Growing a Successful High Technology Region: Silicon Valley and the Role of Stanford University

John Hennessy
School of Engineering
Stanford University
Outline: A 50 Year History

- Terman as Dean and Provost
 - a new vision for an engineering school
- The HP Story
 - Bill and Dave started it all
- The Second Golden Age: 1980-
 - Sun, Silicon Graphics, MIPS, Cisco
 - Technological drivers
- The Internet revolution of the 1990s
 - Yahoo, Granite, Vxtreme, and more to come
- Why at Stanford?
In the Beginning: Terman’s Vision

- Personal history:
 - Father was Stanford professor
 - UG @ Stanford; PhD @ MIT
 - Stanford EE faculty 1925–
 - Worked on radar in WW II
 - Returned to Stanford
 » Dean 1944–1958; Provost 1955–

- Some of his goals
 - faculty work with industry
 - build a west coast industry for our graduates
 - research as the key to develop new technologies
 - encourage entrepreneurship
 - industrial research park
The HP Story

- Terman brought Hewlett and Packard together
 - Encouraged them to work on the idea that became their first product

- Helping them get started
 - Hewlett back from an MS @ MIT
 - Packard took a leave from GE
 - $1,000 from Sperry Rand for materials and Packard’s salary

- 1939: Hewlett graduated and he and Packard gave it a shot

Audio oscillator used in Fantasia.
The Second Golden Age: 1980-85

- Period from 1980 to 1985 one of the most productive
- One research lab at Stanford produced
 - Sun
 - Silicon Graphics
 - MIPS
- In parallel: Cisco, Imagen, Teknowledge, Intellicorp
- Just a few stories from the period...
- The technology drivers in this period
Sun Microsystems

- Based on a research prototype (design by Andy Bechtolshiem)
- Goal: low-cost, graphics terminal
 - the first network computer!
 - motivated by need for graphics among researchers
- Initially totally bootstrapped
 - prototype parts from gift funds
- Initial HW and SW was completely home-brew
- Company founded by merging Stanford HW & Berkeley SW
 - both close to product
Silicon Graphics

- **Vision**: inexpensive, high performance 3-D graphics
 - Key: Geometry Engine
 - enabled significant breakthrough in price-performance

- **Founders**:
 - Jim Clark (Stanford EE prof)
 - a host of staff and students

- **One of the first to license the “Sun design”**

- **Protoype was graphics terminal**
 - close to first product
MIPS

- One of the first RISC projects
 - Others: IBM and Berkeley

 - prototype microprocessor
 - design was conceptual basis for company
 - SW was prototype compiler

- Significant industrial disbelieve
 - vested interest, etc.

- Support from a few people

- History
 - Founding: 1984
 - IPO: 1989
 - Acquisition: 1992
 - Re-IPO: 1998
Stanford got into networking extensively early on
 – connect up all our computers
 – staff and students installed
Internal demand for networking products
 – first prototype = Sun design
 – incredible, ad hoc systems
Colleagues at other schools wanted these prototypes
Bosack and Lerner started Cisco to meet the demand.
Stanford prototype became first product
Driving Forces in the 1980s Period

- Faculty and research growth in experimental computer systems
 - Faculty hiring
 » EE played a key role in bringing in a number of experimentally-oriented, systems faculty
 - Research $
 » significant increase in research funding

- New technologies—the breakthroughs of 1979!
 - VLSI revolution
 - Microprocessors as computers
 - Xerox Alto as tool and inspiration (donated in 1979)
VLSI Revolution

- Mead and Conway textbook
- Idea: make integrated circuit technology available to a wider range of designers.
- Several experimental courses
 - one at Stanford
 - Xerox PARC played a key role
- Explosion of
 - research using new capability
 - explosion of interest in tools for this capability
Microprocessor Comes of Age

- First general-purpose microprocessor:
 - Intel 4004 (4-bit) (1971)
 - microprocessors don’t compete with “real” computers
- Motorola 68000 (1979)
 - first microprocessor that looks like a “real” computer
 - first 32-bit microprocessor
 - became basis for Apple Macintosh
 - Skip Stritter, Stanford PhD & MIPS cofounder, is an architect
- Visionaries: microprocessors will change computing!
The Xerox Alto

- The first personal computer
- Revolutionary machine
 - bit mapped graphics
 - integrated mouse
 - windows system
 - first Ethernet
 - first file server
 - first laser printer
- Inspiration for the Macintosh
- 15 machines donated to Stanford in 1979
1990s: The Internet Explosion

- Internet
 - key protocols designed by Cerf as faculty member at Stanford
 - heavy use by researchers
 - lots of local-area-networking
- Early information servers
 - ftp, gopher, etc.
- World Wide Web appears
- Mosaic–browser
 - Clark forms Netscape
- Internet use explodes
 - everyday users publish!
- Most researchers surprised!

Web traffic at Stanford
(1/2 from outside!)

<table>
<thead>
<tr>
<th></th>
<th>files (K)</th>
<th>hits (K)</th>
<th>srvrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-94</td>
<td>10</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Feb-95</td>
<td>50</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>Sep-95</td>
<td>25</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>Feb-96</td>
<td>20</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>
The Yahoo Story

- Two EE graduate students
 - avid web surfers
 - how to organize information?
 - working in a set of trailers!
- Developed Yahoo
 - Yet Another Hierarchically Organized Oracle
 - for their own use!
- Use of Yahoo on campus and off explodes
 - campus networking bill surges
 - move servers to Netscape
- Form independent company
Why Stanford?

- Federal research funding
- The role of graduate students
 - as inventors
 - as disseminators
 - as part of the workforce
- Industrial interaction
 - already covered this
- Encouraging entrepreneurship
- Fertile Ground
 - Valley is the ideal planting ground for new ideas
Federal Funding of Research

- Basic research programs
 - Funding often has
 - strategic focus
 - applied nature
 - But, research is still basic
 - not product-oriented
 - often not clear who will exploit results
 - Most interesting results often differ from
 - funder’s expectations
 - researcher’s expectations
 - Support and nurture a creative environment.

[Bar chart showing federal funding of research from 1979 to 1997, with millions of dollars on the y-axis and years on the x-axis.]
The Role of Students

- Students are the key to tech transfer
 - bring and develop new ideas
 - vehicle for technology transfer
 » transfer people with ideas not just ideas
 - students and research are interlocked:
 » largest fraction of PhD students/faculty member in US
 - graduate student support is largest budget item for Engineering
Educational Role

- Stanford is largest grantor of graduate engineering degrees in US
- Graduate population comes from all over the world
- Many of our graduates remain in the Valley

![Bar chart showing degrees granted by field and degree level.](chart.png)
Encouraging Entrepreneurship

- Licensing technology
- Faculty leaves to industry
- Entrepreneurship education
 - Stanford Technology Ventures Program
 » largest of its kind
 » includes a unique start-up focused co-op program
 » includes some business background
 » business plan contest
- Historical precedents
 - Terman and HP
 - Hennessy and MIPS
 - Yahoo
Benefits to the University

- Close to technology center
 - best place to be a high-tech faculty member
 - great opportunities for students, both summer and permanent
- Industrial collaboration
 - many interesting projects require industrial support
- Deeper understanding of industry by faculty
 - better researchers and better teachers
- Opportunity to be an entrepreneur and see your ideas to the market
 - best of both worlds
- Draws other good faculty and students
 - major recruiting advantage
Stanford: the Heart of Silicon Valley