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1 Definition of the Fourier transform and its

inverse.

Suppose F (t) is some function of time. Then its Fourier tranform with respect
to time is defined as1

F̂ (ω) ≡
∫ ∞

−∞
dt eiωtF (t) (1)

There are various definitions of the Fourier transform that differ in trivial
ways. This is the one that is used most often in theoretical physics and
chemistry. Note:

• there are no factors of 2π or (2π)1/2 in front of the integral or in the
exponent;

• we are using a complex exponential rather than a real sine or cosine;

• the sign in the exponent is positive.

A remarkable feature of the Fourier transform, which is a function of fre-
quency ω, is that the function F (t) can be reconstructed from the Fourier
transform F̂ (ω) by an integration similar to that in the definition of the

1In these notes we shall be concerned only with the case that t and ω are real times
and frequencies, respectively. In other contexts, the extensions of these results to the case
of complex t and complex ω is very important.
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Fourier transform.

F (t) =
1

2π

∫ ∞

−∞
dω e−iωtF̂ (ω) (2)

This is an inverse Fourier transform, and the theorem that proves this result
is called the Fourier integral theorem. Note the similarities and differences
as compared with the Fourier transform.

• there is an additional factor of 1/2π;

• the sign of the exponent is different.

Many of the functions that we deal with are finite and continuous functions of
time, and they approach zero rapidly enough for large positive and negative
times that the integral in Eq. (1) converges absolutely for all real ω. In such
cases, the Fourier integral theorem holds as written. It is also correct, with
some modification, under much less stringent conditions.2 Here we note only
two generalizations of the statement.

• If the integrals in (1) and (2) do not converge separately at the upper
and lower limits, they are to be interpreted as

lim
T→∞

∫ T

−T
dt eiωtF (t)

and

lim
Ω→∞

∫ Ω

−Ω
dω e−iωtF̂ (ω)

respectively.

• If the function F (t) is piecewise continuous, then Eq. (2) should be

lim
ε→0

1

2
(F (t + ε) + F (t − ε)) =

1

2π

∫ ∞

−∞
dω e−iωtF̂ (ω)

Exercise 1. Suppose
F1(t) = Ae−b|t|

Calculate F̂1(ω).

2For a more detailed discussion and precise statements of the theorem, see Apostol or
Titschmarch.
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Exercise 2. Suppose

F2(t) = Ae−b|t| cos ω0t

Calculate F̂2(ω).

2 Elementary properties of the Fourier trans-

form

1. The Fourier transform of a linear combination of functions is the linear
combination of Fourier transforms; i.e. the Fourier tranform of aF (t)+
bG(t) is aF̂ (ω) + bĜ(ω).

2. If F (t) is a real symmetric function of time (i.e. if F (t) = F (−t) and
F is real, for all real t) then F̂ (ω) is real for all real ω.

3. Consider a function, F (t), and another function of time G(t), which is
defined as the function F shifted by an amount a along the time axis;
i.e.

G(t) ≡ F (t − a)

Then
Ĝ(ω) = eiωaF̂ (ω)

4. Consider a function F (t) and another function of time G(t) that is
defined as

G(t) ≡ e−iω0tF (t)

Then
Ĝ(ω) = F̂ (ω − ω0)

There is an interesting reciprocity between the last two of these statements.
The third property states that shifting a function of time by an amount
a along the time axis is equivalent to multiplying its Fourier transform by
exp(iωa). The fourth property states that shifting the Fourier transform by
an amount ω0 on the frequency axis is equivalent to multiplying the inverse
Fourier transform by exp(−iω0t).
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Exercise 3. Prove these four statements from the definitions of the Fourier
transform and the inverse Fourier transform.

Exercise 4. Get the answer to Exercise 2 using one or more of these prin-
ciples.

3 Location and width of maxima in a Fourier

transform.

As we shall discuss later in the course, an absorption spectrum is closely
related to the Fourier transform of a correlation function. For spectra, we
are often interested in such questions as:

• At what frequency is the spectrum a maximum?

• How rapidly does the intensity decrease as ω moves away from the
location of the maximum?

• How rapidly does the spectrum go to zero as ω → ∞.

This leads us to ask the following related questions about Fourier trans-
forms.

• Given a function F (t), at which frequency is F̂ (ω) a maximum?

• How does F̂ (ω) change as ω moves away from the location of a maxi-
mum?

• What is the behavior of F̂ (ω) as ω → ±∞?

We will now discuss such questions.

Let us first consider functions of t that are real and nonnegative.

F (t) ≥ 0 for all real t

It is easy to show that the maximum in the absolute value of the Fourier
transform occurs at ω = 0.

|F̂ (ω)| =
∣∣∣∣ 1

2π

∫ ∞

−∞
dω eiωtF (t)

∣∣∣∣ ≤ 1

2π

∫ ∞

−∞
dω

∣∣∣eiωt
∣∣∣ |F (t)|
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=
1

2π

∫ ∞

−∞
dω F (t) = F̂ (0)

Hence
|F̂ (ω)| ≤ F̂ (0)

Exercise 5. Compare the predictions of this statement with the actual
behavior of F1, F̂1, F2 and F̂2 of exercises 1 and 2.

Next let’s discuss functions of t that are not only real and nonnegative but
also have a single maximum and decay to zero on each side of the maximum.
Such a function is often characterized by a half width at half height (HWHH).
This is the half the interval between the times at which the function is half its
maximum. The Fourier transform of such a function can also be characterized
by its half width at half height.

For F1(t), for example, the function is half its maximum at t = ±(ln 2)/b.
Thus the half width at half height is (ln 2)/b or 0.693b. The HWHH of F̂1(ω)
is equal to b. Note that for this case, the product of the HWHH of F1(t) and
the HWHH of F̂1(ω) is 0.693, for all values of b.

Exercise 6. Consider the function

F3(t) = Ae−bt2

What is the HWHH of this function? Calculate3 F̂3(ω)? What is the
HWHH of the Fourier transform? What is the product of the two values
of HWHH?

Exercise 7. Answer the questions of Exercise 6 for

F4(t) = A for |t| < a

= 0 for |t| > a

These results are examples of a very general principle: namely, if F (t) is
nonnegative and has a single maximum,

3Hint: complete the square.
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• F̂ (ω) has a maximum at ω = 0,

• the HWHH of F (t) and of F̂ (ω) are inversely related, and

• their product is usually close to unity.

The next case to consider is that of a function of the form

F (t) = e−iω0tf(t)

where f(t) has the characteristics discussed in the paragraphs above; namely
f(t) is nonnegative and has a single maximum. Applying the fourth of the
elementary properties discussed above, we immediately see that F̂ (ω) has a
maximum at ω = ω0. Moreover, its shape is identical to that of f̂(ω), except
that it has been shifted along the ω axis by an amount ω0. In particular, it
has the same HWHH as f̂(ω).

Finally, let us consider a function of the form

F (t) = f(t) cos ω0t

where f(t) is nonnegative and has a single maximum. We can rewrite this
as

F (t) =
1

2
eiω0tf(t) +

1

2
e−iω0tf(t)

Applying the first and fourth elementary properties, we see that

F̂ (ω) =
1

2

(
f̂(ω + ω0) + f̂(ω − ω0)

)

Thus, F̂ (ω) is a sum of two functions. One is peaked at ω = −ω0 and
the other is peaked at ω = ω0. Each function has the same HWHH, that
of f̂(ω) itself. Thus, if ω0 is large enough compared to this HWHH, F̂ (ω)
has two distinguishable peaks. F2(t) in Exercise 2 is an example of such a
function.

4 High frequency behavior of Fourier trans-

forms

If F (t) is a continuous (or piecewise continuous) function of time, F̂ (ω) → 0
as ω → ±∞. This statement is known as the Riemann-Lebesque lemma.
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We will not prove it here, but it is important to understand the basis of the
lemma, which we shall discuss.

Consider the special case that F (t) is real. Thus the real part of F̂ (ω) is

Re F̂ (ω) =
∫ ∞

−∞
dt F (t) cos ωt

For large ω, the cosine function is a rapidly oscillatory function of time,
and there will be extensive cancellation in the integration. This cancellation
becomes more and more effective as ω → ∞ and so the integral approaches
zero. A similar argument holds for the imaginary part of F̂ (ω), and it is easy
to generalize these considerations to the case of complex F (t).

The functions F1, F2, F3, and F4 in the exercises illustrate this theorem.

From the Riemann-Lebesque lemma, we expect that even though F̂ (ω) may
be large for a certain range of ω, for large enough values of |ω| it will start to
approach zero in some systematic way. How large does |ω| have to be before
this systematic decay takes place and F̂ (ω) becomes small compared to its
maximum value?

First consider the case in which F (t) is continuous and differentiable, and sup-
pose F (t) and its first derivative are bounded. Then over any short enough
time interval, F (t) can be approximated as a straight line

F (t) ≈ F (a) + F ′(a)(t − a) for a ≤ t ≤ b

Suppose b − a is small enough that the maximum change in F over this
interval, namely F ′(a)(b− a), is small compared with the maximum value of
F (t).

|F ′(a)(b − a)| ≤ |Max F (t)|
Next suppose that ω is large enough that eiωt oscillates many times during
that interval, i.e.

|ω|(b − a) >> 2π

Under these conditions, we expect substantial cancellation in this interval
when F̂ (ω) is calculated because F (t) is almost constant in the interval, and
the cancellation becomes more and more extensive as |ω| is increased.
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Combining these results together, we find the following approximate condi-
tion for extensive cancellation in the interval.

|ω| >>
2π

b − a
>>

2π|F ′(a)|
|Max F (t)|

For cancellation in all intervals, we need

|ω| >>
2π|Max F ′(a)|
|Max F (t)|

This illustrates a general principle that the large frequency behavior of F̂ (ω)
is dominated by those intervals of t in which F (t) is most rapidly varying4,
in this case the interval in which |F ′(t)| is largest.

This is only an approximate guide, but it can be very useful.

Exercise 8. Apply this criterion to the function F1 of Exercise 1. Compare
what it predicts to the actual behavior of the Fourier transform.

Exercise 9. Do the same thing for F2 of Exercise 2.

We now want to consider the manner in which a Fourier transform approaches
zero. We will state some principles without proof and give some examples. In
general, as noted above, the large frequency behavior of F̂ (ω) is determined
by the intervals in which F (t) changes most rapidly.

Let us first consider a function with a jump discontinuity, which is in some
sense the most rapid possible change for a function. As an example, con-
sider

F5(t) = 0 for t < 0

= Ae−bt for t > 0

4One sometimes hears the incorrect statement that “the large frequency behavior of
F̂ (ω) is determined by the short time behavior of F (t).” The correct statement is the one
given above.
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This function jumps discontinuously from 0 to A at t = 0. The Fourier
transform is eacily calculated to be

F5(ω) =
iA

ω + ib

which for large |ω| is iA/ω. This behavior is quite general. If a function F (t)
jumps discontinuously by an amount A at t = 0, its large |ω| dependence has
a part that varies as

F̂ (ω) ≈ iA

ω

This is a very slow decay.

Exercise 10. Consider the function

F6(t) = A1e
b1t for t < 0

= A2e
−b2t for t > 0

where b1, b2 > 0. This function has a jump of A1 −A2 at t = 0. Evaluate its
Fourier tranform exactly and show that the large |ω| behavior is consistent
with the statement above.

Exercise 11. Suppose a function jumps discontinuously by an amount A
at t = a rather than at t = 0. What is the large |ω| behavior of its Fourier
transform?

If a function has several jump discontinuities, each discontinuity contributes
additively to the behavior of the Fourier transform at large |ω|.

Exercise 12. Consider the function F4 in Exercise 7. Locate the jump
discontinuities, and use the previous discussion to construct a formula for
the large |ω| behavior of F̂4(ω).

Next, consider the case of a function that has no jump discontinuity but that
does have a discontinuous first derivative. An example is F1(t) of Exercise 1.
Its derivative jumps by an amount −2bA at t = 0.
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Exercise 13. Verify the previous statement.

For large |ω|, F̂1(ω) is
F̂1(ω) ≈ −(−2bA)/ω2

In general, if a function has no jump discontinuities, but its first derivative
has a jump of B at t = 0, the Fourier transform goes as −B/ω2 for large
|ω|.

Exercise 14. Consider the function

F7(ω) = Aeb1t for t < 0

= Ae−b2t for t > 0

Evaluate its Fourier transform exactly, evaluate the jump in the derivative at
t = 0, and verify that its large |ω| dependence is consistent with the principle
stated above.

Exercise 15. Suppose a function is continuous and has a continuous deriva-
tive except that there is a jump discontinuity in the derivative at t = a. If
the amount of the jump is B, what is the large |ω| behavior of the Fourier
transform.

The same ideas can be extended to higher derivatives. If F (t) and its first n−
1 derivatives are continuous but the nth derivative has a jump discontinuity,
the large |ω| dependence is Aω−(n+1), where the amplitude A is related to
the amount and location of the jump. If all derivatives of F (t) exist, then,
as |ω| → ∞, F̂ (ω) must go to zero more quickly than any inverse power of
ω. (The previous sentence is very important. Read it again. Whenever, in
the future, you are trying to understand the shape of spectral lines in the far
wings, remember this statement.)

Answers.5

5Use these to check your results or to continue working if you get stuck.
1. F̂1(ω) = 2bA/(ω2 + b2)

10



2.

F̂2(ω) = bA

(
1

(ω − ω0)2 + b2
+

1
(ω + ω0)2 + b2

)

6. F̂3(ω) = A(π/b)1/2e−ω2/4b

7.
F̂4(ω) = 2Aa

sinωa

ωa

12. The result you get by this analysis should be correct at large |ω|. It turns out,
however, that in this case the result is correct at all ω. This is an artifact of the particular
simple form of F4.
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