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The setting

Data distribution:

(y , x) ∼ P.

Model:

ŷ = f (x ; θ).

We are interested in the class of models given by deep neural networks.

Optimization problem:

min
θ∈Θ

E[`(ŷ , y)].

We are interested in solving the optimization problem using stochastic

gradient descent.
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ŷ = f (x ; θ).

We are interested in the class of models given by deep neural networks.

Optimization problem:

min
θ∈Θ
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Fully connected L-layer neural network

x
. . . . . .

ŷ

N1 NL−1

W1
WL

Wi BiBi−1

Hi−1(ji−1)
NL = 1

The model:
H1(x , j1) = φ1(w1(j1), x), ∀j1 ∈ [N1],

Hi (x , ji ) =
1

Ni−1

Ni−1∑
ji−1=1

φi (wi (ji−1, ji ), bi (ji ),Hi−1(x , ji−1)),

∀ji ∈ [Ni ], i ∈ [2, L],

ŷ(x) = φL+1(HL(x , 1)).
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Fully connected L-layer neural network

We assume NL = 1.

A standard choice of φ (Fully-connected neural network with bias):

• H1(x) = W1x ∀j1 ∈ [N1],

H1(x , j1) = w1(j1) · x ,

• Hi (x) = Bi +
1

Ni−1
Wiσi−1(Hi−1(x)) ∀ji ∈ [Ni ], i ∈ [2, L],

Hi (x , ji ) =
1

Ni−1

Ni−1∑
ji−1=1

bi (ji ) + wi (ji−1, ji )σi−1(Hi−1(x , ji−1)),

• ŷ(x) = σL(HL(x , 1)),

where

W1 ∈ RN1×d , Wi ∈ RNi−1×Ni , Bi ∈ RNi ∀i ∈ [2, L].
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Stochastic gradient descent

w1(t + 1, j1) = w1(t, j1)− εN1∇w1(j1)`(ŷ(t, x(t)), y(t)),

wi (t + 1, ji−1, ji ) = wi (t, ji−1, ji )− εNi−1Ni∇wi (ji−1,ji )`(ŷ(t, x(t)), y(t)),

bi (t + 1, ji ) = bi (t, ji )− εNi∇bi (ji )`(ŷ(t, x(t)), y(t)).

Remarks.

The gradients are scaled so that weight movement is of order 1.

The derivation of the mean field limit applies to more general dynamics.
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Stochastic gradient descent

In the standard model:

N1∇w1(j1)`(ŷ(t, x(t)), y(t)) = ∆H
1 (y , x , j1)x ,

Ni−1Ni∇wi (ji−1,ji )`(ŷ(t, x(t)), y(t)) = ∆H
i (y , x , ji )σi−1(Hi−1(x , ji−1)),

Ni∇bi (ji )`(ŷ(t, x(t)), y(t)) = ∆H
i (y , x , ji ),

where

∆H
L (y , x , jL) = ∂ŷ`(y , ŷ(x))σ′L(HL(x , jL)),

∆H
i−1(y , x , ji−1) =

1

Ni

Ni∑
ji=1

∆H
i (y , x , ji )wi (t, ji−1, ji )σ

′
i−1(Hi−1(x , ji−1)).

. . . . . .

∂ŷ`

∆H
i∆H

i−1

∆w
i
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Stochastic gradient descent

In the general model:

N1∇w1(j1)`(ŷ(t, x(t)), y(t))= ∆H
1 (y , x , j1)x ,

Ni−1Ni∇wi (ji−1,ji )`(ŷ(t, x(t)), y(t))= ∆H
i (y , x , ji )σi−1(Hi−1(x , ji−1)),

Ni∇bi (ji )`(ŷ(t, x(t)), y(t))= ∆H
i (y , x , ji ),

where

∆H
L (y , x , jL)= ∂ŷ`(y , ŷ(x))σ′L(HL(x , jL)),

∆H
i−1(y , x , ji−1) =

1

Ni

Ni∑
ji=1

ψ(∆H
i (y , x , ji ),wi (t, ji−1, ji ),Hi−1(x , ji−1)).

. . . . . .

∂ŷ`

∆H
i∆H

i−1

∆w
i
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MNIST, 3-layer nets, N1 = N2 = 200, 400, . . .
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A primer on the framework for the mean field limit

In the large width limit, the mean field limit is obtained in the setting of i.i.d.
initialization by Araújo-Oliveira-Yukimura and Sirignano-Spiliopoulos. The i.i.d.
initialization plays an important role, and the limit formulation hinges on
certain degeneracy in the dynamics.

In the general setting, Nguyen sets up a different formulation of the mean field

limit.

Our formulation of the mean field limit applies to general initialization

distributions where there is no degeneracy in the dynamics.

The limit formulation is based on an infinite width representation that

factors out the symmetries of the neurons in the hidden layer, and applies

to general dynamics on systems with mean-field interactions.

Specializing to i.i.d. initializations, the degeneracy properties of the

dynamics can be readily recovered from the framework.

D. Araújo, R. Oliveira, D. Yukimura, arXiv:1906.00193 (2019).
J. Sirignano, K. Spiliopoulos, arXiv:1903.04440 (2019).

P.-M. Nguyen, arXiv:1902.02880 (2019).

9 / 47



A primer on the framework for the mean field limit

In the large width limit, the mean field limit is obtained in the setting of i.i.d.
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initialization by Araújo-Oliveira-Yukimura and Sirignano-Spiliopoulos. The i.i.d.
initialization plays an important role, and the limit formulation hinges on
certain degeneracy in the dynamics.

In the general setting, Nguyen sets up a different formulation of the mean field

limit.

Our formulation of the mean field limit applies to general initialization

distributions where there is no degeneracy in the dynamics.

The limit formulation is based on an infinite width representation that

factors out the symmetries of the neurons in the hidden layer, and applies

to general dynamics on systems with mean-field interactions.

Specializing to i.i.d. initializations, the degeneracy properties of the

dynamics can be readily recovered from the framework.
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A primer on the framework for the mean field limit

’Neuronal embedding’
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Plan of the talk

1 Description of the infinite width limit

2 Connecting finite width networks and the infinite width limit via neuronal

embedding

3 Symmetries in the mean field limit

4 Global convergence: Three-layer network

5 Global convergence: General L-layer network
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Infinite width limit - Revisit the two-layer case

Two-layer neural network:

ŷ(x) =
1

N

N∑
i=1

σ(wi , x).

Symmetry group SN : For π ∈ SN ,

ŷ(x) =
1

N

N∑
i=1

σ(wi , x) =
1

N

N∑
i=1

σ(wπ(i), x).

Equivalent description:

ŷ(x) = Ew∼ρN [σ(w , x)],

where ρN = 1
N

∑N
i=1 δwi is the empirical measure of the neurons.
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Infinite width limit

The infinite width limit of a two-layer network can be captured by a general
distribution over Rd .

ŷ(x) = Ew∼ρN [σ(w , x)] −→ ŷ = Ew∼ρ[σ(w , x)].

This does not generalize to networks with more than two layers:

For L-layer networks, the symmetry group acts as follows: For permutation

matrices Π1, . . . ,ΠL−1,

ŷ(x ;W1, . . . ,WL) = ŷ(x ; Π1W1,Π2W2ΠT
1 , . . . ,WLΠT

L−1).

Difficult to factor out symmetry to a distributional representation due to

complex interaction with W2, . . . ,WL−1.

14 / 47



Infinite width limit

The infinite width limit of a two-layer network can be captured by a general
distribution over Rd .
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Constructing the infinite width network - Two-layer case

Claim

There exists a probability space (Ω,P) such that any two-layer network can be

written as

ŷ(x) = EC∼P [σ(w(C), x)],

for a measurable function w on (Ω,P).
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Constructing the infinite width network - L-layer network

Finite width:

Hi (x , ji ) =
1

Ni−1

Ni−1∑
ji−1=1

φi (bi (ji ),wi (ji−1, ji ),Hi−1(x , ji−1)),

ŷ(x) = φL+1(HL(x , 1)).

Infinite width:
For (c1, . . . , cL) in some probability space (Ω1 × · · · × ΩL,P1 × · · · × PL) with
ΩL = {1}, and functions wi : Ωi−1 × Ωi →Wi , bi : Ωi → Bi , let

Hi (x , ci ) = ECi−1∼Pi−1 [φi (bi (ci ),wi (Ci−1, ci ),Hi−1(x ,Ci−1))],

ŷ(x ;w , b) = φL+1(HL(x , cL)).

16 / 47



Constructing the infinite width network - L-layer network

Finite width:

Hi (x , ji ) =
1

Ni−1

Ni−1∑
ji−1=1

φi (bi (ji ),wi (ji−1, ji ),Hi−1(x , ji−1)),

ŷ(x) = φL+1(HL(x , 1)).

Infinite width:
For (c1, . . . , cL) in some probability space (Ω1 × · · · × ΩL,P1 × · · · × PL) with
ΩL = {1}, and functions wi : Ωi−1 × Ωi →Wi , bi : Ωi → Bi , let

Hi (x , ci ) = ECi−1∼Pi−1 [φi (bi (ci ),wi (Ci−1, ci ),Hi−1(x ,Ci−1))],
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Constructing the infinite width network - L-layer network

Claim

There exists a probability space (Ω1 × · · · × ΩL,P1 × · · · × PL) and measurable

functions wi : Ωi−1 × Ωi →Wi , bi : Ωi → Bi , such that any depth L network

can be written as

ŷ(x) = ŷ(x ;w , b).

We call the space (Ω1 × · · · × ΩL,P1 × · · · × PL) a neuronal emsemble.

This defines a class of depth-L networks with arbitrary (or infinite) width.

This talk: focus on optimization aspect (would be interesting to study
generalization, approximation, etc.).
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Dynamics of the infinite width network

∂twi (t, ci−1, ci ) = −E(y,x)[∇wi (ci−1,ci )`(ŷ , y)]

= −E(y,x)[ECi+1∼Pi+1 [ψw
i (wi (t, ci−1, ci ),wi+1(t, ci ,Ci+1),

Hi+1(x ,Ci+1),Hi−1(x , ci−1))]].

∂tbi (t, ci ) = −E(y,x)[∇bi (ci )`(ŷ , y)]

= −E(y,x)[ECi+1∼Pi+1 [ψb
i (bi (t, ci ),wi+1(t, ci ,Ci+1),Hi+1(x ,Ci+1))]].
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∂tbi (t, ci ) = −E(y,x)[∇bi (ci )`(ŷ , y)]

= −E(y,x)[ECi+1∼Pi+1 [ψb
i (bi (t, ci ),wi+1(t, ci ,Ci+1),Hi+1(x ,Ci+1))]].
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Dynamics of the infinite width network

In the standard model:

∂twi (t, ci−1, ci ) = −E(y,x)[∆
w
i (y , x , ci−1, ci )],

∂tbi (t, ci ) = −E(y,x)[∆
b
i (y , x , ci )],

where

∆H
L (y , x , cL) = ∂ŷ `(ŷ , y)φ′L(HL(x , cL)),

∆H
i−1(y , x , ci−1) = ECi [∆

H
i (y , x ,Ci )wi (t, ci−1,Ci )φ

′
i−1(Hi−1(x , ci−1))],

∆w
i (y , x , ci−1, ci ) = ∆H

i (y , x , ci )φi−1(Hi−1(x , ci−1)),

∆b
i (y , x , ci ) = ∆H

i (y , x , ci ),

∆w
1 (y , x , c1) = ∆H

1 (y , x , c1)x .
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Plan of the talk

1 Description of the infinite width limit

2 Connecting finite width networks and the infinite width limit via neuronal

embedding

3 Symmetries in the mean field limit

4 Global convergence: Three-layer network

5 Global convergence: General L-layer network
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Sampling finite width networks from an infinite width network

Sampling procedure

Consider a neuronal ensemble (Ω1 × · · · × ΩL,P1 × · · · × PL) and

measurable functions

w 0
i : Ωi−1 × Ωi →Wi , b0

i : Ωi → Bi .

For i ∈ [L] and ji = 1, 2, . . . ,Ni , sample Ci (ji ) independently at random

from (Ωi ,Pi ).

Construct the neural network of widths (N1, . . . ,NL) with weights

initialized at

wi (0, ji−1, ji ) = w 0
i (Ci−1(ji−1),Ci (ji )), bi (0, ji ) = b0

i (Ci (ji )).
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Sampling finite width networks from an infinite width network

x ŷ

. . . . . .

(Ωi−1,Pi−1) (Ωi ,Pi )
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Neuronal embedding

Definition (Neuronal embedding)

Consider an L-layer neural network with initialization distribution ρ. A neuronal

embedding is a tuple

((Ω1 × · · · × ΩL,P1 × · · · × PL), (w 0
i , b

0
i )Li=1)

such that following the sampling procedure for this tuple, the constructed finite

width network has the same initialization distribution as ρ.
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Mean field limit

The neuronal embedding allows to embed all finite size networks into an

infinite width limit.

Consider a neuronal embedding

(Ω1 × · · · × ΩL,P1 × · · · × PL, (w
0
i , b

0
i )Li=1).

Run the infinite width network dynamics initialized at (w 0
i , b

0
i )Li=1. We

refer to (wi (t, ci−1, ci ), bi (t, ci ))Li=1 as the mean field limit.
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Connecting the mean field limit and finite width networks

Consider the sampled neural network with hidden widths Ni :

wi (0, ji−1, ji ) = w 0
i (Ci−1(ji−1),Ci (ji )), bi (0, ji ) = b0

i (Ci (ji )).

Run stochastic gradient descent on the network with step-size ε in time

T/ε.

Let

‖w − w‖t,∞
= max

i∈[L],ji−1∈[Ni−1],ji∈[Ni ]
‖wi (t, ji−1, ji )− wi (εt,Ci−1(ji−1),Ci (ji ))‖,

‖b− b‖t,∞
= max

i∈[L],ji∈[Ni ]
‖bi (t, ji )− bi (εt,Ci (ji ))‖.
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Connecting the mean field limit and finite width networks

Theorem (Nguyen-P. 2020)

Under some regularity properties of the activations, then with probability at

least 1− δ, we have

sup
t≤T/ε

‖w − w‖t,∞ = OT

(√
log(maxNi/δ)

(
1√

minNi

+
√
ε

))
.
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Symmetries in the mean field limit

Theorem (Nguyen-P. 2020)

There exists a neuronal embedding of the neural network whose weights are

i.i.d. with law wi ∼ ρwi , bi ∼ ρbi .

By specializing the general framework to initialization distributions with certain
symmetries, we can also characterize the symmetries in the mean field limit.
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Symmetries in the mean field limit

Theorem - simplified (Nguyen-P. 2020)

Consider the neural network whose weights are i.i.d. with law wi ∼ ρwi ,

bi ∼ ρbi . Then for 3 ≤ i ≤ L− 2:

The middle layer weight wi (t, ci−1, ci ) is a Borel function of its initial value

wi (0, ci−1, ci ) and the initial biases bi−1(0, ci−1), bi (0, ci ).

The middle layer bias bi (t, ci ) is a Borel function of its initial value

bi (0, ci ).

i − 1 i

wi (0, ci−1, ci )

bi (0, ci )

bi−1(0, ci−1)
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Theorem (Nguyen-P. 2020)

For 3 ≤ i ≤ L− 2,

wi (t, ci−1, ci ) = w∗i (t,wi (0, ci−1, ci ), b
0
i−1(ci−1), b0

i (ci )),

bi (t, ci ) = b∗i (t, bi (0, ci )).

For i = 1, L,

w1(t, c1) = w∗1 (t,w1(0, c1), b1(0, c1)),

b1(t, c1) = b∗1 (t, b1(0, c1)),

wL(t, cL−1, cL) = w∗L (t,wL(0, cL−1, cL), bL−1(0, cL−1), bL(0, cL)),

bL(t, cL) = b∗L (t, bL(0, cL)).

For i = 2, L− 1,

w2(t, c1, c2) = w∗2 (t,w2(0, c1, c2), b2(0, c2),w1(0, c1), b1(0, c1)),

b2(t, c2) = b∗2 (t, b2(0, c2)),

wL−1(t, cL−2, cL−1) = w∗L−1(t,wL−1(0, cL−2, cL−1), bL−1(0, cL−1),

wL(0, cL−1, cL), bL−2(0, cL−2)),

bL−1(t, cL−1) = b∗L−1(t, bL−1(0, cL−1),wL(0, cL−1, cL)).

30 / 47



Theorem (Nguyen-P. 2020)

For 3 ≤ i ≤ L− 2,

wi (t, ci−1, ci ) = w∗i (t,wi (0, ci−1, ci ), b
0
i−1(ci−1), b0

i (ci )),

bi (t, ci ) = b∗i (t, bi (0, ci )).

For i = 1, L,

w1(t, c1) = w∗1 (t,w1(0, c1), b1(0, c1)),

b1(t, c1) = b∗1 (t, b1(0, c1)),

wL(t, cL−1, cL) = w∗L (t,wL(0, cL−1, cL), bL−1(0, cL−1), bL(0, cL)),

bL(t, cL) = b∗L (t, bL(0, cL)).

For i = 2, L− 1,

w2(t, c1, c2) = w∗2 (t,w2(0, c1, c2), b2(0, c2),w1(0, c1), b1(0, c1)),

b2(t, c2) = b∗2 (t, b2(0, c2)),

wL−1(t, cL−2, cL−1) = w∗L−1(t,wL−1(0, cL−2, cL−1), bL−1(0, cL−1),

wL(0, cL−1, cL), bL−2(0, cL−2)),

bL−1(t, cL−1) = b∗L−1(t, bL−1(0, cL−1),wL(0, cL−1, cL)).

30 / 47



Symmetries in the mean field limit

Remark. The Borel functions w∗, b∗ can be obtained by solving a
self-contained system of ODEs.

Corollary (Nguyen-P. 2020)

If the biases are initialized to be constants, then the weight wi at time t only

depends on its value at initialization for 3 ≤ i ≤ L− 2. Thus, for any positive

time t, the middle layer weights wi (t, ci−1, ci ) for 3 ≤ i ≤ L− 2 remain i.i.d.

random variables.

Furthermore, the pre-activations Hi (t, ci ) are equal for all 2 ≤ i ≤ L− 2.
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Symmetries in the mean field limit

Corollary (Nguyen-P. 2020)

If we assume the standard model of the neural network with the biases

initialized to be constants, then there exists functions ∆∗i : [0,∞)→ R such

that for 3 ≤ i ≤ L− 2,

wi (t, ci−1, ci ) = wi (0, ci−1, ci ) + ∆∗i (t).

Thus, in the standard architecture with no bias, each of the middle layers of
the network degenerates to a single translation parameter.
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Global convergence - Three-layer network

Consider the standard model of a three-layer network with i.i.d. initialization
law.

Theorem (Global convergence of the mean field dynamics, Nguyen-P. 2020)

Assume some regularity properties of the activations, and

∂ŷ `(ŷ , y) = 0⇒ `(ŷ , y) = 0.

Diversity: At initialization, w1 has full support in Rd .

Universal approximation: {fw (x) = σ1(w · x)}w∈Rd is dense in L2(Px).

y = y(x).

w1(t),w2(t),w3(t) converges in appropriate sense as t →∞.

Then under the mean field dynamics

E(y,x)[`(ŷ , y)]→ 0 as t →∞.
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Global convergence - Three-layer network

Convergence assumptions:

We assume that the gradient of the second layer weights

∂tw2(t,C1,C2)→ 0 uniformly, and appropriate convergence in moments.

If E(y,x)[`(ŷ , y)]→ 0, then ∂tw2(t,C1,C2)→ 0 uniformly.

Remarks.

The loss ` does not need to be convex.

No assumption on the limiting distribution of the mean field dynamics.
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Global convergence - Three-layer network

Idea:

Our first insight is to look at the second layer weights:

E(y,x)[∂ŷ `(ŷ , y)F (C2)σ1(w1(t,C1) · x)]→ 0. (Uniform convergence)

Key step. Use symmetries of the mean field dynamics and topological

invariance, show that w1(t,C1) has full support for all finite t (but not

necessarily at t =∞). (Topological invariance.)

By denseness of x 7→ σ1(w1 · x) in L2(Px) and since w1(t,C1) has full

support, under mild assumptions so F is bounded away from 0, we obtain

that for a.e. (y , x),

∂ŷ `(ŷ , y) = 0

Hence, for a.e. (y , x), `(ŷ , y) = 0.
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∂ŷ `(ŷ , y) = 0

Hence, for a.e. (y , x), `(ŷ , y) = 0.
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Plan of the talk

1 Description of the infinite width limit

2 Connecting finite width networks and the infinite width limit via neuronal

embedding

3 Symmetries in the mean field limit

4 Global convergence: Three-layer network

5 Global convergence: General L-layer network
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Global convergence - L-layer neural network

The global convergence guarantee of three-layer network relies crucially on

the diversity of the neurons in the first layer.

Problem: Under i.i.d. initialization, the middle layers degenerate to a

single ”effective” neuron.

Question

Can we obtain global convergence for deep neural networks without changing

the architecture?
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Global convergence - L-layer neural network

Consider the standard model of an L-layer neural network.

Theorem (Global convergence of the mean field dynamics, Nguyen-P. 2020)

Assume some regularity properties of the activations, and

∂ŷ `(ŷ , y) = 0⇒ `(ŷ , y) = 0.

Bidirectional diversity: (w1(0,C1),w2(0,C1, c2))C1∼P1 has full support in

Rd × L2(P2) and (wi (0, ci−1,Ci ),wi+1(0,Ci , ci+1))Ci∼Pi has full support in

L2(Pi−1)× L2(Pi+1) for all 2 ≤ i ≤ L− 1.

Universal approximation: {fw (x) = σ1(w · x)}w∈Rd is dense in L2(Px).

y = y(x).

wi (t) converges in appropriate sense as t →∞.

Then under the mean field dynamics

E(y,x)[`(ŷ , y)]→ 0 as t →∞.
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Global convergence - L-layer neural network

The bidirectional diversity condition:

Ci

ci+1ci−1

L2(Pi−1) L2(Pi+1)

i − 1 i i + 1
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Global convergence - L-layer neural network

Convergence assumptions:

We assume that the gradient of the last layer weights

∂twL(t,CL−1,CL)→ 0 uniformly, and appropriate convergence in moments.

If E(y,x)[`(ŷ , y)]→ 0, then ∂twL(t,CL−1,CL)→ 0 uniformly.

Remarks.

Global convergence guarantee applies to gradient descent on the fully

connected L-layer neural network with no modification to the architecture.

The bidirectional diversity condition necessitates correlated weight

initialization distribution to avoid the degeneracy of the mean field

dynamics of i.i.d. initializations.
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Global convergence - L-layer neural network

Idea:

Consider the gradient of the last layer weights:

E(y,x)[∂ŷ `(ŷ , y)σ′L(HL(t, x ,CL))σL−1(HL−1(t, x ,CL−1))]→ 0. (Uniform conv.)

Key step. Using a flow argument, we show that at all finite time t:

(w1(t,C1),w2(t,C1, c2))C1∼P1 has full support in Rd × L2(P2) and

(wi (t, ci−1,Ci ),wi+1(t,Ci , ci+1))Ci∼Pi has full support in

L2(Pi−1)× L2(Pi+1) for all 2 ≤ i ≤ L− 1. (Topological invariance.)

The diversity of the weights can be used to show that Hi (t, x ,Ci ) has full

support in L2(Px) for all i ∈ [2, L− 1]. Thus, σL−1(HL−1(t, x ,CL−1)) is

dense in L2(Px).

The conclusion follows combining the convergence condition with the

denseness of σL−1(HL−1(t, x ,CL−1)).
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Global convergence III - General scheme

Our insight on a general scheme for a global convergence mechanism:

Uniform convergence of the gradient update of an appropriate layer’s

weights.

Diversity: assumed at initialization, shown to hold at any finite time and

across depth (topological invariance).

Universal approximation.

Uniform convergence, diversity and universal approximation together imply

global convergence (without convexity).

Remarks. The diversity condition is inspired by Chizat-Bach 2018, where global
convergence is shown for two-layer networks by a different mechanism.
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Conclusion

1 By constructing a neuronal embedding for the initialization distribution,

we obtain a mean field limit that tracks the gradient descent dynamics of

large width networks under mean field scaling.

2 The mean field limit applies to general initialization distributions. When

specializing to i.i.d. initializations, it recovers the degeneracy properties of

the dynamics.

3 The mean field limit can be used to understand global convergence

guarantees of stochastic gradient descent.

4 For deep fully connected networks, one can obtain global convergence

guarantee assuming that the initialization distribution satisfies certain

diversity condition that avoids the degeneracy of i.i.d. initializations.
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Future directions

Quantitative rate of convergence.

Uniform-in-time coupling with the mean field limit.

Quantitative effect of depth.
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