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One of the most recent applications of classical linear response theory is to Lecture
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the theory of chemical reaction rate constants, although this is one of the
more important and interesting applications of time dependent statistical
mechanics, from a chemistry point of view. At first glance it looks like
an unusual and unphysical way of constructing a theory, but in fact it is
valid.

Before discussing this, we want to review and extend some remarks we made
about a linear response situation that we discussed briefly a few lectures
ago.

1 Macroscopic description of first order reac-

tion kinetics

Recall that in getting a microscopic expression for the self diffusion coefficient
as an equilibrium time correlation function we compared the predictions of
the macroscopic diffusion equation with the predictions of the microscopic
equations of motion and assume that both were valid for long enough time
scales and distance scales.

We now want to do the same thing for chemical reaction rate constants.

For simplicity, we shall restrict our attention to first order reactions, but the
discussion could certainly be generalized to more complicated reactions.
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1.1 Chemical rate equations

Let’s suppose that the reaction involves conversion of an A molecule to a B
molecule and vice versa.

A
kf→ B

B
kr→ A

The forward and reverse rate constants are kf and kr.

The chemical rate equations are

dNA

dt
= −kFNA + krNB

dNB

dt
= kFNA − krNB

At equilibrium, each of these derivatives is zero, and we have

−kfNA + krNB = 0

NB.eq

NA,eq

=
kf

kr

= K

where K is the equilibrium constant of the reaction.

Suppose the system is close to equilibrium, but the concentrations are not
quite at their equilibrium values. We want to obtain the time dependence of
the numbers of molecules of each type.

Let δNA(t) = NA(t)−NA,eq and δNB(t) = NB(t)−NB,eq. Note that because
of conservation of molecules, δNA(t) = −δNB(t). Then

dδNB(t)

dt
= kf (NA,eq + δNA(t)) − kr (NB,eq + δNB(t))

= −(kf + kr)δNB(t)

Therefore
δNB(t) ∝ exp (−(kf + kr)t)

Hence
δNB(t) = δNB(0) exp (−(kf + kr)t)

2



Let’s let k = kf + kr. Then

δNB(t) = δNB(0) exp (−kt) (1)

Similarly, we have
δNA(t) = δNA(0) exp (−kt)

1.2 Comments on the validity of chemical rate equa-
tions

Simple kinetic equations based on first order kinetics, second order kinetics,
etc., are valid only if there is a separation of time scales between the char-
acteristic times for the motions of the reactant molecules to move around
among their accessible states and the time scale for the chemical reaction to
take place.

For example, consider a first order process that involves breaking a chemical
bond. In the reactant molecule, there is presumably a vibrational mode of
the molecule that involves the relative motion of the two atoms in the bond.
That vibration has a frequency and a time scale associated with it. Moreover,
there are other important time scales for the motion of the molecule, e.g.
internal rotations, motions relative to nearby solvent molecules, etc. When
you assume first order kinetics you assume that all reactant molecules are
equally likely to undergo reaction in the next time time interval. Moreover,
you are in effect assuming that the reaction takes place instantaneously. But
the reaction itself takes a certain amount of time to take place; i.e. it takes
some time for the atoms to move from a configuration in which the bond
exists to one in which the bond is broken.

Let’s use the symbol tmol to denote a typical molecular time that represents
the time scale for the motions mentioned above. In general, it is of the
order of picoseconds or shorter, depending on the complexity of the reactive
species.

The fact that the kinetic equations regard the reaction as instantaneous is
the clue that they hold only on a long time scale. This is analogous to the
situation with self diffusion, where the diffusion equation holds on a long
time scale but not for very shortest times characteristic of the motion of the
molecule.
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Thus the solutions to the kinetic equations give a meaningful description of
the time dependence of the numbers of reactant molecules only if the reaction
is slow on a microscopic time scale. In the present case, this means that k−1,
k−1

f and k−1
r , which are the characteristic times for the chemical reaction to

take place to an appreciable extent, must all be times large compared with
the microscopic time tmol, which is of the order of picoseconds.

slide

Time scales

molecular (microscopic) time scale: τmol

e.g. vibrational period, rotational time, time it takes a molecule to come
apart once it has enough energy to do so

typically picoseconds or less

macroscopic time scale: k−1, k−1
f , k−1

r

characteristic time for the relaxation of the concentrations of reactants and
products to equilibrium

Typical conditions for the validity of chemical rate equations

τmol << k−1

τmol << t

end of slide
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Perturbation of a chemically reactive system

Suppose we have the system at chemical equilibrium.

We do something to perturb the equilibrium just slightly.

As a result, NB/NA �= K.

We watch the system relax back to equilibrium.

There are a variety of ways in which to do this, some of them physical and
some unphysical.

• We could add a little extra reactant or product to the system and stir.

• We could raise the temperature slightly by heating or by microwave
radiation.

• We could apply a field that lowers the energy of the reactants without
lowering the energy of the products and without affecting the entropy
of either. This will shift the equilibrium to having more A molecules.
Then we turn off the field.

The first two are physical, and the third is unphysical.

No matter which of these we do, we are confident that the relaxation of
the system back to equilibrium will be in accordance with the chemical rate
equation above, if this relaxation takes place a time scale mentioned above
in which the chemical rate laws are valid.

When we apply linear response theory to calculate the rate constants, we
will use the third method.
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2 Microscopic description of first order reac-

tion kinetics

2.1 Classical mechanics description of the reactive sys-
tem

We now want to set up a microscopic description of the chemically reactive
system we have been discussing. We shall consider one special case, but the
methods we develop can be applied to more general situations.

We suppose that A and B correspond to different forms of what is essentially
the same molecule. E.g., they might be different conformational isomers or
geometric isomers, or they might differ by an internal proton transfer.

We suppose that we have one such molecule in the system that also contains
solvent molecules.

We suppose that we can construct a coordinate system for the reactive
molecule such that there is one specific coordinate, called the reactive co-
ordinate q, such that when q < q∗ the molecule is an A (reactant) molecule
and when q > q∗ the molecule is a B (product) molecule. The value q = q∗

corresponds to the transition state between reactants and products.1 The
momentum conjugate to q will be called p. All the other coordinates and
momenta will be called Q,P . This includes other coordinates and momenta
associated with the reactive molecule and all the coordinates and momenta
associated with the solvent molecules.

We suppose that the overall Hamiltonian for the system is

H(q, p,Q, P ) =
p2

2m
+ V (q,Q, P ) +H0(Q,P )

Thus we are assuming that the reactive coordinate is basically a Cartesian

1It may seem unreasonable to think that one can be that precise in specifying the
boundary between where the molecule is A and where it is B. It is as if we are saying that
the molecule changes abruptly from an A molecule to a B molecule the instant it crosses
from q < q∗ to q > q∗. If you examine closely the way the effects this assumption has on
the development of the theory, you will find that it does not affect the calculated value of
the rate constant, provided that there is the separation of time scales mentioned above.
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coordinate (rather than, for example, an angle).2

We need a dynamical variable, i.e. a function of q, p,Q, P that represents the
number of reactant molecules in the system, nA. The choice is an obvious
one. This variable should involve only q and should be of the form

nA(q, p,Q, P ) = 1 if q < q∗

= 0 if q > q∗

Similarly

nB(q, p,Q, P ) = 1 if q > q∗

= 0 if q < q∗

Note that
nA(q, p,Q, P ) + nB(q, p,Q, P ) = 1

for all states of the system, as it should be. The total number of reactive
molecules is 1.

The equilibrium distribution function is

Peq(q, p,Q, P ) = (const.) × exp (−H(q, p,Q, P )/kBT )

Next we want to get the microscopic analog of the equilibrium constant
relationship. The ensemble average 〈nA〉 is the average number of reactant
molecules in the system.

〈nA〉 =
∫
dqdpdQdP nA(q)Peq(q, p,Q, P ) =

∫ q∗

−∞
dq

∫
dpdQdP nA(q)Peq(q, p,Q, P )

Similarly

〈nB〉 =
∫
dqdpdQdP nB(q)Peq(q, p,Q, P ) =

∫ ∞

q∗
dq

∫
dpdQdP nB(q)Peq(q, p,Q, P )

The ratio should be the equilibrium constant.

K =
〈nB〉
〈nA〉

=

∫
dqdpdQdP nB(q) exp (−H(q, p,Q, P )/kbT )∫
dqdpdQdP nB(q) exp (−H(q, p,Q, P )/kbT )

2The choice of coordinates for any specific problem is a complicated technical matter
that we won’t go into. Other choices must sometimes be made. The example we are
discussing is sufficient for discussing the general principles associated with the theory of
chemical reaction rates.
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Classical mechanics description of the reactive system

Consider one special case, but the methods we develop can be applied to
more general situations:

A and B correspond to different forms of what is essentially the same molecule.

They might be different conformational isomers or geometric isomers, or they
might differ by an internal proton transfer.

We suppose that we have one such molecule in the system that also contains
solvent molecules. The system is of macroscopic size.

Coordinates and momenta. Choose a coordinate system for the reac-
tive molecule such that there is one specific coordinate, called the reactive
coordinate q, such that:

when q < q∗ the molecule is an A (reactant) molecule, and

when q > q∗ the molecule is a B (product) molecule.

The value q = q∗ corresponds to the transition state between reactants and
products.

The momentum conjugate to q will be called p.

The set of all the other coordinates and momenta will be called Q,P . This
includes those associated with the reactive molecule and all the solvent
molecules.

Hamiltonian

H(q, p,Q, P ) =
p2

2m
+ V (q,Q, P ) +H0(Q,P )

We are assuming that the reactive coordinate is basically a Cartesian coor-
dinate (rather than, for example, an angle).
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Dynamical variables of special interest. We need a dynamical variable
that represents the number of reactant molecules in the system, nA. The
choice is an obvious one.

nA(q, p,Q, P ) = 1 if q < q∗

= 0 if q > q∗

Similarly

nB(q, p,Q, P ) = 1 if q > q∗

= 0 if q < q∗

Note that
nA(q, p,Q, P ) + nB(q, p,Q, P ) = 1

for all states of the system, as it should be. The total number of reactive
molecules is 1.

The equilibrium distribution function

Peq(q, p,Q, P ) = (const.) × exp (−H(q, p,Q, P )/kBT )

The microscopic analog of the equilibrium constant relationship

〈nA〉 =
∫
dqdpdQdP nA(q)Peq(q, p,Q, P ) =

∫ q∗

−∞
dq

∫
dpdQdP nA(q)Peq(q, p,Q, P )

Similarly

〈nB〉 =
∫
dqdpdQdP nB(q)Peq(q, p,Q, P ) =

∫ ∞

q∗
dq

∫
dpdQdP nB(q)Peq(q, p,Q, P )

The ratio should be the equilibrium constant.

K =
〈nB〉
〈nA〉

=

∫
dqdpdQdP nB(q) exp (−H(q, p,Q, P )/kbT )∫
dqdpdQdP nB(q) exp (−H(q, p,Q, P )/kbT )

Modifications needed to describe a very dilute solution of reacting molecules.

end of slide
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2.2 Linear response theory

We want to invent an external field that can perturb the concentration of
reactants and products. It is relatively straightforward to do this. We invent
a field that couples to nA. We add −g(t)nA(q) to the Hamiltonian of the
system.

Let’s specify that g(t) has the following behavior. We turn it on slowly at
negative times and by the time t = 0 the system has adjusted to the presence
of that additional field. The effect of this adjustment will be to have more
reactant and less product than when the field is absent and the system is at
equilibrium. Then we turn off the field and watch the concentrations relax
back to those given by the equilibrium constant relation.

Comparison with our general linear response theory show that:

• the variable to which the field coupled in the general theory was called
B, and in the special case under consideration, it is nA;

• the variable whose time evolution was observed was called A, and in
the special case is nA.

Applying our result for the time dependence after abruptly turning off a
steady field, we get

〈nA(t)〉 = 〈nA〉eq +
g0

kBT
CδnAδnA

(t)

or
〈nA(t)〉 − 〈nA〉eq =

g0

kBT
CδnAδnA

(t)

Also, for t = 0,

〈nA(0)〉 − 〈nA〉eq =
g0

kBT
CδnAδnA

(0)

=
g0

kBT
〈(δnA)2〉eq
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Linear response theory

We want to invent an external field that can perturb the concentration of
reactants and products.

We invent a field that couples to nA. We add −g(t)nA(q) to the Hamiltonian
of the system.

Choose g(t) to have the following behavior.

• We turn it on slowly at negative times.

• When t = 0 the system has adjusted to the presence of that addi-
tional field. The effect of this adjustment will be to have more reactant
and less product than when the field is absent and the system is at
equilibrium.

• We turn off the field and watch the concentrations relax back to those
given by the equilibrium constant relation.

Comparison with linear response theory for classical systems

• the variable to which the field coupled in the general theory was called
B, and in the special case under consideration, it is nA;

• the variable whose time evolution was observed was called A, and in
the special case is nA.

Applying our general result for this case, we get

〈nA(t)〉 = 〈nA〉eq +
g0

kBT
CδnAδnA

(t)

or
〈nA(t)〉 − 〈nA〉eq =

g0

kBT
CδnAδnA

(t)

Also, for t = 0,

〈nA(0)〉 − 〈nA〉eq =
g0

kBT
CδnAδnA

(0)

=
g0

kBT
〈(δnA)2〉eq
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end of slide

3 Comparison of microscopic and macroscopic

descriptions of the linear response

Let’s collect the two results we obtained.

δNA(t) = δNA(0) exp (−kt)

〈nA(t)〉 − 〈nA〉eq =
g0

kBT
CδnAδnA

(t)

There are some unimportant differences between the two scenarios. One is
that in the macroscopic description there were a large number of reactive
molecules that did not influence each others chemical reaction. In the micro-
scopic description, there is only one reactive molecule. But if we take this
microscopic result and scale it up by increasing the number of molecules, it
should be of the same form if the reactive molecules do not influence each
others chemical reaction.

Now, as we were in the case of self diffusion, we have two different descriptions
of the same process. The microscopic description works on all time scales.
The macroscopic description works on time scales of the order of the reaction
time, but not on microscopic time scales. Hence we can conclude that

g0

kBT
CδnAδnA

(t) = δNA(0) exp (−kt) (2)

but this is valid only for times long compared with microscopic times. In
particular, we consider times t that are such that

t >> tmol

and Eq. (2) holds in this time range.

We also use the microscopic theory to calculate δNA(0). We get

δNA(0) = 〈δnA(0)〉 =
g0

kBT
〈(δnA)2〉eq =

g0

kBT
CδnAδnA

(0)
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(Thus, we see that Eq. (2) holds at t = 0. Note however, that there is a
range of times between 0 and some time large compared with tmol in which
Eq. (2) does not hold.)

Putting these two together, we get

CδnAδnA
(t) = CδnAδnA

(0) exp(−kt) for t >> tmol

This is a remarkable result. For times long compared with molecular times,
the relaxation of concentration functions in a reactive system obeys the
macroscopic rate equations and decays exponentially with the same time
constant as macroscopic concentration fluctuations.

We want an expression for k. So differentiate with regard to time.

ĊδnAδnA
(t) = −kCδnAδnA

(0) exp(−kt) for t >> tmol

Now, choose a ∆t with the following characteristics:

tmol << ∆t << k−1

If there is a separation of time scales, such a ∆t can be found. The equation
above is valid for t = ∆t. So we get.

ĊδnAδnA
(∆t) = −kCδnAδnA

(0)

k = −ĊδnAδnA
(∆t)

CδnAδnA
(0)

= − 1

〈(δnA)2〉eq
d

dt
〈δnA(∆t)δnA(0)〉eq

= − 1

〈(δnA)2〉eq
〈δṅA(∆t)δnA(0)〉eq

Thus we have a microscopic expression for the rate constant in terms of
correlation functions of concentration fluctuations in a chemically reactive
system at equilibrium.
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Comparison of microscopic and macroscopic descriptions of the
linear response

Let’s collect the two results we obtained.

δNA(t) = δNA(0) exp (−kt)

〈nA(t)〉 − 〈nA〉eq =
g0

kBT
CδnAδnA

(t)

The left sides both refer to essentially the same thing.

An unimportant difference between the two results

• In the macroscopic description there were a large number of reactive
molecules that did not influence each others chemical reaction.

• In the microscopic description, there is only one reactive molecule.

But if we take this microscopic description and scale it up by increasing the
number of reactive molecules, it should be of the same form if the reactive
molecules do not influence each others chemical reaction.

An important difference between the two results

• The microscopic description works on all time scales.

• The macroscopic description works on time scales of the order of the
reaction time, but not on microscopic time scales.

δNA(t) = δNA(0) exp (−kt) for t = 0 and t >> τmol

〈nA(t)〉 − 〈nA〉eq =
g0

kBT
CδnAδnA

(t) for all t ≥ 0

Hence

g0

kBT
CδnAδnA

(t) = δNA(0) exp (−kt) for t = 0 and t >> τmol

or
CδnAδnA

(t) = CδnAδnA
(0) exp(−kt) for t = 0 and t >> tmol

14



For times long compared with molecular times, the relaxation of concentra-
tion functions in a reactive system obeys the macroscopic rate equations and
decays exponentially with the same time constant as macroscopic concentra-
tion fluctuations.

We want an expression for k. Differentiate with regard to time.

ĊδnAδnA
(t) = −kCδnAδnA

(0) exp(−kt) for t >> tmol

Now, choose a ∆t with the following characteristics:

tmol << ∆t << k−1

If there is a separation of time scales, such a ∆t can be found. The equation
above is valid for t = ∆t. So we get.

ĊδnAδnA
(∆t) = −kCδnAδnA

(0)

k = −ĊδnAδnA
(∆t)

CδnAδnA
(0)

= − 1

〈(δnA)2〉eq
d

dt
〈δnA(∆t)δnA(0)〉eq

k = − 1

〈(δnA)2〉eq
〈δṅA(∆t)δnA(0)〉eq

Thus we have a microscopic expression for the rate constant in terms of
correlation functions of concentration fluctuations in a chemically reactive
system at equilibrium.

end of slide

4 Simplification of the correlation function

formula for the reaction rate constant

To understand this result and its implications, we must manipulate it a bit
and simplify it.
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Simplifying the denominator. The denominator is〈
(nA − 〈nA〉)2

〉

But in a system with one reactive molecule 〈nA〉 = xA, where xA is the
equilibrium mole fraction of A. So this is equal to〈

(nA − xA)2
〉

=
〈
n2

A − 2xAnA + x2
A

〉
=

〈
n2

A

〉
− 2xA〈nA〉 + x2

A

But nA only has values 0 or 1, so n2
A = nA. Thus this is equal to

xA − 2x2
A + x2

A = xA − x2
A = xA(1 − xA) = xAxB

Thus we have

k =
1

xAxB

〈δṅA(∆t)δnA(0)〉eq

Manipulating the location of the time derivative. We now want to
get the numerator into a form in which the time derivative appears with a
time argument of zero.

To do this, we need some elementary properties of correlation function. The
first is that3

ĊXY (t) = CẊY (t)

The second is that4

ĊXY (t) = −CXẎ (t)

3The proof is straightforward.

ĊXY (t) =
d

dt
CXY (t) =

d

dt

∫
dΓ Peq(Γ)X(t, Γ)Y (Γ)

=
∫

dΓ Peq(Γ)
∂X(t, Γ)

∂t
Y (Γ)

=
∫

dΓ Peq(Γ)Ẋ(t, Γ)Y (Γ) = CẊY (t)

4This proof is just slightly more complicated.

ĊXY (t) =
d

dt
CXY (t) =

d

dt

∫
dΓ Peq(Γ)X(t, Γ)Y (Γ)

=
d

dt

∫
dΓ Peq(Γ)X(Γ)Y (−t, Γ)
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Putting these two together, we get

CẊY (t) = −CXẎ (t)

These hold for any dynamical variables X and Y .

Then

k =
1

xAxB

〈δnA(∆t)δṅA(0)〉eq

=
∫

dΓ Peq(Γ)X(t, Γ)
∂Y (−t,Γ)

∂t

= −
∫

dΓ Peq(Γ)X(t,Γ)Ẏ (−t,Γ)

=
∫

dΓ Peq(Γ)X(t, Γ)Ẏ (−t, Γ) = −CXẎ (t)

In getting the third equality, we used the fact that equilibrium time correlation functions
depend only on the time interval between the two arguments.

17



slide

Manipulating the location of the time derivative. We now want to
get the numerator into a form in which the time derivative appears with a
time argument of zero.

Some elementary properties of correlation function. The first is that

ĊXY (t) = CẊY (t)

The second is that
ĊXY (t) = −CXẎ (t)

Putting these two together, we get

CẊY (t) = −CXẎ (t)

These hold for any dynamical variables X and Y .

Then

k =
1

xAxB

〈δnA(∆t)δṅA(0)〉eq

end of slide

Evaluating δṅA We have

nA(q, p,Q, P ) = Θ(q∗ − q)

Therefore

ṅA(q, p,Q, P ) = δ(q∗ − q) (−q̇) = −q̇δ(q∗ − q) = − p

m
δ(q − q∗)

The time derivative of nA is sometimes called a flux.

We see that ṅA is nonzero only if the reaction variable is right at the transition
value of q∗.

If p > 0, the flux is negative, corresponding to a decrease in nA.

If p < 0, the flux is negative.

Then

k = − 1

xAxB

〈δnA(∆t)q̇δ(q − q∗)〉eq
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Switching the emphasis to products. Note that δnA = −δnB.

So we have

k =
1

xAxB

〈δnB(∆t)q̇δ(q − q∗)〉eq

Also δnB = nB − xB .

Since 〈q̇δ(q − q∗)〉eq = m−1〈p〉eq〈δ(q − q∗)〉eq = 0, we can replace δnB by
nB.

Thus we have

k =
1

xAxB

〈nB(∆t)q̇δ(q − q∗)〉eq

An expression for the forward rate constant. Recall

K =
kf

kr

=
xB

xA

k = kf + kr

Solve for kf in terms of k.

k = kf +
xA

xB

kf =
(
1 +

xA

xB

kf

)
=

kf

xB

The final result is

kf =
1

xA

〈nB(∆t)q̇δ(q − q∗)〉eq

The rate constant is the correlation function of:

• the flux along the reactive coordinate at the transition state at zero
time and

• the population of product at time ∆t.

The derivation has been for a system with a single reactive molecule. But
if the system contains a large number of reactive molecules at high dilution,
the same result is obtained.

This is an exact expression for the forward rate constant of a reaction in terms
of a time correlation function for a system at equilibrium. In particular, the
system is at chemical equilibrium.
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This is the form of the result for the rate constant that is most easy to discuss
physically.

5 Discussion of the correlation function for-

mula for the rate constant

Each of the quantities in the average are dynamical variables. We can write
the result as an integral over phase space in the following way.

kf =
1

xA

∫
dΓPeq(Γ)nB(∆t; Γ)q̇(0; Γ)δ (q(0; Γ) − q∗)

The only states that contribute to the integral are those whose q coordinate
is right at the boundary between reactants and products. There is a factor of
Peq, so one important factor that governs the rate is what is the probability of
being at that boundary in an equilibrium system. We shall call that boundary
the ‘transition state’ or the transition surface. In fact, in equilibrium the
system spends most of its time in low energy states well on the reactant or
product side of the boundary. The boundary surface is often at high energy
compared to the predominant states of reactants and products. Thus this
expression will automatically contain a factor related to the exponential of
the negative of the energy of at the transition state.

All states with q = q∗ potentially contribute to the integral. However, we see
that there is a factor of nB(∆t; Γ). Thus the only states that contribute are
those that are on the transition surface and that are such that at some time
∆t in the future the system is on the product side of that surface.

The contribution that a state Γ makes is also proportional to the value of q̇.
Thus it is positive for positive q̇ and negative for negative q̇.

Thus we have the following result:

• Points on the transition surface that have positive q̇ (i.e. that are mov-
ing from reactants to products at time 0) and that will end up as
products at time ∆t contribute positively to the rate constant.
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• Points on the transition surface that have negative q̇ (i.e. that are mov-
ing from products to reactants at time 0) and that nevertheless end up
as products at time ∆t contribute negatively to the rate constant).

slide

Discussion. Write the result as an integral over phase space.

kf =
1

xA

∫
dΓPeq(Γ)nB(∆t; Γ)q̇(0; Γ)δ (q(0; Γ) − q∗)

The δ (q(0; Γ) − q∗) factor. The only states that contribute to the integral
are those whose q coordinate is right at the boundary between reactants and
products, which is the transition state.

The Peq(Γ) factor. The boundary surface is often at high energy compared
to the predominant states of reactants and products.

Thus this expression will automatically contain a factor related to the expo-
nential of the negative of the energy at the transition state.

The nB(∆t; Γ) factor. The only states that contribute are those such that
at time ∆t in the future the system will be on the product side of that
surface.

The q̇(0; Γ) factor. The contribution that a state Γ makes is positive for
positive q̇ and negative for negative q̇.

Thus

• Points on the transition surface that have positive q̇ (i.e. that are mov-
ing from reactants to products at time 0) and that will end up as
products at time ∆t contribute positively to the rate constant.

• Points on the transition surface that have negative q̇ (i.e. that are mov-
ing from products to reactants at time 0) and that nevertheless end up
as products at time ∆t contribute negatively to the rate constant).

end of slide
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6 Two limiting case pictures of chemical re-

action dynamics

This formally exact result for the rate constant leads naturally to a classi-
cal version of the traditional transition state theory of rate constants. This
theory is most often associated with the name of Eyring in the chemistry
literature, but it also owed much to a Wigner, who was a very famous physi-
cist.

To lead into this discussion, let’s consider two limiting situations. The reac-
tion is taking place in a multidimensional phase space. Let’s consider just
the coordinate variables. The space whose axes represents the coordinates is
called configuration space. The space is still multidimensional. Let’s imagine
a diagram in configuration space that has contours of constant energy. We
can indicate this schematically in two dimensions. There are deep basins
corresponding to reactants and products. These basins are separated, in
general, by a region of higher energy. We draw an imaginary dividing plane
that separates reactants and products. The reaction coordinate q is some
coordinate perpendicular to that plane. One can imagine that on this sur-
face there are one or more saddle points (or mountain passes) that are the
lowest energy points on the surface. It is likely that trajectories that cross
the surface cross near such saddle points, because more energy is required to
cross at other points.

Let’s for simplicity assume that there is one such mountain pass. Then it
would be convenient to regard the reaction coordinate as the coordinate that
corresponds to going over that pass along a minimum energy path. There
are very many coordinate directions that are perpendicular to that reaction
coordinate, corresponding to the other degrees of freedom of the molecule
and the degrees of freedom of the other molecules in the system.

6.1 The first limiting case

The first limiting case to consider would be one in which the mountain pass
has steep sides in all directions, falling down sharply in the direction of the
reaction coordinate but rising sharply in the other directions. The motion of
the system will be like that of a particle sliding on such a surface.

22



If the system has q̇ > 0 at t = 0 it will be moving toward the product side and
will rather quickly experience forces that pull it downhill toward products.
It is unlikely that the system will return to the transition surface; instead it
will fall into the part of configuration space of products. Eventually, after
staying there for a while, it may recross, but that will be at a time much
larger than ∆t. Thus, we expect nB(∆t) = 1 for such a system.

On the other hand, if the system has q̇ < 0 at t = 0, it will be moving toward
reactants and will probably fall into the reactant well, and so nB(∆t) =
0.

6.2 The second limiting case

The second limiting case is one in which the solvent molecules and other
degrees of freedom of the system have an important influence on the way
the system crosses the transition state. For example, suppose the solvent
molecules are continually influencing the motion of the reaction coordinate,
perhaps even making it undergo something like Brownian motion. So the
motion is not like sliding or rolling on some surface as much as like under-
going diffusive motion on the surface. The reaction coordinate is subject
to repeated changes in its velocity, even repeated changes in the sign of its
velocity. As a result, if it starts out at q = q∗ with positive q̇, it is still likely
to cross the surface many times in the future before finally falling into the
product or reactant wells.

6.3 Comparison of the two cases

The important difference between these two limiting cases is related to the
question of whether a trajectory that crosses the transition surface at time 0
is likely or unlikely to cross it again within a time ∆t before falling decisively
into the reactant or product basins. Strong interactions with a solvent can
make recrossings more likely. They are less likely when the solvent does not
have much effect on the reaction coordinate or when there is little or no
solvent. End of

lecture 7
10/13/09
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7 Classical transition state theory
Lecture
8
10/15/09

The assumption that is the basis for transition state theory. Clas-
sical transition state theory is applicable in the first of these limiting situa-
tions.

The basic assumption of classical transition state theory is that:

• a trajectory that crosses the transition surface will not cross it again
for a very long time (much longer than ∆t).

This is a physical assumption about the dynamics of trajectories.

This is the formulation that, I think, Wigner came up with. It is rather differ-
ent in spirit from that of Eyring, which you may be more familiar with.

If we make this assumption, we can go far to evaluating the rate constant.
In the integral, if Γ is such that q = 0 and q̇ > 0 at time 0, then the system is
crossing from reactant to product and hence it will stay on the reactant side
for some time and so nB(∆t) = 1. If Γ is such that q = 0 and q̇ < 0, then
the system is crossing from product to reactant and so nB(∆t) = 0. Thus, it
follows from this assumption that

nB(∆t) = Θ(q̇(0))

In other words, for a system that starts at q = 0 at t = 0, whether the system
will be reactant of product at time ∆t is determined solely by the sign of its
velocity at t = 0. Thus we have

kf,TST =
1

xA

〈Θ(q̇(0))q̇(0)δ(q(0) − q∗)〉eq =
1

xA

〈Θ(q̇)q̇δ(q − q∗)〉eq (3)

The remarkable thing about this is that it is of the form of a static equilibrium
average that can be calculated in principle using only equilibrium statistical
mechanics. The assumption that a trajectory that crosses the transition
surface does so once and does not come back to the surface for a very long
time simplifies the expression for the rate constant significantly.

24



slide

This assumption allows us to simplify the expression for kf .

If the initial state is such that q = 0 and q̇ > 0 at time 0, then the system is
crossing from reactant to product and hence it will stay on the reactant side
for some time and so nB(∆t) = 1.

If the initial state is such that q = 0 and q̇ < 0 at time 0, then the system is
crossing from product to reactant and so nB(∆t) = 0.

Thus, in both cases
nB(∆t) = Θ(q̇(0))

Thus we have

kf,TST =
1

xA

〈Θ(q̇(0))q̇(0)δ(q(0) − q∗)〉eq =
1

xA

〈Θ(q̇)q̇δ(q − q∗)〉eq

This is of the form of a static equilibrium average that can be calculated in
principle using only equilibrium statistical mechanics.

end of slide

Further manipulation of the result. Let’s manipulate this a little fur-
ther to get it into a more familiar form.

kf,TST =
1

xA

∫
dΓPeq(Γ)Θ(q̇(0))q̇(0; Γ)δ (q(0; Γ) − q∗)

=
1

xA

∫
dqdpdQdP Peq(q, p,Q, P )Θ(p)

p

m
δ (q − q∗)

The equilibrium distribution function is

Peq(q, p,Q, P ) = (const.) × exp (−H(q, p,Q, P )/kBT )

=
1

Qcl

exp (−H(q, p,Q, P )/kBT )

=
1

Qcl

exp

(
−

(
p2

2m
+ V (q,Q, P ) +H0(Q,P )

)
/kBT

)

where
Qcl =

∫
dqdpdQdP exp (−H(q, p,Q, P )/kBT )
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is a classical partition function. If we substitute this into the expression for
kTST , then then integral factors into a number of factors.

• The q integral is trivial, because of the delta function. We get rid of
the integration and of the delta function, and q is replaced elsewhere
in the integral by q∗.

• The p integral is straightforward. It is

∫ ∞

−∞
dpΘ(p)

p

m
exp(−p2/2mkT ) =

∫ ∞

0
dp

p

m
exp(−p2/2mkT ) = kBT

Thus we get

kf,TST =
kBT

xAQcl

∫
dQdP exp (− (V (q∗, Q, P ) +H0(Q,P )) /kBT )

The integral that remains looks like a partition function, but note that it
does not contain an integration over the reaction coordinate or its conjugate
momentum. The reaction coordinate is held fixed at q∗, and the integral
for the momentum conjugate to it has factored out and been evaluated. It
is really a partition function for a system with one fewer degree of freedom
than the original system. It is a partition function for all the other degrees of
freedom, but these other degrees of freedom are subject to a potential energy
that corresponds to holding the reaction coordinate fixed at q∗. This is what
is ordinarily described as the partition function for the ‘activated complex’
or the partition function of the transition state.

Let’s define

Q‡
cl ≡

∫
dQdP exp (− (V (q∗, Q, P ) +H0(Q,P )) /kBT )

Then we have

kf,TST =
kBTQ‡

cl

xAQcl

We can also write

K =
xB

xA

=
〈nB〉
〈nA〉

=

∫
dqdpdQdP nB(q) exp (−H(q, p,Q, P )/kbT )∫
dqdpdQdP nA(q) exp (−H(q, p,Q, P )/kbT )

=
Qcl,B

Qcl,A
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where we have defined separate classical partition functions for reactants and
products. Note that

Qcl,A + Qcl,B = Qcl

Also it is easily shown that Qcl,A = xAQcl.

Then we have

kf,TST =
kBTQ‡

cl

Qcl,A

(4)

The forward rate constant is proportional to the ratio of the partition function
of the transition state to the partition function of the reactant states.

In statistical mechanics, the partition function of a system is related to its
free energy in the following way.

A = −kBT lnQ

where Q is the canonical partition function. However, this is true only when
you use the correct quantum mechanical partition function. If you simply
use the classical partition function, you don’t get the right answer.

However, the correct quantum mechanical partition function is closely related
to the classical partition function when the temperature is high enough for
quantum effects to be unimportant. The relationship is of the following
form:

Q =
1

hM

1

(symmetry numbers)
Qcl

where M is the number of degrees of freedom and h is Planck’s constant. The
symmetry numbers are numerical factors related to the number of identical
molecules in the system and the symmetries of individual molecules.

This allows us to calculate the free energy A of reactants or products from
the corresponding classical partition function. Let us use this also to define
the free energy of the transition state.5

If we use this to calculate Q‡/QA, we get

Q‡

QA

= h
σA

σ‡
Q‡

cl

QA,cl

5Partition functions and free energies of transition states do not arise in ordinary sta-
tistical thermodynamics. We are free to define them as we are doing, as long as we do not
attribute any thermodynamic significance to the resulting quantities.
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We get one factor of h, since there is one fewer degree of freedom in the
transition state than in the overall system. σA is the symmetry number of
the reactant molecule A. σ‡ is the symmetry number of the transition state.
The symmetry numbers associated with the solvent molecules cancel because
they are the same in the two partition functions. Hence

Q‡
cl

QA,cl

=
σ‡QA

hσAQ‡

Let us restrict our attention to the special case that the two symmetry num-
bers are equal.6 Then, substituting this result into our expression for kf,TST

gives

kf,TST =
kBTQ‡

hQA

=
kBT

h
e−∆A‡/kBT

where

∆A‡ = −kBT ln

(
Q‡

QA

)

is called the free energy of activation (i.e. the free energy change for going
from the set of reactant states to the transition state).

In transition state theory, the factor of kBT/h is sometimes called the ‘fre-
quency factor’, and its appearance in some of the less rigorous derivations
of transition state theory can be especially mysterious. Here it arose in a
straightforward way.

• The factor of kBT arose from doing the integration over the momen-
tum associated with the reaction coordinate. The result was so simple
because of the simplifying assumptions we made about the form of the
Hamiltonian.

• The factor of h arose from expressing the classical partition functions
in terms of the quantum partition functions. Introducing quantum par-
tition functions into a classical theory may seem unnecessary, and it is.
But if you really want to introduce the idea of free energy of activation,

6The correct handling of symmetry numbers is a technical detail that is very important
in getting the right answer for any particular problem. It is tied up with other technical
aspects of the calculation as well. These considerations are best handled on an individual
basis rather than giving general formulas.
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then it is necessary since only in quantum statistical mechanics is there
the correct relationship between partition functions and free energies.

If one does not like to see factors of h in a classical theory, they can be
avoided simply by deciding not to introduce free energies. Eq. (4) then is a
perfectly acceptable expression for the classical transition state theory, as is
Eq. (3).7

slide

Further manipulation of the result

kf,TST =
1

xA

∫
dΓPeq(Γ)Θ(q̇(0))q̇(0; Γ)δ (q(0; Γ) − q∗)

=
1

xA

∫
dqdpdQdP Peq(q, p,Q, P )Θ(p)

p

m
δ (q − q∗)

The equilibrium distribution function is

Peq(q, p,Q, P ) = (const.) × exp (−H(q, p,Q, P )/kBT )

=
1

Qcl

exp (−H(q, p,Q, P )/kBT )

=
1

Qcl

exp

(
−

(
p2

2m
+ V (q,Q, P ) +H0(Q,P )

)
/kBT

)

where
Qcl =

∫
dqdpdQdP exp (−H(q, p,Q, P )/kBT )

is a classical partition function.

7If the symmetry numbers of the reactant, product, and transition state are all the
same, then one can blithely use classical statistical mechanics for calculating rates and
one will get the correct classical limit of the quantum result, provided one has the factor
of h in the frequency factor. If the symmetry numbers are not all the same, they must
be taken into account in the calculation of either the rate constant or the equilibrium
constant or both.
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kf,TST

=
1

xAQcl

∫
dqdpdQdP

× exp

(
−

(
p2

2m
+ V (q,Q, P ) +H0(Q,P )

)
/kBT

)
Θ(p)

p

m
δ (q − q∗)

• The q integral is trivial, because of the delta function. We get rid of
the integration and of the delta function, and q is replaced elsewhere
in the integral by q∗.

• The p integral is straightforward. It is

∫ ∞

−∞
dpΘ(p)

p

m
exp(−p2/2mkT ) =

∫ ∞

0
dp

p

m
exp(−p2/2mkT ) = kBT

The result is

kf,TST =
kBT

xAQcl

∫
dQdP exp (− (V (q∗, Q, P ) +H0(Q,P )) /kBT )

Let’s define

Q‡
cl ≡

∫
dQdP exp (− (V (q∗, Q, P ) +H0(Q,P )) /kBT )

Then we have

kf,TST =
kBTQ‡

cl

xAQcl
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We can also write

K =
xB

xA

=
〈nB〉
〈nA〉

=

∫
dqdpdQdP nB(q) exp (−H(q, p,Q, P )/kbT )∫
dqdpdQdP nA(q) exp (−H(q, p,Q, P )/kbT )

=
Qcl,B

Qcl,A

where we have defined separate classical partition functions for reactants and
products. Note that

Qcl,A + Qcl,B = Qcl

Also it is easily shown that Qcl,A = xAQcl.

Then we have

kf,TST =
kBTQ‡

cl

Qcl,A

The partition function of a system is related to its free energy in the following
way.

A = −kBT lnQ
where Q is the canonical partition function (i.e. the correct quantum me-
chanical partition function).

The correct quantum mechanical partition function is:

Q =
1

hM

1

(symmetry numbers)
Qcl

where M is the number of degrees of freedom and h is Planck’s constant. The
symmetry numbers are numerical factors related to the number of identical
molecules in the system and the symmetries of individual molecules.

Use this to calculate Q‡
cl/Qcl,A.

Q‡

QA

= h
σA

σ‡
Q‡

cl

Qcl,A

Q‡
cl

Qcl,A

=
σ‡QA

hσAQ‡

Restrict our attention to the special case that the two symmetry numbers
are equal. Then

kf,TST =
kBTQ‡

hQA

=
kBT

h
e−∆A‡/kBT

where

∆A‡ ≡ −kBT ln

(
Q‡

QA

)

is called the free energy of activation (i.e. the free energy change for going
from the set of reactant states to the set of transition states).

31



In transition state theory, the factor of kBT/h is sometimes called the ‘fre-
quency factor’.

• The factor of kBT arose from doing the integration over the momentum
associated with the reaction coordinate.

• The factor of h arose from expressing the classical partition functions
in terms of the quantum partition functions.

end of slides

Transition state theory as an upper bound to the exact rate con-
stant

Let’s return to the exact classical expression for the rate constant.

k =
1

xAxB

∫
dΓPeq(Γ)nB(∆t,Γ)q̇(0; Γ)δ (q(0; Γ) − q∗)

Suppose we consider a givenH and Peq, and suppose we don’t know nB(∆t,Γ)
for all Γ. But we do know that nB(∆t,Γ) for any Γ can only have the values
of 0 or 1.

Subject to these restrictions, what form of nB(∆t,Γ) will give the largest
value of k? It is clear that for initial states for which q̇ > 0, we will want
nB(∆t,Γ) to always be 1 (rather than sometimes be 1 and sometimes 0),
and for initial states for which q̇ < 0, we will want nB(∆t,Γ) to be always 0
(rather than sometimes 0 and sometimes 1). But this is what follows from
the transition state theory assumption.

It follows that
k ≤ kTST

The transition state theory rate constant provides an upper bound to the
exact classical rate constant. This is a truly remarkable result.8

What it means physically is that anything that would affect the dynamics in
such a way as to cause trajectories to cross the surface many times will cut

8The quantum transition state theory is on a less firm basis, and in fact there are several
different theories that have the characteristics that one might call ‘quantum transition
state theory’. However, for none of them has it been shown that the theory gives an upper
bound to the correct rate.
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down the rate of the reaction, possibly to much smaller values than what is
predicted by transition state theory.

slides

Transition state theory as an upper bound to the exact rate con-
stant. The exact classical expression for the rate constant

k =
1

xAxB

∫
dΓPeq(Γ)nB(∆t,Γ)q̇(0; Γ)δ (q(0; Γ) − q∗)

We know that nB(∆t,Γ) for any Γ can only have the values of 0 or 1.

Question: What formula for nB(∆t,Γ) will give the largest value of k?

Answer:

• For initial states for which q̇ > 0, we will want nB(∆t,Γ) to always be
1 (rather than sometimes be 1 and sometimes 0)

• For initial states for which q̇ < 0, we will want nB(∆t,Γ) to be always
0 (rather than sometimes 0 and sometimes 1).

But this is what follows from the transition state theory assumption.

It follows that
k ≤ kTST

The transition state theory rate constant provides an upper bound to the
exact classical rate constant.

end of slides

8 Variational transition state theory

The fact that the transition state theory provides an upper bound to the
exact rate constant let’s us provide a satisfying answer to following question,
which may have occurred to you.
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How does one choose the appropriate value of q∗? More generally, how does
one divide the configuration space into regions corresponding to reactants A
and products B?

In some sense it does not make any difference precisely where the dividing
surface is placed. The average of the dynamical variable nA is insensitive to
the choice, so any choice works equally well, as long as the dividing surface
is somewhere between the A and B parts of the phase space and in a region
where there is very little equilibrium probability. Moreover, if the theory
is correct, as it is, the same final result (i.e. the correct result) for the rate
constant should be obtained from any choice.

The fact that kTST is an upper bound to the true rate constant suggests that
the appropriate thing to do is choose the surface so that the calculated value
of kTST is as small as possible. This is known as ‘variational transition state
theory’. A surface chosen this way is in some sense the best because it makes
the transition state approximation as accurate as it can be. Lecture
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