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Abstract

We consider a resource selection game with incomplete in-
formation about the resource-cost functions. All the players
know is the set of players, an upper bound on the possible
costs, and that the cost functions are positive and nondecreas-
ing. The game is played repeatedly and after every stage
each player observes her cost, and the actions of all play-
ers. For every ε > 0 we prove the existence of a learning
ε-equilibrium, which is a profile of algorithms, one for each
player such that a unilateral deviation of a player is, up to ε
not beneficial for her regardless of the actual cost functions.
Furthermore, the learning equilibrium yields an optimal so-
cial cost.

1. Introduction
In a resource selection game there is a set of K resources,
and a set of n players. Each player has to select a resource
from among the set of resources. Each resource k is asso-
ciated with a cost function, where ck(l) is the cost suffered
by any player who has selected resource k, if there are l
players who have selected this resource. Resource selection
games are a particular and useful type of congestion games
(Rosenthal 1973; Monderer & Shapley 1996),1 and are cen-
tral to work in CS/AI, Game Theory, Operations Research,
and Economics. In particular, resource selection games have
been extensively discussed in the price of anarchy litera-
ture, e.g., (Koutsoupias & Papadimitriou 1999). Most of the
work on resource selection games assumes that all parame-
ters of the game are commonly known, or at least that there
is a commonly known Bayesian information regarding the
unknown parameters (see (Gairing, Monien, & Tiemnann
2005; Garg & Narahari 2005)). However, in many situa-
tions, the game, and in particular the resource cost functions
are unknown. When the game under discussion is played
only once, one has to analyze it using solution concepts for
games with incomplete information without probabilistic in-
formation (known also as pre-Bayesian games).2 However,
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1In a general congestion game every player can choose a set of
resources.

2Such an analysis was done in (Ashlagi, Monderer, & Tennen-
holtz 2006) in a resource selection game, in which the lack of in-
formation is about the number of participants.

if the game is played repeatedly the players may learn about
the resource cost functions, by observing the feedback for
actions they performed in the past. This brings us to the
study of reinforcement learning in (initially unknown) re-
peated resource selection games.3

Learning in the context of multi-agent interactions has
attracted the attention of researchers in psychology, eco-
nomics, artificial intelligence, and related fields for quite
some time ((Littman 1994; Hu & Wellman 1998; Brafman
& Tennenholtz 2002; Bowling & Veloso 2001; Conitzer
& Sandholm 2003; Greenwald, Hall, & Serrano 2002;
Erev & Roth 1998; Fudenberg & Levine 1998)). Much of
this work uses repeated games as models of such interac-
tions. Initially all that is known is that the game played
is taken from a set of possible games. Then, after each
iteration the players receive some information about the
game history. In this paper we will assume partial moni-
toring: each player is able to observe the actions selected by
all players in the previous iteration, but only its own pay-
off in that iteration. There are various definitions of what
would define a satisfactory learning process. In this paper
we adopt a most desirable and highly demanding require-
ment: we wish the players’ learning algorithm to conform a
learning equilibrium (Brafman & Tennenholtz 2004; 2005;
Ashlagi, Monderer, & Tenneholtz 2006; Monderer & Ten-
nenholtz 2007) leading to optimal social cost.

A learning equilibrium determines learning algorithms for
a given class of games, which capture the following: it is
not beneficial for any player to deviate from its algorithm
assuming that the other players stick to their algorithms, re-
gardless of the game being played, as long as this game is
taken from the prescribed class of games.4 If we add the
requirement that, if adopted by the players, the learning al-
gorithms will yield optimal social cost, then we get a very
desirable outcome, which may be very hard to obtain. Nev-
ertheless, previous studies have shown some positive results.
In this work we contribute to both the theory of learning

3This study should be distinguished from the study of best-
response ( or even better-response) dynamics that is known to con-
verge to equilibrium in congestion games with complete informa-
tion (see (Monderer & Shapley 1996)).

4The concept of learning equilibrium has been generalized in
(Ashlagi, Monderer, & Tenneholtz 2006) to allow each player to
receive an initial private signal regarding the true game.



equilibrium and to the theory of resource selection games
by proving, for every ε > 0 the existence of a learning ε-
equilibrium for arbitrary classes of resource selection games
with non-decreasing and positive cost functions, where in a
learning ε-equilibrium a deviation is not profitable if it de-
creases cost by no more than ε.

Our proof of the existence of a learning ε-equilibrium for
resource selection games is constructive. We show an ef-
ficient algorithm, LE-RS, which determines a learning ε-
equilibrium. In addition, if all players follow the LE-RS
algorithm, then after a finite number of stages, which is
polynomial in the number of resources and in the number
of players, the players will obtain at every stage the opti-
mal social cost of the underlying (initially unknown) game.
Moreover, the punishment for a deviating player will also be
materialized after polynomially many iterations. This result
complements results obtained in (Brafman & Tennenholtz
2005) for learning ε-equilibrium in general 2-person sym-
metric games, which can be extended to symmetric n-person
games only when we allow any group of players to have
a private channel for coordinating their actions; the LE-RS
does not require such strong abilities, which typically might
not exist.

2. Background-Learning equilibrium in
repeated games.

A game in strategic form (or, for short, a game) consists
of a finite set of players, N , and for every player i ∈ N ,
an action set Ai and a cost function ci : A → R, where
A = ×i∈NAi is the set of action profiles. For convenience,
N = {1, 2, · · · , n}, where n is the number of players. An
action profile a ∈ A is a Nash equilibrium if for every player
i, ci(ai,a−i) ≤ ci(bi,a−i) for every bi ∈ Ai, where, as
usual a−i is the (n − 1) action profile obtained from a by
removing player i’s action. The optimal social cost in G is
denoted by S(G), and it is defined to be min

∑n
i=1 ci(a),

where the min ranges over all action profiles a ∈ A.
A game is finite if every action set is a finite game. In

a finite game, a mixed action for player i is a probability
distribution over Ai. The set of mixed actions for player i
is denoted by Am

i . The corresponding set of mixed action
profiles is denoted by Am = ×i∈NAm

i . A mixed action
that assigns a probability 1 to a single action is called a pure
action. In this paper we identify pure actions with actions.
Hence, we consider Ai as a subset of Am

i ,and A as a subset
of Am. When dealing with mixed actions, the cost function
for player i, ci is naturally extended to the expected cost
function, which, with an abuse of notations, we also denote
by ci. That is, ci : Am → R.

In a repeated game with complete information, the
players play repeatedly a commonly known stage game G.
There are infinite number of stages, and in each stage, each
player chooses a mixed action from the set of her possible
mixed actions in G, pays her cost, and move on to the next
stage. After each stage every player observes the actual
actions chosen by all players at this stage. In a repeated
game with incomplete information there exists a set M of
stage games. One of the games in M is played repeatedly,

and the players observe the actual actions after each stage.
However the players do not know initially, which game is
played. All they know is the set of players and the sets of
actions in the chosen game.5 Every player may partially
learn the costs in the true game through additional feedback,
which in this paper is defined to be her cost. Hence, after
each stage every player knows her actual cost. A repeated
game with this particular feedback is called a repeated
game with incomplete information with partial monitoring.
Hence, a strategy for player i in the repeated game with
incomplete information determined by M is a function
f i ( depending on the set of players and their action sets)
that assigns a mixed action of i to every pair of finite
sequences,[(a(1),a(2), · · ·a(t)), (ci(1), ci(2), · · · , ci(t))].
One sequence is the sequence of action profiles, which is
called an history, and the other sequence consists of the
costs. That is, at every stage j ≤ t, the players chose the
profile of actions a(j), and player i paid ci(j). Note that
a(j) = (a1(j), · · · , an(j)), where ai(j) is the realization
of the randomized strategy used by i at stage j. The set
of all strategies of i at M is denoted by Σi, and the set of
strategy profiles is denoted by Σ. Let f = (f1, f2, · · · , fn)
be a strategy profile in Σ. For every G ∈ M f determines
a probability distribution over the set of histories of action
profiles a(1),a(2), . . .. We denote the expected average
cost of player i up (and including) to stage t determined by
this probability distribution by Ci(G, f , t).

Definition 1 LetM be a repeated game with incomplete in-
formation, and let ε > 0. A strategy profile f = (f1, . . . , fn)
is an learning-ε-equilibrium inM if there exists T ≥ 1 such
that for every t ≥ T , for every G ∈M, and for every player
i, Ci(G, f , t) ≤ Ci(G, (gi, f−i), t) + ε for every gi ∈ Σi.
f is socially optimal learning-ε-equilibrium if, in addition,∑n

i=1 Ci(G, f , t) ≤ S(G) + ε for every G ∈ M, and for
every t ≥ T .

3. Resource Selection Games
A resource selection game is a tuple G = (N,R, (ck)k∈R),
where N = {1, . . . , n} is a set of players, R = {1, . . . ,K}
is a set of resources and for every k ∈ R, ck : {1, . . . , n} →
R+ is resource k’s cost function. The cost incurred by
a player who chooses resource k is ck(l), where l is the
number of players that choose k. We assume the resource
cost functions are non-decreasing and positive. When ev-
ery player i chooses a resource zi ∈ R, an action profile
z ∈ Z = RN is generated. We denote by σk(z) the number
of players that chose k in z. That is, σk(z) = |j ∈ N : zj =
k|. The cost paid by i when the action profile z is selected is
denoted by ci(z), that is ci(z) = czi(σzi(z)).

Resource selection games belong to a larger class of
games called congestion games. It is well-known (Rosenthal
1973) that every congestion game possesses a Nash equilib-
rium . Before we prove the next Lemma we need the fol-
lowing notation: let cmax(z) denote the maximal cost in the
action profile z. That is cmax(z) = maxi∈Nci(z).

5In a most general model, which is not discussed at this paper,
a player may initially know only her own set of actions.



Lemma 1 Let G be a resource selection game. Let z and y
be Nash equilibria . Then cmax(z) = cmax(y).
Proof. Suppose in negation that there exist a couple of
equilibria z and y such that cmax(z) > cmax(y). Let
k ∈ R be a resource in which ck(σk(z)) = cmax(z). Since
ck(σk(z)) > ck(σk(y)), σk(z) > σk(y). Therefore there
exists a resource k′ such that σk′(y) > σk′(z). But then

ck′(σk′(z) + 1) ≤ ck′(σk′(y)) < ck(σk(z)),

which contradicts z being in equilibrium. �
Let G be a resource selection game. We define

NEmax(G) to be the maximal cost in a Nash equilibrium.
That is NEmax(G) = cmax(z) for an arbitrary equilibrium
z. By Lemma 1, NEmax(G) is well defined.

We need to explore additional properties of resource se-
lection games. For every action profile z−i of all players but
i let Bi(z−i) be the best-response correspondence of i. That
is, it is the set of resources which yield the minimal cost for i
given that all other players are playing z−i; Bi(z−i) = {k ∈
R|ci(k, z−i) ≤ ci(k′, z−i) for every k′ ∈ R}.

Observation 1 Let G = (N,R, (ck)k∈R) be a resource se-
lection game, let i ∈ N , and let N ′ = N \ {i}. If z−i

is a Nash equilibrium in the resource selection game G′ =
(N ′, R, (ck)k∈R), then for every r ∈ Bi(z−i)− the best re-
sponse correspondence of i at the game G , y = (r, z−i) is
a Nash equilibrium in G. Moreover, ci(y) = cmax(y) =
NEmax(G).

The following simulation method, which, by Observation
(1) yields a Nash equilibrium, will be used in the learning
algorithm we present in the next section.
NE-SimProcess
Input: A resource selection game G = (N,R, (ck)k∈R).
An n-stage Process: Every player i = 1, . . . , n, in this order
chooses zi, where zi is the best response to (z1, · · · , zi−1)
at the resource selection game, ({1, · · · , i}, R, (ck)k∈R). If
there are multiple best responses we assume that every re-
source has an index, and that i chooses the one with the
lowest index. Observation (1) implies the following obser-
vation:
Observation 2 Let z be the Nash equilibrium obtained at
the end of the NE-SimProcess. Then, cn(z) = cmax(z).

4. A description of the LE-RS algorithm
In this section we present an outline of the LE-RS algo-
rithm, and provide some hints behind the proof that if all
players adopt the algorithm, it obtains the desired learning
ε-equilibrium. A more detailed specification of the algo-
rithm and its analysis appear in sections 5 and 6, respec-
tively. The algorithm receives as input the set of players,
N = {1, · · · , n}, the set of resources, R = {1, · · · ,K}, an
upper bound on all costs, Cmax, and an ε > 0. Hence, we
define M as the set of all vectors c = (ck)k∈R, where for
each k, ck is positive and non-decreasing and ck(l) ≤ Cmax

for every 1 ≤ l ≤ K.
Before we present the algorithm we need some notations.

We say that a resource k ∈ R is known to a player, or
the player knows resource k, if the player observed the

costs ck(j) for j = 1, . . . , n − 1. We say that a resource
k ∈ R is nearly known to a player, or the player nearly
knows resource k, if the player observed the costs ck(j) for
j = 2, . . . , n − 1. In the sequel s(i) denotes the set of all
resources k ∈ R, in which player i hasn’t observed ck(1).
For every resource k ∈ R let b(k) = k + 1(mod K).
The LE-RS algorithm:

The algorithm is described for K ≥ 3. The case K = 2
will be discussed in the full version.
On-path:

At the first stage, ”Cooperative Exploring”, the players
learn all the resource cost functions. This is obtained by
defining a pre-determined sequence (of polynomial length)
in which each player i visits each resource k when there are
additional l players in that resource, for any 0 ≤ l ≤ n− 1.

After all resource cost functions are learned, the players
enter the ”Playing Optimal” stage. First an action profile z
which optimizes the social surplus is chosen (in a way that
all players know which one it is). In the first iteration of this
stage z is played. Then, in every iteration j, player i + 1
plays the action played by player i in iteration j − 1, where
player n plays the action played by player 1.

If the players follow the behavior prescribed in the ”Coop-
erative Exploring” stage, then during the ”Playing Optimal”
stage a socially optimal action profile is played. The ”Play-
ing Optimal” stage is structured such that the actual reward
for all players in that stage will be identical. Therefore, af-
ter a sufficient (but polynomial) number of iterations each
player’s average cost is not more than S(G)

n + ε of the true
game G ∈M.

The above assumes that no player deviates during these
stages. The way we deal with such deviation is described
in the off-path stages below. Such deviator will be referred
to as the adversary. Notice that since the on-path stages are
fully deterministic, all players will be able to simultaneously
identify the adversary, if exist.
Off-path:

In all off path stages we assume w.l.o.g. the adversary is
player n. Below, when we use the term player, we will refer
only to non-adversarial players.

During the off-path stages, players still need to learn
”enough” in order to (eventually) punish the adversary.
Since we require that the adversary will be punished after
a finite (which we will also show to be polynomial) pe-
riod of time, the players also need to punish the adversary
”quickly”. However, since the adversary can prevent a deter-
ministic algorithm from learning some values of the resource
cost functions, we use randomization techniques. This will
leave us with some small probability of failure. In this case,
we move to a ”Failure” stage, in which the players perform
arbitrary actions.

The ”Exploring with an adversary” stage: in this stage
every player i 6= n learns ck(l) for every resource k ∈ R
and for every l = 2, . . . , n− 1, in some fixed order. Hence,
there are (n − 1)(n − 2)K phases during this stage. We
denote by t(i, k, l) the phase when it is player i’s turn to
learn ck(l). At every phase t(i, k, l) the learning is done as
follows:



Player i, and additional pre-determined l − 2 players se-
lect resource k. An additional player i′ chooses randomly
(with uniform distribution) between k and b(k). Note that
player i will learn ck(l) if and only if either i′ or n, and only
one of them, selects k. This gives a probability of at least
0.5 that player i will learn ck(l) for any adversary behavior.
Hence, i will learn ck(l) quickly with overwhelming proba-
bility. Technically, we bound the number of iterations until
such learning occurs; if no such learning occurs we move to
the ”Failure” stage.

The ”Learn Alone” stage: in this stage there are n phases.
At each of the first n − 1 phases, a different player i =
1, . . . , n − 1 learns ck(1) (k ∈ K) for at least K − 1 re-
sources, i.e. phase i ends as |s(i)| ≤ 1. Consider the phase
in which it is player i’s turn to reach this goal: Each player
i′ 6= i selects resource k /∈ s(i), and player i randomizes
(with uniform distribution) between a couple of resources
k1, k2 ∈ s(i). With probability 1

2 player i will learn either
ck1(1) or ck2(1). This is played repeatedly until player i is
able learns either ck1(1) or ck2(1), which will happen after
a short time with overwhelming probability. Similar process
is applied until s(i) ≤ 1. As before, we bound the number
of iterations until such learning occurs; if no such learning
occurs we move to the ”Failure” stage.

The purpose of the n-th phase of this stage, is to ensure
that for all players i, j in which |s(i)| = |s(j)| = 1 we have
that s(i) = s(j). At this phase, at every iteration, a couple
of players i and j for which |s(i)| = 1 and |s(j)| = 1,
select the resources ki ∈ s(i) and kj ∈ s(j), respectively,
and all other players select different resources. Notice that
the adversary can not simultaneously prevent i from learning
cki

(1) and j from learning ckj
(1). At the end of this stage

the players move to the ”Punishing” stage.
The ”Punishing” stage:
Notice that in the beginning of this stage there will be at

most one resource k for which some of the players do not
know ck(1), while ck′(l) is known by all players for every
k′ ∈ K and every 2 ≤ l ≤ n − 1. We distinguish between
two cases:

(i) All players know all resources: in this case the players
will indefinitely play a Nash equilibrium z, determined by
the NE-SimProcess, assuming only n− 1 players. The best
the adversary can do is to choose a best response k′ ∈ Bn(z)
in every iteration. However, by Observation 1, this will
yield him a cost of at least NEmax(G) (where G is the true
game). Hence, deviation will not be beneficial.

(ii) There exists a player i with s(i) = 1. Let k ∈ s(i) be
the only resource for which ck(1) is not known by some of
the players. In this case, let z be the Nash equilibrium of the
game with n−1 players, determined by the NE-SimProcess,
assuming ck(1) = 0. Notice that σk(z) ≥ 1.

If σk(z) > 1 then the players will play z indefinitely.
Notice that when σk(z) > 1 then z is also an equilibrium
in the true game with n − 1 players. Therefore, as before,
the best the adversary can do is to choose a best response
k′ ∈ Bn(z) in every iteration, which will yield him a cost
of at least NEmax(G) (and therefore deviation will not be
beneficial).

If σk(z) = 1: let i′ be the player who selects resource k

in z. Each player j 6= i′ will play its action in z indefinitely.
Player i′ will play k until he observes ck(1) (unless he al-
ready observed it in the past). Once ck(1) is observed (or
was observed in the past) by i′, player i′ chooses a resource
k′ ∈ Bi′(z−i′), and plays it in every following iteration. Ob-
serve that (z−i′ , k

′) is a Nash equilibrium in G when there
are only n − 1 players. Once again, the best the adversary
can do is to choose a best response against that profile, which
will yield him a cost of at least NEmax(G).

Finally, if the adversary prevents i′ from learning ck(1),
then his cost can only increase: if k ∈ Bi′(z−i′), then
(z−i′ , k) is a Nash equilibrium of the game with n− 1 play-
ers, and therefore by playing k the adversary will suffer a
cost of at least NEmax(G). Suppose k /∈ Bi′(z−i′). There-
fore there exists k′ ∈ Bi′(z−i′) such that (z−i′ , k

′) is a Nash
equilibrium of the game with n − 1 players. Since k′ 6= k
ck(1) ≥ NEmax(G) (equality holds if k ∈ Bn(z−i′ , k

′)).
Therefore ck(2) ≥ NEmax(G), which is the adversary’s
cost as long as she prevents i′ from learning ck(1).

5. The LE-RS algorithm – full specification
Before we present the algorithm recall that s(i) denotes the
set of all resources k ∈ R, in which player i hasn’t observed
ck(1). In addition, for every resource k ∈ R, b(k) = k +
1(mod K).
The Algorithm - LE-RS

Each player i has a vector of variables ci = ci
k(l) for

every k ∈ R, l ∈ N . Throughout the algorithm, even if not
specified, player i updates ci

k(l) when she observes ck(l).
Input: A class M of repeated resource selection games in
which R = {1, . . . ,K} (K ≥ 1). 6

Initialize:
Player i initializes ci

k(l) = 0 for every k ∈ R and every
l = 1, . . . , n− 1, and ci

k(n) = Cmax for every k ∈ K.
Cooperative Exploring:
Player i’s strategy:
For k = 1, . . . ,K

(i) repeat i− 1 times: play b(k) for i− 1 iterations, and
play k for another n− i + 1 iterations.

(ii) play k for n iterations.
(iii) repeat n − i times: play b(k) for i iterations, and

play k for another n− i iterations.
If some player, whom we refer to as the adversary, devi-

ates from the above procedure, move to the ”Exploring with
an adversary” stage. Otherwise, move to the ”Playing Opti-
mal” stage.
Playing Optimal: At this stage the true game is commonly
known. Let z ∈ arg maxz′∈Z

∑
i∈N ci(z′). z is chosen with

respect to some some pre-defined lexicographical order. Let
j be the current iteration.
Player i’s strategy:
Play zi at iteration j.
At every iteration j′ > j play as player i + 1 played at
iteration j′ − 1 (player n follows player 1).
If some player does not behave according to the above proce-
dure, then move to the ”Exploring with an adversary” stage.

6We omit the case K ≥ 2 due to lack of space.



Exploring with an adversary: From this stage on, we assume
w.l.o.g that the adversary is player n.
Player i’s strategy:
For i′ = 1, . . . , n− 1
for k = 1, . . . ,K
for l = 2, . . . , n− 1

If i = i′(i’s turn to learn): play T1 (T1 will be defined
later) iterations resource k, or until ck(l) is observed (what
occurs first).

If i′ 6= i: if i > i′ let q = i − i′ + 1. Otherwise let
q = n−i′+i. Play for T1 iterations or until player i observed
ck(l) the following action - b(k) if q > l, k if q < l, and
randomize uniformly between k and b(k) if q = l.

If after T1 iterations player i′ fails to observe ck(l) then
move to the ”Failure” stage.
If all phases are completed successfully then move to the
”Learn Alone” stage.
Learn Alone: For every i let s(i) be the set of all the re-
sources k ∈ K, in which player i hasn’t observed ck(1). In
case that |s(i)| = 1 we let s(i) be the resource itself (and
not the set containing this resource).
Player i’s strategy:
For i′ = 1, . . . , n

If i = i′ (i’s turn to learn): as long as s(i) ≥ 2 repeat: let
k1, k2 ∈ s(i) be two different resources such that k1 < k2

and k2 < k′ for every k′ ∈ s(i) \ {k1, k2}. Play k1 and
k2 each with probability 1

2 for T1 iterations or until ck1(1)
or ck2(1) are learned. If after T1 iterations i fails to learn
ck1(1) or ck2(1) then move to the ”Failure” stage.

If i 6= i′: as long as s(i′) ≥ 2 repeat: let k1, k2 ∈ s(i)
be two different resources as above. Play any resource k /∈
{k1, k2} for T1 iterations or until player i′ observed ck1(1)
or ck2(1). If after T1 iterations i′ fails to learn ck1(1) or
ck2(1) then move to the ”Failure” stage.

Repeat the following: Let D = {i ∈ {1, . . . , n−1} : s(i) =
1}. If for every i1, i2 ∈ D, s(i1) = s(i2) then move to the
”Punishing” stage. Let i1, i2 ∈ D such that i1 < i2 and
i2 < i′ for every i′ ∈ D \ {i1, i2}.
If i ∈ {i1, i2}, play s(i) in the next iteration. If i /∈ {i1, i2},
play any resource other than k such that k 6= s(i1) and k 6=
s(i2) in the next iteration.
Punishing: Let N ′ = {1, . . . , n − 1} and let D = {i ∈
{1, . . . , n − 1} : s(i) = 1}. Denote by GN ′

ci the game with
the set of players N ′ and resource cost functions ci.

Player i’s strategy:
If D = φ: let z be the equilibrium constructed through the
NE-SimProcess in GN ′

ci . Play zi indefinitely.
If D 6= φ: let i′ ∈ D, and let k ∈ s(i′). Let c̃i = ci. Set

˜ci
k(1) = 0. let z be the equilibrium constructed through the

NE-SimProcess in GN ′

c̃i .
If zi 6= k or σk(z) > 1: play zi indefinitely.
If zi = k: repeat the following: if ck(1) has been ob-

served, choose a resource k′ ∈ Bi(z−i) and play it indefi-
nitely. Otherwise play k.
Failure: Player i’s strategy: play every iteration any action.

6. Analysis
In this subsection we prove our main result:
Theorem 1 Let M be a class of resource selection games
with a given upper bound, and let ε > 0. The strategy profile
in which all players adopt the LE-RS algorithm is a socially
optimal learning ε-equilibrium in the associated repeated
game with incomplete information with partial monitoring.
Proof (Sketch). The proof is given for the case, where the
number of resources K, is K ≥ 3. The case K = 2 requires
a special treatment which is given only in the full version.

Let f be the strategy profile in which all players use the
LE-RS algorithm. We assume that Cmax > ε otherwise the
result is trivial. Let Ŝ(G) = S(G)

n .
Claim 1: There exists T̄ , polynomial in n, K,Cmax and

1
ε , such that if all players follow the LE-RS algorithm, then
for every t ≥ T̄ , and every i ∈ N , |Ci(G, f , t)−Ŝ(G)| ≤ ε

4 .
The proof of Claim 1 is omitted due to lack of space, and will
appear in the full paper.

Suppose a single player deviated from the LE-RS algo-
rithm (we refer to him as the adversary). We show that he
will be punished in an efficient time (from the beginning of
the game). W.l.o.g let the adversary be player n. For the
remainder of the proof by using the term player, we refer
to non-adversarial players. We let N ′ = {1, . . . , n − 1}.
Notice that since the on-path stages (”Cooperative Explor-
ing” or ”Playing Optimal”) are fully deterministic, all play-
ers will be able to simultaneously identify the adversary. Let
gn be the adversary’s deviating strategy.

We distinguish between the following cases:
(i) The players identify the adversary during the ”Play-

ing optimal” stage: Hence, the players move to the ”Pun-
ishing” stage after all players know all resources. There-
fore they play in every iteration (in the ”Punishing” stage)
a Nash equilibrium of the true game with the set of play-
ers N ′ (constructed by the NE-Process). Hence, by Obser-
vation 1 the adversary’s cost in every iteration during the
”Punishing” stage will be at least NEmax(G). Notice that
NEmax(G) ≥ Ŝ(G). Let T̄ be as in Claim 1. Suppose the
adversary deviated before stage T̄ . In this case the least cost
she can suffer at stage t ≥ T̄ is (t−T̄ )NEmax(G)

t . By Claim
1, it is enough to show that there exists T̃ ≥ T̄ such that for
every t ≥ T̃

(t− T̄ )NEmax(G)
t

≥ Ŝ(G)− ε

2
. (1)

By solving (1) we obtain the result for T̃ = 2T̄ Ŝ(G)
ε .

Suppose the adversary deviated after stage T̄ . In this
case, by Claim 1, the least cost she can suffer at every

stage t is t(Ŝ(G)− ε
4 )

t+1 . Hence, it is enough to show, again
by Claim 1, that there exists T ′ such that for every t ≥ T ′,
t(Ŝ(G)− ε

4 )

t+1 ≥ Ŝ(G) − ε
2 . Setting T ′ = 2(Ŝ(G)− ε

2 )

ε obtains
the result. Setting T = max{T̃ , T ′} completes the proof
for this case. Note that both T̃ and T ′ are polynomial in
Cmax, 1

ε , n,K.
Before the next case we give the following claim.



Claim 2: During the punishing stage, in every G ∈ M,
the adversary’s cost can be lower than NEmax(G) for at
most one iteration. The proof of Claim 2 is given in the full
version.

(ii) The players identify the adversary during the ”Coop-
erative Exploring” stage: Thus, they all move to the ”Explor-
ing with an adversary stage”. In this stage, the probability
that some player i fails to learn ck(l), for some 2 ≤ l ≤ n−1
is ( 1

2 )T1 . In the ”Learn Alone” stage the probability that a
player i fails to learn ck1(1) or ck2(1) when randomizing
between k1 and k2 is also ( 1

2 )T1 . Since there are at most
(n − 2)(n − 1)K entries to learn in the ”Explore with an
adversary stage” and at most (K − 1)(n − 1) entries to
learn in the ”Learn Alone” stage, the probability that the
players do not reach the ”Punishing” stage is bounded by
[(n− 1)(n− 2)K + (K − 1)(n− 1)]( 1

2 )T1 ≤ 2n2K( 1
2 )T1 .

Therefore, the probability that the players reach the ”Pun-
ishing” stage is at least p = 1− 2n2K( 1

2 )T1 .
Let T2 be the maximal number of iterations before the

players reach the ”Punishing” stage, given that they do not
reach the ”Failure” stage. Hence, T2 = n2K +[(n−1)(n−
2)K+(K−1)(n−1)]T1. Notice that for every T1 ≥ 1, T2 <
2n3KT1. Let T ′

2 = AT1 where A = 2n3K. Therefore, by
Claim 2, for any t ≥ T ′

2 and every G ∈M
Cn(G, (f−n, gn), t) ≥ p

(t−T ′
2)NEmax(G)

t (the probabil-
ity that the players reach the ”Punishing” stage is at least p,
and in at least t − T ′

2 the adversary’s cost will be at least
NEmax(G)).

Since Ŝ(G) ≤ NEmax(G), then by Claim 1, it is enough
to show that there exists T ′ ≥ T ′

2, such that for every t ≥ T ′,
and for every G ∈M

p
(t− T ′

2)NEmax(G)
t

≥ NEmax(G)− ε

2
. (2)

Inequality (2) is equivalent to:

p ≥
t(NEmax(G)− ε

2 )
(t− T ′

2)NEmax(G)
. (3)

Let f(x) = t(x− ε
2 )

(t−T ′
2)x

. Note that f(x) is increasing in x.
Therefore, it is enough to show that there exists T ′ > T ′

2,
such that for every t ≥ T ′, p ≥ t(Cmax− ε

2 )

(t−T ′
2)Cmax

. Observe that
t(Cmax− ε

2 )

(t−T ′
2)Cmax

is a decreasing function of t. Therefore, it is
enough to show that there there exists T ′ > T ′

2, such that for
every t ≥ T ′, p ≥ T ′(Cmax− ε

2 )

(T ′−T ′
2)Cmax

.
The last inequality is equivalent to pT ′

2Cmax ≤
T ′[pCmax+ ε

2−Cmax]. Observe that there exist T1 (polyno-
mial in 1

ε ,K, n, Cmax) such that pCmax + ε
2 − Cmax > 0.

Hence, setting T ′ = pT ′
2Cmax

pCmax+ ε
2−Cmax

for such a T1, com-
pletes the proof. �
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