature com-
pared to tumors that did not express this signature. A gene
expression centroid of the wound-response signature provides a
basis for prospectively assigning a prognostic score that can be
scaled to suit different clinical purposes. The wound-response
signature improves risk stratification independently of known
clinico-pathologic risk factors and previously established prognos-

response” (CSR) genes and their canonical expression pattern in
fibroblasts activated with serum, the soluble fraction of clotted
blood and an important initiator of wound healing in vivo. The
CSR genes were chosen to minimize overlap with cell cycle
genes, but instead appeared to represent other important pro-
cesses in wound healing, such as matrix remodeling, cell motility,
and angiogenesis, processes that are likely also to contribute to
cancer invasion and metastasis. In several common epithelial
tumors such as breast, lung, and gastric cancers, expression of the
wound-response signature predicted poor overall survival and
increased risk of metastasis (10). These initial findings demon-
strate the promise of using hypothesis-driven gene expression
signatures to provide insights from existing gene expression
profiles of cancers. However, as in other methodologies, repro-
ducibility and scales for interpretation need to be evaluated
before this strategy can be generally adopted for biologic dis-

18
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Wound Signature I

e Chang et al examined the transcriptional response of normal

fibroblasts to serum n vitro.

e They identified a set of approximately 400 “Core Serum
Response” genes that showed a wound response in a subset of
the samples.

e The average of these genes in the subset gives a profile of up-
and down-regulated genes.

e Any future sample (from a patient) can be scored for wound
signature by computing the correlation of the expression of the
corresponding genes with this profile.

e They evaluated this signature on an independent sample of 295

breast cancer samples (Netherlands Cancer Institute).
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Fig. 1. Performance of a "wound response" gene expression signature in predicting breast cancer
progression
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Fig. 2. A scalable wound-response signature as a guide for chemotherapy
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Fig. 3. Integration of diverse gene expression signatures for risk prediction
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Statistical Analysis I

e Compared with traditional prognostic factors, using

multivariate Cox model — tumor grade and size, lymph-node

status, ER status, .... Summary later.

e Examine nature of wound signature score using

semi-parametric methods [Hastie & Tibshirani, Generalized
Additive Models, 1991]

e Using subgroups and scaling of the wound score, we showed
that wound signature offers independent prognostic
information, and could potentially spare 30% of women from

chemotherapy.
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Cox Model: Distant Metastasis Cox Model: Survival
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Hypoxia Signature I

lead author Jen-Tsan Ashley Chi, now at Duke MC

e About 250 genes showing response to hypoxia in vitro in
cultured epithelial cells.

e They saw evidence on Stanford data that tumors with cells
showing a strong response to hypoxia were associated with bad

outcome.

e Here the signature is obtained by simply averaging the

corresponding genes for each cancer patient.
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Cox Model: Survival
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Marginal and Partial Effects — Survival'

Angio Invasion
Age

Diameter

Node Status
Grade

ER Status
Mastectomy
Chemotherapy
Hormonal
Hypoxia

Wound

Df Marginal Partial

2

e S T S T =

11.

7

3.8

12.
6.
43.
27 .
0.
1.
1.
22.
39.

© OO 0 N & N O N

6.

—_
—_

-
o

0 O rr O 00 N B+ W
0 O OO W N O N~ b

O O O O O O O O O O ©O

Pr(Chi)

.0660602 .
.0013773
.0963076 .
.4621051
.3142204
.0053109
.5943224
.2341016
. 71869375
.0055803
.0001708

* %k

* *k

* %k

% %k %k

As percent of the total deviance explained (89.5) in Cox model.



September 2005 Trevor Hastie, Stanford Statistics

Signature Summary I

e Wound signature provides an additional 18.7% in prognostic

power in the Cox model (when added to all the other factors),
and surpasses them all.

e Hypoxia signature adds 9.4%, similar to ER status and
surpassed only by Age.

Df Marginal Partial Partial.add
Traditional 12 76.4 42.2 55.2
Signatures 2 57.8 23.6 40.8

e Wound and Hypoxia signature account for an additional 40.8%

in prognostic power.

e External signatures avoid issues of overfitting associated with
supervised signatures.

30
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Outline '

e Pitfalls of supervised learning with P > N.
e DBiological signatures.

e Supervised principal components.

31
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Supervised Principal Components'

e method for regression or generalized regression (eg survival
outcome), useful when number of predictors p >> N, the

sample size
e Bair, Hastie, Paul, Tibshirani — to appear JASA 2005;

e Software available (Excel addin, R) on Tibshirani website
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‘ Usual approaches I

e Unsupervised approach — cluster patients into groups, then
hope that they differ in survival. Strategy widely used by Pat
Brown, David Botstein and colleagues at Stanford. Idea is that
biological subgroups may be reproducible but not specific gene

lists that characterize these groups

o Superuvised approach — find genes that correlate with survival.
Some sort of regularization (eg ridge regression) is needed,

since number of genes >> number of patients

33
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A semi-supervised approach'

Cell type 1 ‘Cell type 2

probability density

survival time

Underlying conceptual model: survival time 1s a noisy surrogate for cell
type, a real determinant of survival. Idea: rather than predict survival
time directly, try to uncover the cell types and use these to predict

survwval time

34
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Supervised principal components'

Idea is to chose genes whose correlation with the outcome is

largest, and using only those genes, extract the first (or first few)
principal components.

Use these “supervised principal components” to predict the
outcome

1. Compute (univariate) standard regression coefficients for each

feature

2. Form a reduced data matrix consisting of only those features whose
univariate coefficient exceeds a threshold 6 in absolute value (6 is

estimated by cross-validation)

3. Compute the first (or first few) principal components of the reduced

data matrix

4. Use these principal component(s) in a regression model to predict

the outcome

35
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More details '

e in our paper we develop a latent variable model, one that
assumes the existence of latent variables (e.g cell types) shared
by a subset of the features and the outcome.

e We show that the supervised PC approach estimates these
latent variables consistently as p, N — oo (p = # of features,
N = # of samples)

e By contrast, standard principal components is not consistent in
general— the large number of “noise” features corrupts the

estimate

36
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An underlying model'

e Suppose we have a response variable Y which is related to an

underlying latent variable U by a linear model
Y =050+ 51U + €. (1)

e In addition, we have expression measurements on a set of genes X
indexed by j € P, for which
Xj =ooj; +a1;U +¢€5, j7€P. (2)

We also have many additional genes X, k ¢ P which are
independent of U. We can think of U as a discrete or continuous
aspect of a cell type, which we do not measure directly.

e The supervised principal component algorithm (SPCA) can be seen
as an approximate method for fitting this model.

Natural since on average the score ||X;?Y|/||X;|| is non-zero only if a1,

1S non-zero.
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Consistency of supervised principal components'

We consider a latent variable model of the form (1) and (2) for

data with N samples and p features.

p1 P2
N X, X,
N X p

p/N— 7 € (0,00)
p1/N — 0 fast
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‘Kidney cancer study'

Jim Brooks, Hongjuan Zhao, Rob Tibshirani
14,000 genes; 180 samples — 90 in each of training and test

39
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