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Outline and Summary
We consider linear regression models η(X) = XTβ with
potentially very large numbers of variables, and methods for
selecting an informative subset.

• Revisit two baby boomers (best-subset selection and
forward-stepwise selection), one millennial (lasso) and a
newborn (relaxed lasso).

• Simulation study to evaluate them all over a wide range of
settings.

Conclusions:

• forward stepwise very close to best subset, but much faster.

• relaxed lasso overall winner, and fastest by far.

• In wide-data settings, and low SNR, lasso can beat best
subset and forward stepwise.

Paper: https://arxiv.org/abs/1707.08692

R package: https://github.com/ryantibs/best-subset/
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Best Subset Selection
58 3. Linear Methods for Regression
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2 Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for pmuch larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.
Forward-stepwise selection is a greedy algorithm, producing a nested se-

quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:

1. For each subset of size k of the p variables, evaluate the fitting
objective (e.g. RSS) via linear regression on the training data.

2. Candidate models β̂(k) are at the lower frontier — the best for
each k on the training data.

3. Pick k̂ using a validation dataset (or CV), and deliver β̂(k̂)
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Properties of Best Subset Selection

4 Well-defined goal — the obvious gold standard for variable
selection.

4 Feasible for least squares regression with p ≈ 35 using
clever algorithms (Furnival and Wilson, 1974, “Leaps and
Bounds”).

6 Combinatorially hard for large p.

? Obvious gold standard — really?
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Best Subset Selection Breakthrough
Rahul Mazumder, with Bertsimas and King
(AoS 2016) crack the forty year old best-subset
selection bottleneck! They use mixed-integer
programming (MIO) along with the gurobi
solver.

minimizez,β
1

2

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

subject to −Mzj ≤ βj ≤Mzj , zj ∈ {0, 1}, j = 1, . . . , p
p∑

j=1

zj ≤ k.

Their procedure iteratively narrows the optimality gap — if the
gap hits zero, they have found the solution.
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Forward Stepwise Selection

Greedy forward algorithm, traditionally thought of as a
sub-optimal but feasible alternative to best-subset regression.

1. Start with null model (response mean).

2. Choose among the p variables to find the best
single-variable model in terms of fitting objective.

3. Choose among the remaining p− 1 variables to find the
one, when included with the previously chosen variable,
best improves the fitting objective.

4. Choose among the remaining p− 2 . . ., and so on.

Forward stepwise produces a nested sequence of models
β̂(k), k = 1, 2, . . ..
Pick k using a validation dataset.
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Forward Stepwise Selection Properties

4 Computationally feasible with big data, and also works
with n� p.

4 Efficient computations with squared-error loss.
Computations can be arranged as a guided QR
decomposition of the X matrix, and hence costs the same
as a full least-squares fit O(npmin(n, p)).

4 Performance very similar to best subset selection, although
difficult counter examples can be constructed.

6 Efficiency not available for GLMs, although score
approximations can be used.

6 Tedious with very large p and n, since terms augmented
one at a time.
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Lasso

The lasso (Tibshirani, 1996) solves

minimize
β

1

2

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 s.t. ‖β‖1 ≤ t

Generally, the smaller t, the sparser the solutions, and
approximate nesting occurs.
We compute many solutions over a range of values of t, and
select t using validation data.

Often thought of as a convex relaxation for the best-subset
problem

minimize
β

1

2

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 s.t. ‖β‖0 ≤ k
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Lasso properties

We typically solve lasso in Lagrange form

minimize
β

1

2

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ‖β‖1

4 Extremely fast algorithms for solving lasso problems (with
many loss functions). Pathwise coordinate descent via
glmnet (Friedman, H, Tibshirani, 2010) exploits sparsity,
active-set convergence, strong rules, and more, to rapidly
compute entire solution path on a grid of values of λ.

4 With large p provides convenient subset selection, taking
leaps rather than single steps.

6 Since coefficients are both selected and regularized, can
suffer from shrinkage bias.
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Lasso and Least-Angle Regression (LAR)

Interesting connection between Lasso and Forward Stepwise.

LAR algorithm: Democratic Forward Stepwise

1. Find variable X(1) most correlated with the response.

2. While moving towards the least-squares fit on X(1), keep
track of correlations of other variables with the evolving
residual.

3. When X(2) catches up in correlation, include it in model,
and move the pair toward least squares fit (correlations
stay tied!)

4. And so on.

LAR path = Lasso path (almost always).
Forward Stepwise goes all the way with each variable, while
LAR lets others in when they catch up. This slow learning was
inspired by the forward stagewise approach of boosting.
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3.4 Shrinkage Methods 75
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with six predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of L1 arc length.
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data, as a function of the L1 arc length. The right panel shows the Lasso profile.
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Relaxed Lasso

Originally proposed by Meinshausen (2006). We present a
simplified version.

• Suppose β̂λ is the lasso solution at λ, and let Aλ be the
active set of indices with nonzero coefficients in β̂λ.

• Let β̂LSAλ
be the coefficients in the least squares fit, using

only the variables in Aλ. Let β̂LSλ be the full-sized version
of this coefficient vector, padded with zeros.

β̂LSλ debiases the lasso, while maintaining its sparsity.

• Define the Relaxed Lasso

β̂RELAXλ (γ) = γ · β̂λ + (1− γ) · β̂LSλ

Once β̂LSλ is computed at desired values of λ, the whole family

β̂RELAXλ (γ) comes free of charge!
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Simulation
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Simulation Setup

Y =

p∑

j=1

Xjβj + ε

X ∼ Np(0,Σ)

ε ∼ N(0, σ2)

• p = 30, sample size n = 70, and first s = 5 values of β are
1, the rest are zero.

• Σ is correlation matrix, with Cov(Xi, Xj) = ρ|i−j|, and
ρ = 0.35

• σ2 is chosen here to achieve desired SNR = Var(Xβ)/σ2 of
0.71.

• This is equivalent to a percentage variance explained (R2)
of 42%, since population PVE = SNR/(1 + SNR).

• Where appropriate we have a separate validation set of size
n, and an infinite test set.
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Degrees of Freedom

We can get some insight into the aggressiveness of the
procedures by looking at their degrees of freedom.

Suppose yi = f(xi) + εi, i = 1, . . . , n, and assume Var(εi) = σ2.
Let ŷi be the fitted value for observation i, after applying some
regression method to the n pairs (xi, yi) (e.g. best-subset linear
regression of size k, lasso with parameter λ)

df =
1

σ2

n∑

i=1

Cov(yi, ŷi)

These covariances are wrt the sampling distribution of the yi.
The more aggressive the procedure, the more it will overfit the
training responses, and hence the higher the covariances and df.
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Notable features of previous plot

• Df for lasso is size of active set (Efron et al 2004, Zou et al
2007) — shrinkage offsets selection.

• Best-subset most aggressive, with forward stepwise just
behind (in this example).
Df can exceed p for BS and FS due to non-convexity
(Janson et al 2005, Kaufman& Rosset 2014)

• Relaxed Lasso notably less aggressive, in particular β̂LSλ
(γ = 0).
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Next plots · · ·

• Show results over a range of SNRs

• Averaged over 10 simulations

• For each method, a validation set of same size as training
set used to select the best model

• Reported errors are over infinite test set
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Next plots · · ·

As before, but also

• different pairwise correlations between variables

• Different patterns of true coefficients

• Different problem sizes N, p.
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Timings

Setting BS FS Lasso R Lasso
low n=100, p=10 3.43 0.006 0.002 0.002
medium n=500, p=100 >120 min 0.818 0.009 0.009
high-5 n=50, p=1000 >126 min 0.137 0.011 0.011
high-10 n=100, p=1000 >144 min 0.277 0.019 0.021

Average time in seconds to compute one path of solutions for each
method, on a Linux cluster
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Outline and Summary
We consider linear regression models η(X) = XTβ with
potentially very large numbers of variables, and methods for
selecting an informative subset.

• Revisit two baby boomers (best-subset selection and
forward-stepwise selection), one millennial (lasso) and a
newborn (relaxed lasso).

• Simulation study to evaluate them all over a wide range of
settings.

Conclusions:

• forward stepwise very close to best subset, but much faster.
• relaxed lasso overall winner, and fastest by far.
• In wide-data settings, and low SNR, lasso can beat best

subset and forward stepwise.

Paper: https://arxiv.org/abs/1707.08692

R package: https://github.com/ryantibs/best-subset/

Thank you for attending!
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