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1 Introduction
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2 The basic experiment

The basic experiment is one in which we have an equilibrium system containing
trace amounts of one component. That component might be a solute dissolved in a
solvent (e.g. a dye molecule dissolved in an organic solvent). Or it might be a trace
radioactive version of the major component of the system (e.g. a trace of T20 in
H,0).

The entire system is in thermal equilibrium, with the exception that the concentra-
tion of the trace component is not uniform; there are parts of the system where the
concentration is higher than others. The typical experiment then starts with some
initial inhomogeneous concentration, and measurements are made to observe how
the system approaches a final equilibrium state in which the concentration of the
trace component is the same everywhere.



3 The diffusion equation

3.1 Derivation of the diffusion equation

During the approach to equilibrium, the temperature, the overall density, the pres-
sures, and the concentrations of the major components do not change. The only
thing that changes is the concentration of the trace component.

Suppose c¢(r,t) is the position and time dependent concentration of the trace com-
ponent. For our purposes, let’s use molecules per unit volume as the units of c.
In analyzing the property of the system, it is usually assumed that ¢ satisfies the
following diffusion equation.

Jc(r,t)

5 = DV?c(r,t)

This is an example of a hydrodynamic equation. It is a macroscopic equation and
contains a parameter D, called the diffusion constant. It is the first example of
several such macroscopic equations we shall discuss. Other examples include the
Navier-Stokes equations and rate equations for chemical reactions. All such equations
contains such parameters. E.g. the Navier-Stokes equations contain the viscosity
coefficients, and the chemical rate equations contain rate constants for chemical
reactions.

The usual handwaving ‘derivation’ of the diffusion equation is the following. Let’s
first consider a situation in which ¢ varies in the x direction only. Then c is a function
of x and t, namely c(z,t). Suppose ¢ increases as = increases. Then at any point,
there are more trace molecules to the right than to the left. If each of them moves in
some random way, with no bias as to whether to move to the left or the right, there
should some net flow of the trace component from right to left. There is no reason to
think that there would be any flow in the y or z direction. Let j(x,t) be the flux of
the trace component. The flux has the meaning of the number of molecules flowing
in the = direction per unit area per unit time. That is, we imagine a small area that
is oriented perpendicular to the x direction. Molecules cross that area. Those that
flow in the +z direction contribute positively to the flux and those that flow in the
—x direction contribute negatively to the flux.

We expect the flux to be related to the derivative of the concentration. If the concen-
tration were uniform, there would be no flux. If de/0x is positive, we expect j to be



negative. If dc/0x is negative, we expect j to be positive. The simplest assumption
to make is that j is proportional to the concentration gradient.

j(a.t) = —p2iED) 0

ox
We put the minus sign there so that the constant of proportionality, D, will be a
positive constant.

Since the molecules are flowing, we expect the concentration to be changing with
time. What is the relationship? I.e. suppose we know j(x,t). How does this
determine Oc/0t?

If j(x,t) were independent of x, the concentration would not change in any region
of space. Concentration changes must be related to gradients in j. The continuity
equation is
Oc(x,t) _ 0j(z,t) 2)
ot Ox
This equation is exact. (We shall discuss this in detail in a handout and in a future
problem set.)

Putting these two equations together, we get the form of the diffusion equation for
this one dimensional geometry. !

dc(x,t) D82c(x, t)

ot 0xz?

IThe detailed reasoning is

n - Ox Ox? Oor Oz

; 2
de(z,t) _ Oj(x,t) 0 _Dac(aﬁ,t) _ D@ c(x,t) n 0D Oc(x, t)
ot Oox Ox

We get the result quoted above only if we can neglect the last term.

The self-diffusion coefficient depends on the molecule that is diffusing as well as the intensive
thermodynamic state of the system in which it is diffusing. The only thing that is varying with
x in the thermodynamic state is ¢ itself. Thus D(x) is a function of ¢(z). Hence 0D/dz =
(0D/0c)(0c(x,t)/Ox). Hence the second term in the equation above is

9D (Oc(x,t) 2
Oc ox
For self-diffusion, ¢ has a very small value, and its gradients and second derivatives are also small.

A term containing the square of the gradient will be small compared with a term that contains the
first power of the gradient. Hence we can neglect this term.



If we were to analyze the more general situation in which the concentration could
vary in all three directions, then we would obtain

dc(x,t) 0?c(x,t) N 0?c(x,t) N 0?c(x,t)
o 0x? Oy? 022

which is the form of the equation that we quoted above.

The diffusion equation is used to analyze experiments involving self-diffusion. There
are lots of experimental confirmations of it and lots of theoretical reasons for thinking
it is correct. The object of any self-diffusion experiment is to measure the value of
D by setting up a particular initial inhomogenous ¢, observing how it relaxes, and
then using the data to infer the value of D. The implicit or explicit assumption is
that we would get the same value of D for any initial ¢, and so we pick an initial ¢
that is experimentally convenient.

3.2 Comments on the hydrodynamic equation

Note that the diffusion equation is based on a set of assumptions:

e The concentration ¢(r, t) is continuous enough that it has both a time derivative
as well as two space derivatives.

e The flux j(r,t) exists and is also differentiable.
e The flux j is linear in the concentration gradient - Eq. (1)
e The continuity equation - Eq. (2).

These are ideas based on continuum fluid mechanics that are not dependent on the
atomic and molecular nature of matter. They were developed in the nineteenth
century (or maybe before), and they are found to correct for the interpretation of
experimental data for systems that are large enough to contain large numbers of
molecules, provided the distance scale of interest is large compared with molecular
distances and the time scale is large compared with molecular times. These assump-
tions about distance and time scales are correct for most classical and most modern
experiments that measure the self-diffusion process.?

2There are some experiments, however, such as inelastic neutron scattering, that can probe this
process on time and length scales that are so short that the diffusion equation is not an accurate
description.



4 Elementary solutions of diffusion equation

The diffusion equation is first order in time. Knowing c¢(r,t) for all r for one t is

enough to determine it for all r for all later times. The solutions of the equation are

unique.?

We shall be interested in two particular solutions of the equation. We shall in each
case focus on the one dimensional version and then generalize the discussion to the
three dimensional case.

4.1 Initial sinusoidal variation of the concentration

Suppose that at time 0 we have

c(x,0) = Asinkx

Let’s try a trial solution of the form
c(x,t) = f(t)sinkx

(This sort of factorization of a function of two variables does not always work, but
it does work for this case.) Substitution of this into the one dimensional version of
the diffusion equation gives

df(t) . 9 .
s kx = —k*Df(t)sin kx
aft) _ o
“a - EpI®)

The solution of this is ,
£(t) = et

The overall solution is ,
c(x,t) = Ae ¥ Plgin kx

The more general three dimensional problem with the initial condition

c(r,0) = Asink - r

3For systems in a bounded region of space, a precise discussion of uniqueness should include a
discussion of boundary conditions. This need not concern us in the present discussion.



has a similar solution

as can easily be verified.

Comments on the solution. Thus a sinusoidal variation of the concentration
in space decays exponentially with time. The exponential can be written in the
following way

exp (—t/(1/Dk*)) = exp(—t/7)

where the relaxation time 7 is equal to 1/Dk?. The larger the diffusion constant,
the shorter the relaxation time. This makes sense. The dependence on k is also
interesting. The relaxation time is inversely proportional to the square of k. Note
that the wave vector k is related to the wavelength A of the initial fluctuation by
= 27 /A. Thus
/\2
~ (27)2D

In order to wipe out the initial concentration variation, solute particles must diffuse
a distance of the order of the distance between the peaks and valleys of the initial dis-
tribution, which is roughly half the wavelength associated with the initial variation.
The relaxation time is proportional to the square of that distance. The time it takes
to move a certain distance is roughly proportional to the square of that distance.
This is a fundamental physical characteristic of diffusive motion. The mathematical
reason why the relaxation time is proportional to the square of a distance is the
fact that the original differential equation is first order in time but second order in
space. The microscopic physical reason for this behavior is something that we shall
be discussing later.

4.2 Initial delta function variation of the concentration

Suppose at time 0 we have

c(x,0) = Ad(x)

Le. all of the solute is initially at one point at the origin. Here §(x) is a Dirac
delta function. We shall just write down a trial solution and then verify that it is
correct.



Here is the trial solution:

c(z,t) = A (@)uz exp (—a(t)z?)

If a(0) is infinitely large, then gives a delta function behavior for the concentration.
We want to verify that a function of this form is indeed a solution of the diffusion
equation and find the time dependence of a(t) given that a(0) is infinitely large. This



involves some straightforward calculations.?

The final solution is

1\ 12
clx,t) = A (m) exp (—z?/4Dt)

This has all the desired characteristics.

4Do some miscellaneous preparatory calculations.

% _ 2a1(t)a(t)c(a:,t) — 2%a(t)e(x, t) = (2;@) - x2> a(t)e(w,t)

dc
5, = ~20(t)c(x,t)
% = —2a(t)c + da(t)’s’c = (-2a(t) + 4a(t)*s?) ¢

Substitute this into the diffusion equation and see what happens.

1 Y = —za a(t)?az?) c(x
<2a(t)_x )a(t)c(az,t)_D( 2a(t) + 4a(t)’s?) c(x, )

Cancel the ¢ on both sides.

L 2)a(t) = —2a a(t)?az?
(2a(t)—x)a(t)—D( 2a(t) + 4a(t)*z?)

Manipulate to make the common factor apparent.

_@ (—2a(t) + 4a(t)?2?) a(t) = D (~2a(t) + da(t)?z?)
Cancel the common factor. .
Taz?® =D

a(t) = —4Da(t)?

It is reassuring that we get an equation for a(t) that does not depend on z.

It is not obvious, but the next thing to do is try a power law solution: a(t) = bt~ ™. Note that if
n and b are both positive, then a(t) goes to infinity as t — 0+, which is what we want. Substitute
this trial solution into the equation for a(t).

—nbt™" "t = —4Db%2"

_ 4Db
B n

tnfl

Since the right side is independent of ¢, the left side must be independent of ¢. Therefore n —1 =0
orn=1. We get 1 =4Db. b=1/4D. Thus a(t) = 1/4Dt.



e For ¢t = 0, all the solute material is concentrated at a point at the origin.
e For ¢t > 0, this satisfies the diffusion equation.

For a three dimensional situation, the corresponding solution is

c(r,0) = Ad(r)

1 \32
c(r,t) =A (m) exp (—r - r/4Dt)

Comments on the solution. The solute material is initially concentrated at a
point at the origin, but as time goes on the distribution of the solute spreads out.
The maximum is always at the origin but it extends farther to the left and right as
time goes on.

The average vector distance traveled by the solutes between time 0 and time ¢ is
Jdre(r,t)r
[dre(r,t)

This is easily seen by symmetry and can easily be shown by direct calculation.

T =

Of somewhat more interest is the mean squared displacement, or the average of the
square of the distance traveled by the solute molecules.

Jdre(r,t)r-r
[dre(r,t) 6Dt

This is worked out in the answer sheet for the first problem set.

rr=rt)=

This result illustrates a general feature of diffusive processes. If you want a solute
to spread out by diffusion over a distance of order L, you must give it an amount
of time that is proportional to L2. This is consistent with the result we found for a
sinusoidal variation of initial concentration.

5 Correlation function expression for the diffusion
constant

The description of diffusion in terms of the diffusion equation is valid only on distance
scales and time scales that are much larger than typical microscopic or molecular
distance and time scales.



A typical molecular distance scale is an Angstrom or 0.1 nm. A typical atom has a
diameter of 1-5 Angstroms. A typical microscopic time scale is about a picosecond,
which is roughly the time it takes a typical atom to move an Angstrom at room
temperature.

A typical laboratory measurement of diffusion might involve a container whose size is
measured in cm. Typical experimental measurements of diffusion might take minutes
or hours.

We are now ready to use a type of reasoning that we shall be using several times in
this course. I want to make explicit the nature of the argument.

Suppose we assume that:

e the diffusion equation, which is a hydrodynamic description, is valid on distance
scales and length scales that are much longer than microscopic distance and
length scales;

e the material of interest is ultimately made up of atoms and molecules that
move according to the laws of dynamics and that the laws of dynamics hold
for all distance and time scales.

Note that we are not claiming that we can derive the diffusion equation from a
molecular theory. We are merely stating that two very different types of descriptions
of the same system are both valid.

It follows that on long distance and time scales, the hydrodynamical and mechanical
molecular descriptions are both valid.

If they are both valid, then they must be consistent with one another, but this holds
only (of course) for long distance and time scales.

Now consider the case of an experiment in which all the solute starts out at one
point.

Above we defined a quantity, T, the average vector distance traveled by a solute
between time 0 and time ¢. What is the molecular meaning of this quantity? It
corresponds to the average of r;(t) —r;(0) over all solute particles in the system.

N

£(t) < 5 D (vi(t) = ri(0))

i=1

in the sense that a measurement of the quantity on the left is equivalent to a mea-
surement of the microscopic quantity on the right. (Here Ny is the number of solute

10



particles in the system.) By our ensemble postulate, the measured value of the
quantity on the right is equal to its ensemble average. So we have

OB <Ni2 (1) - rz-<o>>>

=1

The appropriate ensemble for this is an equilibrium ensemble (e.g. a canonical en-
semble or grand canonical ensemble), because the system is in equilibrium except for
the very small inhomogeneity associated with the solutes. Thus the average on the
right is an average over an equilibrium ensemble. To emphasize this, let’s write

N

i) - <Niz (1) - rz-<o>>>

=1

This is our first example of an equation, applicable to a specific experiment, that
relates something calculated from a macroscopic theory and something calculated
from a microscopic theory. We calculate the left side by solving the diffusion equation.
The result will contain D, which appears in the diffusion equation. We calculate
the right side, in principle, from some sort of theory that calculates the dynamical
behavior of individual molecules. However, it is important to note that we expect
the equality to hold only for long enough times.

Since all the solute molecules have the same properties, each term on the right has
the same average. It follows that we can just focus on one solute.

t(t) = (r1(t) = r1(0)),,

e We have evaluated the left side of this equation above. The result is zero.

e To evaluate the right side, we write
t
r (t) — I (O) = / dt/ Vz(t)
0

Thus, the equation tells us that
t
0= </ dt/Vz(t/)>
0 eq

11



We can bring the averaging process inside the integral.
t
0= / d (vi(t)),,
0

This is entirely reasonable. In an equilibrium system, the average velocity of a
particle at any particular time is zero, so the right side is clearly zero.

So far, we have gotten no blinding insights from statistical mechanics, but the dis-
cussion illustrates the general procedure that we use. Let’s now apply the same

procedure to
Ns

r(t) < & Y xi(t) = 1i(0)) - (xs(t) = 14(0))

5 =1

The measured value of the microscopic quantity on the right is equal to its ensemble
average.

(1) = <Ni > (ri(t) ~ xi0) - (xit) - ri<0>>>

In an equilibrium ensemble, all of the solute particles have the same statistical prop-

erties.
r2(t) = ((r1(t) — 11(0)) - (r1(t) — r1(0))).,

This is the second of these equalities, for a specific experimental situation, between
something that can be calculated from a hydrodynamic theory and something that
can be calculated from a microscopic theory. Let’s see what this tells us.

e The left side is equal to 6Dt.
e The right side is equal to

((r1(t) = 11(0)) - (r1(t) = 11(0))),, = < /Ot dt'vi(t) - /Ot " Vl(tﬂ)>eq

_ /Otdt’ /Otdt” (vi(t') - vi(t")),

***slide

() = /0 " /0 Lt (vi(t") - vi(t"))e,

12



**end of slide Equating the two results, which is a valid thing to do at long times,

gives
t t
6Dt :/ dt’/ dt" (vi(t') - vi(t")).,
0 0

1 t t
— é/ dt’/ dt" (vi(t) - vi(t")),
0 0

This is a very interesting result. On the left we have a quantity that appears in
a macroscopic hydrodynamic equation. On the right we have a purely microscopic
expression involving the detailed dynamics of molecules and an average over an
equilibrium ensemble, which is essentially an equilibrium average. Thus we have a
microscopic expression for a transport coefficient. Moreover, this microscopic ex-
pression contains a quantity that is often called a time correlation function. It is an
average of the product of a dynamical variable at one time and a dynamical variable
at another time.

One of the major points of this course is that for very many transport coefficients
and rate constants, as well as spectroscopic properties, there is a similar expression.
The basic line of reasoning for obtaining these relationships is similar to what we
have just done, but the details can be much more complicated for some transport
coefficients.

We still have some work to do, however. Note that the left side is a constant, inde-
pendent of time, but the right side depends on ¢t. How can this be? Recall, however,
that we are justified in equating the results of the microscopic and macroscopic de-
scriptions only for long times. So we should apply this formula only at long times.
If it works at long times, it works in the limit of infinite time. So we have

p=ting [l [[df n(t) it

However, we still have some work to do. How do we know that this limit exists? A re-
lated question is: what are the properties of the correlation function (v (t') - vi(t"))
that insure that this limit exists?

eq

Later in the course, we shall have a systematic discussion of the general properties
of such functions. For now, let me just quote the few that we need.

o (vi(t') - vi(t")),, depends on the time interval ¢’ —¢". Let’s call it Cy,y, (' —1").

13



e [t is unchanged if the two time arguments are interchanged.

(vi(t) - vi(t")) g = (Vi(t") - vi(t)).,

Hence Cy,y, (' —t") = Cyyy, (" — ') or

CYV1V1 (t) = CV1V1 (_t)

e When the two time arguments are equal, we have an equilibrium static average.

3kT
Cypvi () = (vi(0) - vi(0))eg = —
m
This follows because
1 3kT
<§mV1<O) . V1(0)> = T

eq
which follows from the classical equipartition principle.

e For large values of |t/ —t”|,

(vi(t) - vi(t")) = (va () {v1(t")) = 0

Hence
Cyv, (1) = 0 as |t| — oo

Making use of these results, we can carry out the limiting operation indicated
above.

= dt / 4" Cros (£ — ) = 61t dt" / 4t oo (t — 1)
1 " "
~ P dt/ dt' Cy,y, (1" —1")
_ / dr Clyron ()
6t J, e
= 1/OO dr Cy,v, (T)
6 - 1V1
= 1/00 dr Cy,v, (T)
3 Jo e
_tlgonOG—/ dt’ / dt" Cypy, (t' —1") = %/0 dr Cy,v, (T)

14



X slide

D:l/ dr Cy,v, (T)
3 Jo

***end of slide

In getting the second (approximate) equality, we used the fact that the correlation
function is small for large absolute values of its time argument, so that the error made
in extending the range of integration is quite small. In particular, the fractional error
is negligible in the limit of large ¢.

An alternative form is -
D— / dr (v1a(7) 01 (0))
0

The quantity on the first is one third of the integral in the previous equation, since
each of the three components of velocity make equivalent contributions to the inte-
gral.

Qualitative discussion of the result for dilute gas and dense liquid.

6 Evaluation by molecular dynamics calculations

One of the uses of formulas like those we have been deriving is to figure out how to
obtain transport coefficients from molecular dynamics simulations.

In molecular dynamics computer simulations, we solve the equations of motion of the
atoms or molecules of a fluid and observe how they move about. The system usually
studied are rather small (typically hundreds to thousands of atoms). The sizes of the
systems are very small in terms of length - typically tens of Angstroms. The time
scale of the simulation is small - typically picoseconds to nanoseconds.

For normal liquid situations, it is typically possible to calculate the time correlation
function of the velocity, namely Cy,y,(t). If this function decays to zero rapidly
enough, then its integral can be calculated, giving a value of the self-diffusion coef-
ficient.

Alternatively, we calculate the mean squared displacement

(rs(t) = r:(0)[*)

(To get better statistics, we average the result for all atoms ¢ of the same type.) If
this is plotted versus time, then at long times the plot should be linear with a slope

15
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of 6D. If such a linear region is seen in the data, the slope can be used to calculate

D.
Alternatively, if
(Iri(t) — r:(0)[") = 6Dt
then
logyo(|ri(t) — 1:(0)[*) = log;o(6D) + log;o ¢
A plot of log o (|r;(t)—1;(0)|?) vs. log;, t should be linear with a slope of 1. It it is, then
the intercept of the straight line (at log;,t = 0) should be equal to log,,(6D).

Figure. The mean square displacement for one of the two types of atoms in a two
component atomic mixture at various temperatures. Note that at long times the
lines are all straight with the same slope of 1.

The very short time behavior is also straight, but the slope is different. At very short
times, r;(t) — r;(0) = v;(0)t + O(t*). Hence

3kpT
m

(Iei(t) = i(O)P) = £(vi(0) - v,(0)) = 22

3kpT
logyo(|ri(t) — ri(O)\2> = logyg T + 2logyot
At short times, the slope on the log-log plot should be 2, not 1, and it is. Moreover,
the intercept is log,,(3kT"/m).

7 Langevin equation

7.1 Introduction

In early and influential experiments, Brown observed that small particles suspended
in a fluid are typically moving around continuously, rather than settling down because
of friction with the surrounding fluid. This type of motion is now called Brownian
motion, in honor of Brown. It was eventually accepted that the perceptible motion
of such large particles was a consequence of the molecular nature of matter and
the fact that all atoms, molecules, and particles, large and small, are continually
moving.

The Langevin equation was developed (presumably by someone whose name was
Langevin) as a description of the dynamics of large particles suspended in a fluid of

16
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small molecules. The fluid is regarded as a hydrodynamic continuum. The equation
itself is the result of a set of guesses about the statistical features of the dynamics,
and it represents a model for how dynamics could take place. As a mathematical
model for classical and even quantum mechanics, it has been very influential, and
Langevin ideas are routinely applied in new situations even in the most current
research. Moreover, the structure of the Langevin equations for Brownian motion
have been historically very influential in the subsequent development of modern
statistical mechanics. Finally, it has led to remarkably accurate approximate theories
for fluids in which all the particles are of the same size. So some knowledge of the
Langevin equation is indispensable in understanding physical chemistry.

Here we want to discuss the Langevin approach to dynamics in its simplest con-
text.

7.2 Assumptions of the Langevin theory

° A large heavy particle in a fluid experiences forces due to the effect of the surround-
ing solvent molecules. These forces vary rapidly in time, because the surrounding
molecules move so rapidly. The overall system is in equilibrium, and so we are con-
sidering the dynamics of fluctuations in an equilibrium system.® Thus, most of the
ensemble averaging we are about to do is for an equilibrium ensemble. Newton’s
equation of motion for the heavy particle is

where v is the velocity of the particle and F(¢) is the total force experienced by the
particle. The Langevin description assumes that the total force can be divided into
two parts: a systematic frictional force and a random force.

The systematic frictional force arises when the particle is moving. As it plows through
the solvent, it experiences a force that slows it down. This force always points in the
opposite direction from that of the velocity. The frictional force is equal to —(v(t).

5References: A classic reference for Langevin theory (and other stochas-
tic theories) is: S. Chandrasekhar, Rev. Mod. Phys. 15, 1-89 (1943);
[http://prola.aps.org/abstract/RMP/v15/i1/p1_1] It is reprinted in a Dover edition of:
Wax, Noise and Stochastic Processes. Also see Section 7.3 of: J. P. Hansen and I. R. McDonald,
Theory of Simple Liquids, 2nd ed.

5We will usually leave out the eq subscript on ensemble averages, but the subscript should be
understood to be present.
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Here ( is a friction coefficient. We shall come back to the question of how to estimate
¢. The dimensions of ( are force/velocity = mass/time.

The random force will be denoted R(t).

So we have
mv(t) = —Cv(t) + R(2)

This is called the Langevin equation.

Note that the systematic force is completely determined by the current velocity of
the particle. The random force R(t) is regarded as a random variable. Its particular
value is the result of the combined effect of the detailed positions and momenta of the
solvent particles at the initial time. To specify Langevin dynamics, we have to make
some assumptions about the statistical properties of this random variable.

The first thing we assume is that the average value of R(t) is zero. (R(t)) = 0. This
is entirely reasonable, indeed necessary, because if we take the ensemble average of
the Langevin equation, we get

m(V(t)) = =C(v(t)) + (R(?))

The first two averages are clearly zero for an equilibrium system, and so the third
term must be zero as well.

Next we assume that the random force is statistically independent of the initial value
of the velocity itself.
(R(t) - v(0)) =0

Thirdly, we assume that the fluctuating force fluctuates very rapidly and the corre-
lation function of the fluctuating force goes to zero so quickly that the correlation
function can be represented as a Dirac delta function.

(R(t) - R(t')) = Rod(t — ')

Here Ry is a positive constant. Thus, there is no statistical correlation between
the fluctuating forces at different times. The delta function that appears here is a
function that decays to zero instantaneously on the time scale appropriate for the
motion of the heavy particle. For example, it might decay to zero in a time of about
1 picosecond or 10 picoseconds. But for a heavy colloidal particle, the momentum
relaxation time is much longer than this.

The nontrivial content of this assumption is that the statistical properties of the
random force are completely unrelated to the initial velocity of the particle.

18



For a complete calculation of the dynamics using the Langevin equation, we need to
make some additional assumptions about the random force. But we will not need
this right now.

Let’s explore the consequences of these assumptions about Langevin dynamics. Along
the way, we shall have to ask whether the theory is consistent with what we know
about equilibrium statistical mechanics.

K (slide)

Langevin description of the Brownian motion of a single particle
mv(t) = —(v(t) + R(t)
where
v(t) is the velocity of the particle
m is the mass of the particle
( is a friction constant
R(?) is a random force acting on the particle. It is assumed that
(R(t)) =0 (R(t) - R(t)) = Rod(t — ') (R(t) -v(0)) =0
K (end of slide)

7.3 Consequences of the Langevin theory

We have a rather complete description of the dynamics of the particle. Let’s assume
the description is correct and starting calculating properties of interest for the system.
Most of the properties we will be concerned with are time correlation functions of
various types as well as averages of certain properties.

7.3.1 The free Brownian particle

Let’s solve the equation of motion to get the velocity as a function of time. The
equation is of a standard form, and we can write the solution as

¢
mv(t) = mv(0)e” /™t 4 / ds e~ /MUI=IR (5)
0
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It can easily be verified that this satisfies the differential equation as well as the
initial condition that the value of the velocity at time zero be v(0). We can now use
this to do a number of interesting calculations.

If we merely take the ensemble average of both sides, we get a trivial but correct
result that 0 = 0.

Let’s multiply both sides by v(0) and then average.

mv(t) - v(0) = mv(0) - v(0)e” /™! ¢ /t ds e~ C/MEIR(5) - v(0)

m(v(t) - v(0)) = m(v(0) - v(0))e /™! 4 /0 ds e C/ME)(R(s) - v(0))

The average in the first term on the right is 3kgT/m. The average in the second
term on the right is zero. We get

(V1) ¥(0)) = P et

Thus the Langevin equation predicts that the velocity autocorrelation function of
the heavy particle decays exponentially.

Let’s derive this result in another way. Go back to the original Langevin equation
for v(t) and multiply both sides by v(0).

mv(t) - v(0) = —(v(t) - v(0) + R(t) - v(0)

Now take the ensemble average and divide by m.

(40) V() = = (v(1) V() + - (R(1) - ¥(0)

e The average in the first term on the right is just the correlation function for
the particle velocity.

Cuv(t) = (v(t) - v(0))

e The average in the second term on the right is zero, by the assumptions we
made about the random force in the Langevin theory.

e The average on the left is just the time derivative of the velocity autocorrelation
function.

Cunlt) = 50(0) = 5000 v(0) = (52 v(0)) = (510)-v(0)



Thus the equation above is

The initial condition is

_ 3ksT
N m

Civ(0) = (v(0) - v(0))

This is the equation for simple exponential decay, and we get

Con(t) = 2FL ey
m

This is the same result that we got above.

Let’s check out the dimensions. Above we showed that the dimensions of { were
(mass)/(time). Thus (/m has dimensions of 1/(time). This makes the exponent
dimensionless, as it should be.

There are two rather general characteristics of this result that should be noticed.

e The theory was constructed to include systematic forces and random forces.
Both are needed to obtain a consistent theory. We find, nevertheless, that
the correlation function for the velocity contains no apparent reference to the
random force. The properties of only the systematic force appear explicitly in
this particular correlation function.

e The correlation function decays exponentially in time. Many simple theories
(but certainly not all theories) give exponential decay, or a simple sum of
exponentials, or exponential decay at long times. We shall be interested in un-
derstanding the physical and mathematical reasons for these types of behavior.
When we have seen several different examples of this and other behavior, we
will make some generalizations about the conditions under which exponential
decay is or is not to be expected.

Next, let’s square the result for v(¢) and take the average over the initial equilibrium
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distribution of velocities and over the statistical distribution of random forces.
1 t
v(t) = v(0)e /Mt 4 — / ds e~ C/mMU=IR(s)
m Jo

2
v(t)-v(t) = v(0)-v(0)e 2e/mt 4 Zo=(¢/mt /dse (/mE=R(s) - v(0)
m
1 t t ’
c [ g e @) / ds e~ /MR (s) - R(s)
m? Jo 0

(v(t)-v(t)) = (V(O)-V(0)>€’2“/m)t+%6_“/’”” / s e Gimie- J(R(s) - v(0))

I ! /
+— [ ds 6—(C/m)(t—s)/ ds' e C/MER(s) - R(s'))
m=.Jo 0

BET ocrmy . L[ eim—s) [ —c/m—s) /
(v(t)-v(t)y = —e +— dse ds' e Ryo(s —s)
m? 0

m

_ SKT agmy o
m m? Jo
3T _, Rym

— 2N -2¢/mye . 2RO T
- e + m? 2 e
3kT —2(¢/m)t R() m

= — m 1 — ¢ 2(¢/m)t
m C T m2 2( ( )

m 2m§ m(

In fact, the left side of this equation is just the equilibrium average of the square of
the velocity of a particle. From the equipartition principle, it follows that the value
is 3kgT /m and is independent of time. So the right side must also be independent

of time and must have that value. The right side can be independent of time only
if

2(¢/m)(t—s |0

3T Ry
m QmC

and if this is the case it also has the right value for all times. The result can be
expressed as

Ry = 6kT¢
or R
_ ‘o
= 6kT

The basis of these equations is the assumptions that:
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e the Langevin equation assumptions are correct;

e the predictions of the theory are consistent with equilibrium statistical me-
chanics.

The interesting consequence is that there is a relationship between the strength
of the systematic force, represented by &, and the strength of the fluctuating force,
represented by Ry. In order for the theory to be consistent with equilibrium statistical
mechanics, these two must be proportional to one another and their ratio is

Ry

— = 6kT
¢

It should not be surprising that the temperature appears in the relationship. The
systematic force always tends to slow down the particle and reduce its kinetic energy.
The random force sometimes increases and sometimes decreases the kinetic energy
of the particle, but on the average it must increase the kinetic energy of the particle,
because on the average the kinetic energy of the particle must remain constant at
3kpT/m (but of course it can fluctuate about this average value).

Finally, let’s calculate the diffusion constant. From our result above for the velocity
autocorrelation function, we have

D= / " 3L e _ KT
0

3 m ¢
The larger the friction constant, the smaller the self-diffusion coefficient. End of
; lecture 2
* k%
(slide) 9/24/09
ok
Consequences of the Langevin equation for a single particle Lecture
3
1 t
v(t) = v(0)e /Mt 4 — / ds e~ ¢/mU=IR(s) 9/29/09
m.Jo
3kgT

e~ /™t hence D = kpT/C

(vlt) -vio)) = 22
ot [ SkBT Ry Ry
(v(0) - viay = e ermn (oL o)y

The left side, according to equilibrium statistical mechanics is equal to 3kgT/m for
all t. The right side will be consistent with this if 3kgT/m = Ry/2m( or
Ry

? - 6]€BT

m 2m(
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K (end of slide)

7.3.2 The Brownian particle in an external field

Now let’s consider the problem of a Brownian particle in an external field. We
imagine that in addition to the systematic friction and the random force, there is
an additional steady external force acting on the system. It could be a gravitational
force pulling the particle down. Or if the particle is charged, it could be a force
caused by an external field.

We imagine that the system was initially in equilibrium, and then the external force
is turned on. The strength of the force is so small that it does not perturb the system
greatly. The net result is that the particle will tend to move in the direction of the
external force.

The new equation of motion is
mv(t) = —Cv(t) + R(t) + £(2)

where f(t) is the weak external force. It is something that is under our control, so
it is not a random variable. We make the same assumptions about R as we made in
the absence of this external force. Let’s decide that £(0) = 0 and that it jumps to a
value of fy and stays at that value.

Let’s solve this equation and use it to calculate the behavior of the particle. The
solution can easily be shown to be

t
mv(t) = mv(0)e” /™t 4 / ds e~ (/M=% (R(s) + f(s))
0

Now let’s take the ensemble average of this over the initial equilibrium ensemble. We

get
t

m(v(t)) = m(v(0)>e*(</m)t —i—/o ds e~ (¢/m)(t=5) ((R(s)) +£(s))

The two averages on the right are both zero.

m{v(t)) = / ' ds e CmE-9g(g)

0

1 t
0
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Notice that the average of the velocity contains some properties of the systematic
friction, but the random force does not appear. This is reminiscent of what we found
for the velocity correlation function in the absence of an external field.

The right side is zero at ¢ = 0 and it then increases with time. Let’s calculate the

behavior at long times, where f(¢) has saturated at the value fy. Because of the

exponential in the integrand, the behavior of f only near s = t, i.e. long times,
important. Thus

i)y = L / Cgse-@mung — B emes _ T

m.Jo mJo ¢

Not surprisingly, in the limit of long times, under the application of a steady force,
the velocity of the particle is proportional to the force applied to it.

A simple way of seeing that this answer is right is to note that as the particle
accelerates, the frictional force builds up and tends to counterbalance the applied
force. You might expect that the particle adopts a velocity such that on the average
the systematic friction is just such as to counterbalance the applied force, leading
to no net force and hence no acceleration and hence no change in velocity. In other
words we would expect that at large times

—(v(t) + 1~ 0

or
v(t) =1/C

This has the same form as the more correct statement above, which is expressed in

terms of statistical averages.

In situations with this type of frictional force, the coefficient of proportionality be-
tween the average velocity of something and the force applied to it is usually called
the mobility. Various symbols (u, L, H) are used for the mobility in different con-
texts. Let’s use u. The connotation is obvious. A particle that moves fast when a
small force is applied to it is very mobile and a particle that moves slowly when a
force is applied to it is not very mobile.

Our result then is that the mobility is the reciprocal of the friction constant.
1
n==
¢
(slide)
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Brownian particle subject to an external field. System initially at equilibrium
at t = 0. A time dependent external force is applied to the particle. The equation
of motion is

mv(t) = —(v(t) + R(t) + £(t)

The solution can easily be shown to be

t
mv(t) = mv(0)e” /™t 4 / ds e~ (/M=% (R(s) + f(s))
0

Take the average of this over the initial equilibrium distribution.
t
m(v(t)) = m(v(0))e~ /™" +/ ds e” /™) ((R(s)) + £(s))
0

The two averages on the right are both zero.

1 t
)= = [ dse (¢/m)t=s)¢
vl = o [ dse (5
Suppose f(0) = 0 and f(¢) rises to fy and stays at that value.

(v(t)) : / t dse-C/mie=sg _, fo
= —_— H —_—
m Jo ’ ¢

Define mobility p as

(v) = pfo
Then
1
l’l’ —
¢
Since D = kgT/(, we have
D = /L/{ZBT

(end of slide)

7.3.3 Comparison of the results for the diffusion constant and for the
mobility

The diffusion constant, D, appears in the diffusion equation that is meant to describe
one set of experiments, namely how low concentration solute particles move around
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in a system that is in equilibrium except for spatial variations of the concentration
of the solute.

The mobility, i, arises in trying to describe an entirely different type of experiment,
namely one in which a field is applied and you measure how rapidly the particles
move in response to that field.

At first glance, there would seem to be no obvious relationship between two these
two experiments.

However, we have found an interesting relationship when we described both using
the Langevin equation. We found that D = kgT'/¢ and = 1/(. Therefore

D = /Lk?BT

Moreover, we also have the relationship that

1 oo
D = —/ dt (v(t) - v(0))
3 Jo
In effect we have found a relationship among the following three things:

e The rate at which solute particles move to eliminate small concentration gra-
dients. (This is for a system with no applied fields.)

e The frictional force on a particle due to the solvent.

e The average rate at which the solute particles move when an external field is
applied to them.

e The statistical properties of the fluctuation of the velocity of a solute particle
for an equilibrium system with no concentration gradients and no applied fields.
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(slide)

Various properties of a Brownian particle are related.

Frictional force on a particle due to its velocity = —(v

Correlation function of random force on a particle = (R(t)-R(t')) = Rod(t—t')
Velocity of a particle subject to a steady external force = uf

The diffusion constant D, related to the rate at which concentration fluctuations are
dissipated

The velocity autocorrelation function = (v(t) - v(0))

Relationships: Ry = 6kgT¢ p=1/C

1

D = kT = ksT/C = | /Ooo dt (v(t) - v(0))

(end of slide)

We have derived this relationship using the Langevin equation, which is basically
a guess as to how to describe the dynamics, and you might wonder whether these
simple results are a consequence of some special assumptions we made. In fact, such
relationships are ubiquitous when you use what are physically correct formulations
of dynamics. The Langevin dynamics is basically correct for colloidal particles un-
der some conditions. The same types of results are obtained from other dynamical
models, such as classical mechanics and quantum mechanics.
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What we have found are special cases of two rather general principles:
e The response of a system to weak external fields
is related to
the fluctuations of the system at equilibrium (in the absence of external field)

e The rate at which dissipative processes (e.g. diffusion, viscous momentum flow,
chemical reactions) take place in systems close to equilibrium

is related to

the fluctuations of the system at equilibrium (when none of these dissipative
processes are taking place).

These are related to a third principle, which we have not illustrated for Brownian
particles, but I'll state it anyway.

e The way in which an equilibrium system scatters radiation (e.g. electromagnetic
radiation) or particles (e.g. neutrons)

is related to

the fluctuations of the system at equilibrium (when it is not being bombarded
with radiation or particles).

As we explore other ways of describing dynamics (e.g. classical mechanics, quantum
mechanics), we shall see many examples of these principles.

7.4 Hydrodynamic estimate of the friction coefficient

If the Brownian particle of interest is large and spherical, it is plausible to use a
hydrodynamic theory to estimate the friction coefficient. —(v is supposedly the
frictional force on the sphere when it is moving with velocity v.

A standard problem in hydrodynamics is the following one. Suppose a rigid sphere
is moving at constant velocity in a fluid that is stationary. The particle causes the
fluid near it to move. It basically pushes the fluid out of the way. It causes a flow
pattern to be set up near the particle, but far away the fluid is still stationary. The
fluid impedes the motion of the sphere and exerts a force on it. A straightforward
calculation that solves the hydrodynamic equations for the fluid leads to the result
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that the force exerted by the fluid on the sphere is
—3mdnv

where 1 is the shear viscosity coefficient of the fluid and d is the diameter of the
sphere. The shear viscosity is related to how momentum flows in the fluid as a result
of there being velocity gradients. The flow pattern that is created in inhomogeneous
and thus there is momentum flow in the fluid. Some of the momentum flow represents
momentum that is ultimately transferred to the sphere itself, and this is the force
that the fluid applies to the sphere.

The result above is what is obtained when it is assumed that at the surface of the
sphere the velocity of the fluid is equal to that of the sphere itself. This is called
the ‘stick” boundary condition. (This word is used because in effect the fluid at the
surface of the sphere sticks to the sphere and moves with the same velocity as the
surface of the sphere.)

There are other boundary conditions that could be used. The major alternative
to the stick boundary condition is the ‘slip’ boundary condition. The slip boundary
condition assumes that at the surface of the sphere the component of the fluid velocity
that is perpendicular to the surface of the sphere is equal to the component of the
sphere velocity that is perpendicular to the surface. This gives the result that the
force exerted on the sphere is somewhat smaller.

—3mdnv
If we assume that this hydrodynamic calculation is at all relevant to the Langevin

theory, we conclude that

¢ = 3mdn (stick)
¢ = 2mdn (slip)

Here d is the diameter of the particle. The friction coefficient is determined by the
mass of the particle, its diameter, and the viscosity of the fluid.

If this is correct, then we have

D = kT/3mdn (stick)
D = kT/2rdn (slip)

These relationships often go by the name of the Stokes-Einstein equations.
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While the use of the solution of hydrodynamic equations to calculate the friction
constant is reasonable for a large solute, the result is reasonably accurate even for
small molecules in a pure liquid or in a solution. One way of testing this is to rewrite
the equations as

kT

d = tick
30D (stick)
kgT

— li

d 2mnD (slip)

Then use experimental data for 7 and D to calculate values of d and compare with
other estimates of the diameter of a molecule. Moreover, the value of d should be
roughly independent of temperature if this is to make sense.

For liquids under ordinary conditions, you get reasonable numbers, with the numbers
for slip boundary conditions being somewhat more reasonable.

There are analogous relationships for the rotational diffusion constant for a molecule,
and this has provided ways of quantitatively interpreting light scattering data that
measures rotational relaxation rates.

There is some evidence that as liquids are supercooled to very low temperatures, the
quantity kg1 /nD is no longer independent of temperature. This ‘breakdown’ of the
Stokes-Einstein relationship is the subject of considerable speculation among people
trying to understand supercooled liquids.
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