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Abstract

Many school districts apply the student-proposing deferred acceptance algorithm after ties among stu-
dents are resolved exogenously. This paper compares two common tie-breaking rules: one in which all 
schools use a common lottery, and one in which each school uses a separate independent lottery. We iden-
tify the balance between supply and demand as the determining factor in this comparison.

We analyze a two-sided assignment model with random preferences in over-demanded and under-
demanded markets. In a market with a surplus of seats, a common lottery is less equitable, and there are 
efficiency tradeoffs between the two tie-breaking rules. However, a common lottery is always preferable 
when there is a shortage of seats in the sense of stochastic dominance of the rank distribution. The theory 
suggests that popular schools should use a common lottery to resolve ties. We run numerical experiments 
with New York City school choice data after partitioning the market into popular and non-popular schools. 
The experiments support our findings.
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1. Introduction

Centralized assignment mechanisms that offer students a seat in a school have been adopted in 
many school districts around the world, including New York City, Boston, Denver, New Orleans, 
Amsterdam, and Santiago. Many of these districts use versions of the deferred acceptance (DA) 
algorithm (Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003) to assign students to 
schools after eliciting families’ preferences over schools. Schools, however, have much less de-
tailed priorities for students, and many students fall into the same bin. So over-demanded schools 
must resolve ties when they have more applicants of a given priority than they can accommo-
date.

The question of how to break ties initially came up in school choice designs in New York City 
in 2003 (Abdulkadiroğlu et al., 2009) and later in other districts including Amsterdam in 2015 
(De Haan et al., 2015).1 Two natural tie-breaking rules were considered: a single tie-breaking 
rule (STB), under which each student receives a single lottery number to be used for tie-breaking 
by all schools, and a multiple tie-breaking rule (MTB), under which every school independently 
assigns to each applicant a random number that is used to break ties.2

Should a single lottery be conducted, or multiple independent lotteries? The literature does 
not provide a crisp answer to this question. A separate lottery for each school seems fairer, as 
students with bad draws at some schools may still have good draws at other schools, but at the 
same time may lead to unnecessary inefficiency (Abdulkadiroğlu and Sönmez, 2003).

Abdulkadiroğlu et al. (2009) and De Haan et al. (2015) find similar patterns in the data, which 
verify an intuitive trade-off. STB assigns more students to their top choices than MTB does, but 
MTB assigns fewer students to their lower-rank choices and leaves fewer students unassigned.3

These numerical findings have led to different choices in practice: NYC adopted STB,4 whereas 
Amsterdam initially adopted MTB, citing “fairness” as a major reason (Kennislink, 2015).5,6

The main message of this paper is that the trade-off between the two tie-breaking rules does 
not spread through the entire market. Loosely speaking, we find that the trade-offs between the 
tie-breaking rules disappear when restricting attention to the assignments to “popular” schools; 
within the set of popular schools a single lottery is preferable to independent lotteries. Our find-
ings remove much of the earlier ambiguity and suggest that at least popular schools should use 
the same tie-breaker.

To understand better how tie-breaking rules affect students’ assignments, we consider a styl-
ized model that partitions schools into two tiers, popular and non-popular, based on student 
demand. All students prefer any popular school to any non-popular school. Within each tier, stu-
dents rank schools uniformly at random, independently. Importantly, there are not enough seats 

1 The manner in which ties are resolved in matching markets impacts the assignment of students to their (top) choices 
(Abdulkadiroğlu et al., 2009).

2 It is worth noting that under both STB and MTB, the student-proposing DA mechanism remains strategyproof, since 
ties are resolved independently of students’ preferences.

3 The difference in the assignments to the top choice is approximately 4% in favor of STB.
4 In fact Abdulkadiroğlu et al. (2009) document that prior to the numerical experiments, NYC policymakers favored 

MTB due to its fairness.
5 After the first year of using MTB (2014), however, Amsterdam switched to STB, following a lawsuit by two families 

who were interested in switching their assigned schools.
6 Chile initiated a school choice system in 2017 and adopted the MTB rule.
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in popular schools for all students, but there are enough seats overall.7 This simple model will 
also help to explain the empirical observations when we revisit the NYC data.

We compare the impact of STB and MTB on students’ assignments under the student-
proposing DA using measures of efficiency and equity.8 The first measure is the rank distribution
of an assignment, which counts for each r the number of students who are assigned to their r-th 
choice. We ask whether, and when, one rank distribution rank-wise dominates the other, which 
means that it assigns more students to their first choice, more students to their first or second 
choice, and so on. The second measure is the variance of rank distribution. Intuitively, the larger 
the variance, the larger the dispersion of students’ ranks, which we interpret as a larger level of 
inequity. (We note that, in our theoretical model, every school is indifferent over all students.)

We find that the balance between demand and supply is the determining factor for both mea-
sures:

• In popular schools: the rank distribution of assigned students under STB (almost) rank-wise 
dominates the rank distribution under MTB. Moreover, the variance of rank distribution is 
lower under STB than under MTB.

• In non-popular schools: Neither rank distribution (of the assignments under STB and MTB) 
rank-wise dominates the other. Moreover, the variance of the rank distribution is higher under 
STB than under MTB.

These results imply that within the set of popular schools there is essentially no trade-off 
between our notions of efficiency and equity, since a single lottery generates better assignments 
than separate lotteries with respect to both measures. This contrasts with the intuition that MTB is 
fairer. For non-popular schools the decision remains ambiguous and consistent with the intuition; 
separate lotteries are more equitable than a single lottery, and more students are assigned to their 
higher choices under a single lottery whereas fewer students are assigned to their lower choices 
under MTB.9 These findings also suggest the design of a hybrid tie-breaking rule that uses a 
single lottery in popular schools and separate lotteries in non-popular schools. In the stylized 
model with popular and non-popular schools, the rank distribution under the hybrid rule rank-
wise dominates the rank distribution under the multiple tie-breaking rule.

Some intuition for why the trade-off vanishes in popular schools is the following. Throughout 
the DA algorithm10 unassigned students apply to their favorite school they have not yet applied 
to, while schools tentatively admit students with the highest priority and reject the other. Consider 
a rejected student who applies to her next choice. Under MTB she is assigned a new lottery 
number, but under STB her lottery number remains the same. Therefore, she is more likely to get 
tentatively accepted under MTB than under STB. This implies that she is more likely to cause 

7 As explained in Section 2.1, since all students prefer the popular schools, one can equivalently compare the tie-
breaking rules in a (simpler) single tiered random market with either a shortage or an excess of seats.

8 Note that when schools have a single priority class, no assignment can result in a Pareto improvement for students 
over STB, because DA with STB is equivalent to a serial dictatorship mechanism, in which students select in sequential 
order their seats according to the tie-breaking order (Appendix 2.1). This is not necessarily the case with multiple priority 
classes. It is noteworthy, however, that any gains derived from finding an “optimal” stable assignment for students would 
require the use of a non-strategyproof mechanism (Abdulkadiroğlu et al., 2009).

9 See also Ashlagi et al. (2019) and Arnosti (2015).
10 The algorithm is described in detail in Section 2.
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the rejection of another student under MTB. In popular schools, these chains of rejections are 
much longer under MTB, resulting in the rank-wise dominance relation.

We examine the predictions of our stylized model in the school choice data from New York 
City public high school assignments during the 2007–2008 school year. In the main assignment 
round, students submitted rank-ordered lists of at most 12 programs, and the deferred acceptance 
algorithm was used to assign students. First, consistent with the findings of Abdulkadiroğlu et al. 
(2009), neither the rank distribution under STB nor the rank distribution under MTB rank-wise 
dominates the other. Next we separate the market into popular and non-popular schools using 
a simple heuristic. We define the popularity of a school as the ratio between the number of 
students that rank the school as their first choice and the capacity of the school.11 The set of 
popular schools is then defined as the set of schools whose popularity is above a certain threshold, 
which we call the popularity threshold. When restricting attention to students who are assigned 
to popular schools, we find that STB rank-wise dominates MTB. Unlike in the stylized model, 
there is no clear separation between popular and non-popular schools in the NYC data. However, 
rank-wise dominance holds when the popularity threshold is at least 1.12 For the variance of 
rank distribution as well, we find qualitatively similar results in the data as in the stylized model. 
Finally, motivated by a lawsuit in Amsterdam filed by two families who requested to exchange 
seats, we test the vulnerability of MTB and STB to the existence of such pairs.13 The experiments 
reveal that there are no such pairs under STB, while under MTB there are “many” such pairs in 
popular schools and “few” in non-popular schools. (See Sections 5 and G.2 for details.)

Many of our assumptions in the stylized model do not hold in the data (e.g., the market is 
not perfectly tiered, schools have different capacities, schools assign students to various priority 
classes prior to breaking ties), hinting at the robustness of the predictions of our model. That 
said, a limitation of our theoretical results is that they rely on the assumption that schools have 
unit capacities. (Extending the results to the case of larger capacities seems to be nontrivial.)

The effect of imbalance in two-sided marriage markets has been studied by Ashlagi et al. 
(2017), who compare the average rank of agents when preferences on both sides of the market 
are random. Here the concern is with students’ rank distribution (rather than just average rank), 
which is relevant for practical engineering. From a technical perspective, the “approximate core-
uniqueness” result of Ashlagi et al. (2017) serves us as a first step in some of the proofs, which 
allows us to study the school-proposing DA instead of the student-proposing DA. The rest of the 
proofs are independent of their work. The proofs involve analyzing the stochastic processes that 
correspond to the school- and student-proposing DA.

1.1. Related work

Closely related are papers that investigate the trade-offs between STB and MTB that were 
observed in Abdulkadiroğlu et al. (2009) and De Haan et al. (2015). Ashlagi et al. (2019) ex-

11 When students’ preferences are drawn from a multinomial logit model, this notion of popularity is an unbiased 
estimator for the weight of a school in that model normalized by its capacity (Appendix F).
12 This threshold can be understood through our motivating stylized example with two tiers of schools (discussed ear-
lier); schools in the popular tier have, in expectation, popularity larger than 1, whereas schools in the non-popular tier 
have, in expectation, popularity smaller than 1. In our experiments with NYC data, a popularity threshold of 1 results in 
rank-wise dominance while for some thresholds below 1 rank-wise dominance fails to hold (e.g., when the threshold is 
zero (Abdulkadiroğlu et al., 2009)).
13 We intentionally focus on such short Pareto-improving cycles, which in comparison to longer cycles, are arguably 
easier for families to identify.
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plain why STB assigns many more students to top choices than MTB does in a model with 
random preferences (even in a slightly under-demanded market). Independent of this work, 
Arnosti (2015) explains the single crossing point pattern using a cardinal utility model. His 
model, which assumes students’ preference lists are short, is essentially equivalent to analyz-
ing a market with a large surplus of seats. This paper takes a novel approach, which distinguishes 
between over-demanded and under-demanded schools, that explains the source of these trade-
offs both theoretically and empirically.

This paper complements results by Ashlagi et al. (2017), who analyze the average student rank 
in unbalanced two-sided random markets. Their results, together with those of Knuth (1996), 
imply that the average rank of students is significantly better under STB than under MTB in 
an over-demanded market (one that has more students than seats), but these average ranks are 
essentially the same in a market with surplus seats. These papers limit attention to students’ 
average rank and do not study the rank distributions.

Also related are papers that study economic properties in large random matching markets 
(Immorlica and Mahdian, 2005; Kojima and Pathak, 2009). Closest to our paper are studies on 
agents’ ranks under DA (Pittel, 1989; Ashlagi et al., 2017) and on inefficiency under DA (Lee and 
Yariv, 2014; Che and Tercieux, 2019). Che and Tercieux (2019) find that in an over-demanded 
market, with high probability the assignment under MTB is not Pareto efficient. While the STB 
assignment is Pareto efficient in this model, it does not imply that it rank-wise dominates the 
MTB assignment.

The trade-off between incentives and efficiency when preferences or priorities contain indif-
ferences has led to papers suggesting several novel tie-breaking approaches, among which are 
the stable improvement cycles of Erdil and Ergin (2008), the efficiency-adjusted DA of Kesten 
(2011), the choice-augmented DA of Abdulkadiroğlu et al. (2015), and the circuit tiebreaker by 
Che and Tercieux (2019).

Several papers study tie-breakings under the top trading cycles algorithm, which finds Pareto-
efficient outcomes. Pathak and Sethuraman (2011) and Carroll (2014) extend results by Ab-
dulkadiroğlu and Sönmez (1998) to show that under the top trading cycles algorithm (Shapley 
and Scarf (1974)), there is no difference between a single lottery (equivalently, random serial 
dictatorship) and multiple independent lotteries (top trading cycles with random endowments). 
Che and Tercieux (2018) show that all Pareto-efficient mechanisms (and not only top trading 
cycles) are asymptotically payoff-equivalent under certain assumptions.

2. Setup

A school choice market contains n students and m schools. We denote the set of students by 
S and the set of schools by C. Each school c ∈ C has a capacity of qc seats.

Each student s has a preference order �s , which is a strict linear order14 over the set C. 
Student s prefers school c to c′ if c �s c′. Student s weakly prefers school c to c′ if c �s c′ or 
c = c′. We use the terms preference order and preference list interchangeably.

Each school c has a priority order �c , which is a weak order (complete and transitive) over 
the set of students S. We denote by �c and ∼c the asymmetric and symmetric parts of �c, 
respectively. If s ∼c s′, s and s′ have the same priority at school c, and we say that they belong to 

14 Recall that a linear order is a transitive and complete preference relation (also called a weak order). A linear order R
is strict if there exist no two distinct elements x, y in its domain such that both xRy and yRx hold.
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the same priority class at c. A school priority order �c partitions students into priority classes. 
A priority order of c is strict if it is a strict linear order.

Definition 2.1. A school choice market is simple if every school has a capacity of 1 seat and a 
single priority class containing all students.

An assignment is a function μ : S ∪ C → C ∪ 2S ∪ {∅} such that for every student s ∈ S, 
μ(s) ∈ C ∪ {∅}, for every school c ∈ C, μ(c) ∈ 2S and |μ(c)| ≤ qc, and furthermore, μ(s) = c

if and only if s ∈ μ(c). In other words, μ assigns each student to at most one school and the 
number of students assigned to each school is less than or equal to the capacity of that school. If 
μ(s) = ∅, then we say that s is unassigned.

An assignment μ is stable if for every student-school pair (s, c) such that c �s μ(s), |μ(c)| =
qc and s′ �c s for all students s′ with μ(s′) = c.

A mechanism is a function that takes the preference orders of students and the priority orders 
of schools as its input and outputs an assignment. We focus on a class of mechanisms that are 
based on the student-proposing deferred acceptance (DA) algorithm (Gale and Shapley, 1962). 
The algorithm requires to receive as input a strict priority order from every school and a pref-
erence list from every student, and begins with all students being unassigned. It then assigns 
students in a sequence of rounds as follows. In the beginning of each round, every unassigned 
student applies to her most preferred school that she has not already applied to and is tentatively
assigned to that school. Then, every school that has more tentatively assigned students than seats 
considers all of these students, and rejects students with the lowest priority, one at the time, until 
the remaining number of tentatively assigned students equals its capacity. The algorithm pro-
ceeds to the next round and terminates when every student is assigned to a school or when every 
unassigned student has applied to all schools.

The DA algorithm receives strict priority orders over students from the schools, whereas we 
are interested in school choice markets in which schools have weak priority orders. In such 
markets, DA can be adopted after breaking ties between students with equal priority at each 
school.

A tie-breaker at school c is a strict priority order over students, denoted by �ρ , which is used 
to transform the priority order of school c, �c, to a strict priority order, �ρ

c , as follows. For any 
two students s, s′, s �ρ

c s′ if

(s �c s′) or (s ∼c s′ and s �ρ s′).
Observe that the tie-breaker of a school with a single priority class is identical to the strict priority 
order of that school after ties are resolved. So the assignment in such markets is determined by 
the students’ realized preferences and the schools’ tie-breakers.

We next define two rules for generating tie-breakers that are commonly used in practice. In the 
multiple tie-breaking (MTB) rule, each school c draws a tie-breaker independently and uniformly 
at random from the set of all strict linear orders over students. In the single tie-breaking (STB) 
rule, one strict linear order is drawn uniformly at random from the set of all strict linear orders 
over students, and all schools use that order as their tie-breaker.

Define DA-MTB to be the following assignment algorithm: it receives students’ preference 
lists and schools’ weak priority orders as its input, uses the multiple tie-breaking rule to transform 
the schools’ weak priority orders to strict priority orders, and then outputs the assignment gen-
erated by the student-proposing DA algorithm. DA-STB is defined similarly, with the difference 
that it transforms schools’ priority orders to strict orders using the single tie-breaking rule.
6
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The theoretical results focus on comparing the assignments generated by DA-MTB and DA-
STB in school choice markets with randomly generated preferences, which we will describe 
next.

2.1. Random simple markets

Our theory will focus on a class of simple school choice markets with randomly generated 
preferences; the preference order of every student is drawn independently and uniformly at ran-
dom from the set of all strict preference orders over the schools.

To motivate the study of such school choice markets, it is useful to consider the following two-
tiered market with popular and non-popular schools. Each student prefers any popular school to 
any non-popular school and preferences within each tier are drawn independently and uniformly 
at random. Suppose that the number of students is larger than the number of seats available in 
popular schools, but smaller than the number of seats available in all schools. Moreover, there 
is a single priority class in each school, and ties are resolved using MTB or STB. Observe that 
the outcome of DA in the two-tiered market can be generated by first running DA while ignoring 
non-popular schools, and then running DA with the remaining unassigned students and the non-
popular schools. Thus, to compare DA-MTB and DA-STB in the two-tiered market, one can 
study a single-tiered market with either a shortage or a surplus of seats.

Motivated by the above observation, we analyze simple school choice markets in which the 
students’ preference orders are generated independently and uniformly at random. These as-
sumptions will be removed in Section 4 where we conduct numerical experiments using NYC 
data.

2.2. Notions of comparison

First, we define two operators for comparing vectors of the same dimensionality and the same 
L1 norm.15 Let Q, R ∈ Rd+ be d-dimensional vectors both with an L1 norm of l. We write Q � R

if for every integer i ∈ [1, d], ∑i
j=1 R(j) ≥ ∑i

j=1 Q(j), where Q(j) and R(j) denote the j -
th entry of Q and R, respectively. Also, for any ε > 0 we write Q �ε R if, for every integer 
i ∈ [1, d], either 

∑i
j=1 R(j) ≥ ∑i

j=1 Q(j) or 
∑d

j=i R(j) ≤ (log l)1+ε . We write Q �ε R if 
Q �ε R does not hold.

Consider a school choice market with n students and m schools. The rank of a school c for 
student s is the number of schools that s weakly prefers to c. Thus the most preferred school for 
s has rank 1. Consider an assignment μ. We say that the rank of a student s in μ is r if, in μ, s
is assigned to a school that has rank r for her. The rank distribution of assignment μ is a vector 
Rμ ∈ Zm+ where Rμ(i) denotes the number of students who have rank i in μ.

Definition 2.2. Given two assignments μ, η, we say that Rμ rank-wise dominates Rη if Rη � Rμ.

We also consider a slightly weaker notion than rank-wise dominance.

Definition 2.3. We say that Rμ ε-rank-wise-dominates Rη when Rη �ε Rμ.

15 Recall that the L1 norm of a vector is the sum of the absolute values of its entries.
7
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An intuitive way to think about the relation Rη �ε Rμ is the following. First, exclude from 
η the (log min{n, m})1+ε students with the worst (i.e., largest) ranks; let η′ denote the resulting 
assignment. Define μ′ from μ in the same way. Then, Rη �ε Rμ holds if and only if Rη′ � Rμ′
holds.

For every student s, μ#(s) denotes the rank of school μ(s) for student s. When s is unassigned, 
we define μ#(s) = ∞. Let Ar (μ) denote the average rank over students that are assigned under 
μ.

Definition 2.4. The social inequity in assignment μ is

Si(μ) = 1

|{s ∈ S : μ#(s) �= ∞}|
∑

s:μ(s)�=∅

(μ#(s) − Ar (μ))2.

This notion measures the dispersion of students’ ranks from the average rank. When all 
schools have a single priority class and the preference orders of all students are independently 
and identically distributed (iid), one can interpret a lower expected level of “dispersion” as a 
more equitable treatment of students. We note that since all students have complete preference 
lists, the number of unassigned students is the same in all stable assignments. Hence, we omit this 
number from the above definition. When the students’ preference orders are iid, the expected so-
cial inequity is equal to the variance of a student’s rank conditional on the student being assigned 
(Lemma D.4).

3. Main results

To present our main results, the following notations will be useful. A preference profile is 
a function ϕ defined on S such that for every student s, ϕ(s) is the preference order of s. A 
tie-breaking profile is a function ψ defined on C such that for every school c, ψ(c) gives the 
tie-breaker at c. Let �n,m and �n,m respectively denote the set of preference profiles and the 
set of tie-breaking profiles of all simple school choice markets with n students and m schools. 
Define �n,m

MTB = �n,m and

�
n,m
STB = {ψ : ψ ∈ �n,m and ψ(c) = ψ(c′) for all c, c′ ∈ C}.

A market profile is a tuple π = (ϕ, ψ), where ϕ is a preference profile and ψ is a tie-breaking 
profile. For a simple school choice market with market profile π , the (deterministic) assignment 
generated by the student-proposing DA algorithm in that market is denoted by μπ . To simplify 
notation, we denote the rank distribution Rμπ by Rπ .

Theorem 3.1. Consider a sequence of simple school choice markets indexed by i = 1, 2, . . ., with 
ni students and mi schools in market i. In every market i, the students’ preference profile ϕi is 
drawn independently and uniformly at random from �ni,mi . In addition, ψi,MTB and ψi,STB are 
tie-breaking profiles that are drawn independently and uniformly at random from �ni,mi

MTB and 
�

ni,mi

STB , respectively. Define the market profiles πi,MTB = (ϕi, ψi,MTB) and πi,STB = (ϕi, ψi,STB).

(i) Suppose mi = i and ni = i +λ(i) for a function λ :N →N . Then, for every constant ε > 0,

lim
i→∞P

[
Rπi,MTB �ε Rπi,STB

]= 1.

Furthermore, if λ(i) ≤ iγ for a positive constant γ < 3 and every i, then
2

8
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lim
i→∞

Eπi,MTB

[
Si(μπi,MTB)

]
Eπi,STB

[
Si(μπi,STB)

] = ∞.

(ii) Suppose ni = i and mi = i +λ(i) for a function λ :N →N . Then, for every constant ε > 0,

lim
i→∞P

[
Rπi,MTB �ε Rπi,STB

]= 0, lim
i→∞P

[
Rπi,STB �ε Rπi,MTB

]= 0

and

lim
i→∞

Eπi,MTB

[
Si(μπi,MTB)

]
Eπi,STB

[
Si(μπi,STB)

] = 0

hold when there exists a positive constant γ < 1 such that λ(i) ≤ iγ for all i.

The first part of Theorem 3.1 shows that in over-demanded markets, STB performs better 
than MTB in the sense of ε-rank-wise dominance and expected social inequity. Our proof does 
not directly use the condition that λ(i) ≤ iγ for a positive constant γ < 3

2 . This condition is 
necessary for the concentration bounds on the number of proposal in DA, provided by Pittel 
(2019). He conjectures that this condition is not necessary for the concentration bounds to hold, 
and is merely a limitation of his proof approach.

The second part shows that in under-demanded markets, there can be a trade-off in terms 
of rank distributions, as the ε-rank-wise dominance relation does not hold in either direction. 
Moreover, the expected social inequity is lower under MTB, in contrast to the case of over-
demanded markets. As opposed to the first part of the theorem, our proofs here directly rely on 
the condition that λ(i) ≤ iγ for a positive constant γ < 1. We provide extensions (Theorem D.2) 
and simulations (Section 4) which show that qualitatively similar results hold when this condition 
is relaxed. Section 4 provides several other robustness checks for the theorem using simulations 
based on the theoretical model as well as Monte Carlo experiments using NYC school choice 
data.

Intuition and the main ideas behind the proof are discussed in Section 3.2. Before providing 
intuition for the main results, we discuss an alternative interpretation of the results from the 
perspective of individual students.

3.1. Alternative interpretations of the results

A variation of Theorem 3.1, namely Theorem E.1 in the appendix, allows us to interpret the 
findings from the perspective of individual students. For every τ ∈ {MTB, STB}, define πτ =
(ϕ, ψτ ) to be a market profile such that ϕ and ψτ are drawn independently and uniformly at 
random from �n,m and �n,m

τ , respectively. Part (i) of Theorem E.1 shows that, for every constant 
ε > 0, there exists mε > 0 such that for all m > mε and n > m

EπMTB

[
RπMTB

]�ε EπSTB

[
RπSTB

]
. (1)

To see how (1) relates to an individual student, let us first compute the probability that a student 
s is assigned to the school that she ranks i-th, under either of the tie-breaking rules. Define 
the vector Rτ = Eπτ

[
Rπτ

]
. Since the students’ preference orders are iid, then for every i ≤ m, 

Rτ (i)
min{n,m} is the probability that student s has rank i in μπτ , i.e., the probability that s has rank i in 
the generated assignment conditional on being assigned. (Note that this probability remains the 
same even if we condition on the preference order of s, since the students’ preference orders are 
9
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iid.) Denote this probability by pτ (i). Then, (1) implies that student s “prefers” STB to MTB in 
an over-demanded market, in the sense that for every rank r

r∑
i=1

pSTB(i) ≥
r∑

i=1

pMTB(i)

holds when m > mε , unless possibly when 
∑r

i=1 pSTB(i) > 1 − (logm)1+ε

m
.16

The notion of social inequity as well can be interpreted alternatively as a notion that concerns 
an individual student. Consider a student s and fix her preference order. Let the random variable 
rτ denote the rank of s in DA when the tie-breakers are drawn according to rule τ , and the other 
students’ preference orders are drawn independently and uniformly at random from the set of 
all strict linear orders over the schools. Then, the expected social inequity in the assignment 
generated by DA is equal to the conditional variance of rτ given that s is assigned. This is a 
direct consequence of the fact that the students’ preference orders are iid and is formally proved 
in Lemma D.4.

3.2. Intuition and proof ideas

3.2.1. Rank-wise dominance
To gain some intuition it is useful to first consider a simple example. Consider an over-

demanded market with students s1, s2, s3 and schools c1, c2 with unit capacities. Students s1
and s2 prefer c1 to c2, whereas s3 prefers c2 to c1. All students belong to the same priority class 
in every school.

Under both multiple and single tie-breaking, in the first round of DA, s1 and s2 propose to c1, 
whereas s3 proposes to c2. Therefore, c1 has to reject one of s1, s2. Suppose s2 is rejected. Then, 
in the second round of DA, s2 would propose to c2 (Fig. 1a). The key observation is that it is 
more likely that s2 gets rejected in the second round under STB than under MTB. The reason is 
that, since s2 got rejected in the first round, under STB she is more likely to have a worse “lottery 
number” (i.e., her position in the common tie-breaking order) than s3. Under MTB, however, s2
is given a new lottery number when she is considered at c2. Therefore, it is more likely that s2 is 
accepted at c2 in the second round under MTB than under STB. For the sake of intuition, suppose 
that indeed s2 is accepted at c2 in the second round under MTB but not under STB (Figs. 1b and 
1c). So all assigned students under STB have a rank of 1, whereas this is not the case under MTB. 
This implies that the rank distribution under STB rank-wise dominates the one under MTB.

More generally, consider our model with a shortage of one seat. Under STB the student with 
the lowest lottery number will be unassigned by the end of DA. Under MTB, however, there is no 
student with the lowest lottery number. In the course of DA, students compete by displacing each 
other, so as not to end up as the sole unassigned student. This excessive competition worsens 
students’ ranks overall, leading to the rank-wise dominance relation.

When there is an excess of seats, all students are eventually assigned. Hence, under MTB, 
the chain of students displacing each other in the course of DA ends much “faster” than when 
there is a shortage of seats, and the excessive competition between students gets alleviated. Thus, 
the rank-wise dominance relation does not occur. To illustrate this, consider the example above 

16 We note that the inequalities 
∑r

i=1 pSTB(i) > 1 − (logm)1+ε

m and (logm)1+ε >
∑m

i=r+1 RSTB(i) are equivalent 
since m(1 −∑r

i=1 pSTB(i)) =∑m RSTB(i).
i=r+1

10
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Fig. 1. The solid and dotted arrows respectively correspond to students applying in rounds 1 and 2.

without student s3. Note that, then, s2 is accepted in the second round without displacing any 
other student, and therefore all students would be assigned to their first choice under both tie-
breaking rules. For further intuition, recall the result of Ashlagi et al. (2017) which implies that, 
under MTB, the total number of proposals made in the student-proposing DA is on average much 
smaller in an under-demanded market than in an over-demanded market. If there is an excess of 
one seat, the average number of proposals is proportional to n logn, but with a shortage of one 
seat, this number is proportional to n2

logn
.

Finally, we note that the formal proof approach is different from this intuitive argument, as 
we briefly discuss next.

The proof approach. In over-demanded markets, the main idea is to show that there exists some 
rank r > 1 for which the following conditions hold with high probability17: (i) all but (logm)1+ε

students have rank better than r under STB, (ii) close to half of the students have rank 1 under 
STB, and (iii) at most about 0.4m students have rank better than r under MTB.

To prove that conditions (i) and (ii) hold, we use the fact that the stochastic process gov-
erning DA-STB is equivalent to that of the Random Serial Dictatorship mechanism, under the 
assumption that there is a single priority class in each school (Appendix A.1).

The stochastic process governing DA-MTB is more complex to analyze. The idea for proving 
condition (iii) is to analyze the school-proposing DA rather than DA-MTB. The school-proposing 
DA is similar to DA-MTB, with the difference that students and schools switch roles: the schools 
propose and the students reject or tentatively accept proposals. In over-demanded markets, 
school-proposing DA is more tractable than DA-MTB, since it involves a significantly smaller 
total number of proposals.

The reason that, under MTB, we can analyze the school-proposing DA instead of DA-MTB 
follows from a result by Ashlagi et al. (2017). They consider imbalanced marriage markets, in 
which preference lists are generated independently and uniformly at random. They find that all 
but a vanishingly small fraction of men and women (students and schools, in our setup) have 
the same partner in all stable assignments. Employing this result, we prove condition (iii) for 
school-proposing DA: we show that each student receives at most about logm proposals with 
high probability, from which we infer that at most about 0.4m students have rank better than r .

17 I.e., the probability that all of these conditions hold approaches 1 as m approaches infinity. The asymptotic notions 
are formally defined and used in the appendix.
11
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3.2.2. Social inequity
To establish the results about social inequity we also analyze school-proposing DA rather than 

DA-MTB. When there are fewer students than schools, we prove that each student receives at 
least n

2 logn
proposals, with high probability. The intuition is that the shortage of students creates 

a harsh competition between the schools, as schools compete over not remaining unassigned. 
This results in schools making many proposals in aggregate (Ashlagi et al., 2017; Pittel, 2019). 
We prove that, because of this effect, each student receives at least n

2 logn
proposals with high 

probability,18 which implies that the variance of her rank is small (i.e., of the order of log2 n or 
lower). The proof then concludes by noting the equivalence between the notions of variance and 
expected social inequity (as shown by Lemma D.4).

When there are excess students, the competition among schools is alleviated. Schools make 
significantly fewer proposals (in aggregate) compared to the previous case. We prove that, when 
there is an excess of students, each student receives at most about logm proposals with high 
probability, which sharply increases the variance of her rank. (That is, the variance would be of 
the order of n2

log2 n
or higher.)

4. Computational experiments

This section presents findings from computational experiments that complement our theo-
retical results. A first set of simulations is based on the theoretical model and a second set of 
simulations uses NYC school choice data.

4.1. Simulations of the model

The first simulations illustrate the effect of market imbalance on the students’ rank distribu-
tions under STB and MTB. For each market size, we draw multiple market profiles as follows. 
First, a preference list for each student is drawn independently and uniformly at random. Then, 
the schools’ tie-breakers are generated as follows: Under MTB, for each school a strict lin-
ear order over students is drawn independently and uniformly at random. Under STB, a single 
strict linear order over students is drawn uniformly at random, and is used by all schools as a 
tie-breaker. (Because all students belong to the same priority class in every school, a school’s 
tie-breaker coincides with its strict priority order after ties are resolved.) This completes the 
construction of a sample.

We construct 1000 samples independently and, for each sample, compute the student-optimal 
stable assignment. We then compute the average cumulative rank distribution which, for each 
rank r , gives the average number of students assigned to a rank at least as good as r in the 
student-optimal stable assignment. The average is taken over all samples. For brevity, we refer 
to the average cumulative rank distributions as cumulative rank distributions.

Fig. 2 presents the cumulative rank distribution under each tie-breaking rule in four markets, 
each with 1000 students and an excess or shortage of 1 or 100 seats, i.e., four markets with 
1000 ± 1 and 1000 ± 100 seats. Each school has a capacity of one seat. Observe that when 
there is a shortage of seats (left panel), the cumulative rank distribution under STB rank-wise 

18 We remark that, although this observation is reminiscent of the result in Ashlagi et al. (2017), the proof is through a 
different approach, since we need to provide a guarantee that holds for every student.
12
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Fig. 2. The cumulative rank distributions under MTB and STB. The horizontal axis represents the rank, and the vertical 
axis the number of students. Each graph is generated by taking the average over rank distributions in 1000 random school 
choice markets. There are 1000 students in each market. Panels 2a and 2c plot the distributions in markets with a shortage 
of 1 seat and 100 seats, respectively. Panels 2b and 2d plot the distributions in markets with a surplus of 1 seat and 100 
seats, respectively. The dashed and solid lines indicates the rank distributions under MTB and STB, respectively.

dominates the one under MTB. When there is a surplus of seats (right panel), there is no rank-
wise dominance.

The next set of simulations illustrate the effect of market imbalance on the social inequity 
(which equals the variance of a student’s rank conditional on the student being assigned). As in 
the previous simulations for each market size, we draw 1000 samples independently and compute 
for each sample the student-optimal stable assignment. We then compute the average social 
inequity, by taking the average of the social inequities of the student-optimal assignments, with 
the average taken over all samples.

Table 1 reports the average rank of the assigned students and the average social inequity for 
markets with varying imbalances and a single seat in each school. Observe that the average 
social inequity is larger under MTB (than under STB) when there is a shortage of seats and that 
it increases significantly as the shortage grows from 1 seat to 10 seats. Furthermore, notice that 
the variance of the rank is smaller under MTB when there is a surplus of seats.

Next, we perform a robustness check for the findings of Theorem 3.1 about social inequity in 
under-demanded markets. Fig. 3 compares the social inequities under MTB and STB in markets 
with a linear excess of seats. We fix the ratio of the number of seats to the number of students 
and report the average social inequity under both tie-breaking rules while varying the number 
of students from 2000 to 20,000. Figs. 3a and 3b present the results for the cases in which the 
ratio of seats to students is 1.1 and 1.5, respectively. Observe that the average social inequity is 
higher under STB than under MTB (as predicted by Theorem 3.1), and that the quantities remain 
essentially unchanged as the number of students increases.
13
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Table 1
Average rank (Ar ) and social inequity under STB and MTB in the student-optimal stable assignment.

n

n − m −10 −1 1 10

100
Ar (μSTB)/Ar (μMTB) 2.52/2.54 3.78/4.1 4.14/20.3 4.23/32.3
Si(μSTB)/Si(μMTB) 9.47/3.87 49.8/12.6 76.6/340.1 77.3/632.6

1000
Ar (μSTB)/Ar (μMTB) 4.53/4.59 6/6.46 6.46/137 6.48/209
Si(μSTB)/Si(μMTB) 144.4/16.51 628.9/36.07 919/18606 949/37346

Fig. 3. Social inequities under MTB and STB in markets with a linear surplus of seats. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

4.2. NYC school choice

Every year in New York City, approximately 90,000 students are assigned to roughly 700 pub-
lic high school programs through a centralized matching mechanism. Until 2010 the matching 
process included three rounds of assignments; we focus on the main (second) round, in which 
about 80,000 students were assigned to schools using student-proposing DA.19

Each student that participated in this round submitted a rank-ordered list that included at most 
12 schools, which we call the student’s preference list. Programs at this round assign coarse 
priorities to students, and ties are broken exogenously using the STB rule. That is, every student 
was assigned a single lottery number, and whenever a school had to reject a subset of students 
from a set of students with equal priority, only then were the lottery numbers used to break the 
ties.

In each experiment we run DA-MTB and DA-STB, which take as input students’ reported 
preferences and the actual priorities that schools assign to students.20 In particular, if student s
belongs to a lower-priority class than student s′ in school c, then c prioritizes s over s′ under 
any tie-breaker. So, as done in practice, schools use lottery numbers generated by STB and MTB 
only to break the ties between students who belong to the same priority class.

19 The first round assigns students only to specialized exam schools. In the main round there were 79,524 seats and 
79,403 students.
20 Since preference lists are bounded in NYC, the mechanism is not strategyproof. For simplicity, however, we assume 
that students’ observed preferences are sincere.
14
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Fig. 4. We first index schools in increasing order of popularity; let c1, . . . , cm be this ordering, where m = 670 is the total 
number of schools (i.e., programs) in our data from NYC. Then, for every school ci , we place a dot in the above graph 
at position (αci , 

i
m × 100).

There are three main deviations from the theoretical model in these experiments: (i) schools 
have different priorities over students, (ii) students’ preferences are not generated randomly, but 
taken as given in the data, and (iii) schools have more than 1 seat.

4.2.1. A measure of school popularity
In the NYC data, schools are not naturally tiered as popular versus non-popular (as in the two-

tiered market discussed in Section 2.1). We adopt a simple notion that defines whether a school is 
popular in the data, as follows. The popularity of a school c is the ratio of the number of students 
for whom school c is their top choice to the capacity of school c. Formally, given the actual 
preference lists of students in the NYC dataset, let p1(c) denote the number of students who list c
as their top choice and let qc be the capacity at school c. The popularity of a school c is therefore 
αc = p1(c)

qc
.21 Note that every school c with αc ≥ 1 is fully assigned under student-proposing 

DA. It is also worth noting that if the students’ preferences are drawn from a multinomial-logit 
discrete choice model (a common assumption when estimating students’ preferences for schools; 
see, e.g., Pathak and Shi (2017)), this measure is an unbiased estimator for the “weight” of 
a school in that model normalized by its capacity. The formal relation with multinomial-logit 
discrete choice models is discussed in Appendix F.

A popularity threshold α determines a set P ↑
α = {c : c ∈ C, αc ≥ α}, which contains all 

schools with a popularity of at least α. Such schools are called popular with respect to popu-
larity threshold α, and simply popular when α is clearly known from the context. The schools 
in the set P ↓

α = C\P ↑
α are called non-popular schools. Fig. 4 reports the distribution of schools’ 

popularity in the NYC data.

4.2.2. Rank-wise dominance
The cumulative rank distribution in a set of schools D ⊆ C under assignment μ is a function 

RD
μ : {1, . . . , m} → [0, 1] that, for each rank r , gives the total number of students that are assigned 

by μ to a school in D that has a rank r or better on their list. In the remainder of the section we 
assume that the assignment μ is the outcome of the student-proposing DA in a market that will 
be clearly known from the context.

21 We have repeated our experiments with a different notion of popularity, the applicant-seat ratio, formally defined as 
α′

c = p(c)
qc

, where p(c) is the total number of students who have school c on their list. The NYC department of education 
suggests this notion to students as one way of figuring out how competitive a school is. The observations that we make 
in our experiments do not change qualitatively under this alternative notion of popularity.
15



Fig. 5. The cumulative rank distributions under MTB and STB for popular schools with different popularity thresholds α
(schools with popularity above α are popular). The dashed and solid lines indicate the rank distributions under STB and 
MTB, respectively. The horizontal axis represents the rank, and the vertical axis the number of students.

We calculate the cumulative rank distributions in popular and non-popular schools for two 
different popularity thresholds. After fixing α, for each r ∈ {1, . . . , 12} and each D ∈ {P ↑

α , P ↓
α }

we report the average value of RD
μ (r), with the average taken over 50 samples that are drawn 

independently for each tie-breaking rule. We emphasize that: (i) both popular and non-popular 
schools are included in each sample, but we report the average cumulative rank distribution 
for the sets of popular and non-popular schools separately; and (ii) in every sample, students’ 
preference lists and schools’ priorities are taken as given in the data, and the (randomly drawn) 
tie-breaking rule is used only to resolve ties between students with equal priorities.

Fig. 5 reports these statistics for popular schools with popularity thresholds α ∈ {1, 1.5}. Ob-
serve that, for both popularity thresholds, the rank distribution under STB rank-wise dominates 
the one under MTB.

Fig. 6 reports similar statistics for non-popular schools with popularity thresholds α ∈ {1, 1.5}. 
Observe that for each α, neither rank distribution rank-wise dominates the other. Although the 
plots for each α seem close to each other, the differences can be large, since many students are 
assigned to non-popular schools.22 For instance, at α = 1.5, STB assigns, on average, about 1800 
more students to their top choice than MTB does.

We remark that in every school c (regardless of its popularity), the number of students as-
signed to c that rank it as their first choice is larger under STB than under MTB.23 So, for any 
popularity threshold, the rank distributions in non-popular schools cross each other at a rank of 
at least 2.

4.2.3. Social inequity
Table 2 reports the average social inequity in popular schools. After fixing the popularity 

threshold, we draw 50 samples independently for each tie-breaking rule. For each sample, we 

22 For example, for α = 1.5, 15,000 and 60,000 students are assigned to popular and non-popular schools, respectively.
23 To see why this holds intuitively, observe that a student who is tentatively assigned to her first choice is less likely to 
be rejected under STB than under MTB, as we discussed in Section 3.2.1.
I. Ashlagi and A. Nikzad Journal of Economic Theory 190 (2020) 105120
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Fig. 6. The average cumulative rank distributions under MTB and STB for non-popular schools. The dashed and solid 
lines indicate the rank distributions under STB and MTB, respectively. The horizontal axis represents the rank and the 
vertical axis the number of students. At α = 1 and α = 1.5 about 57,300 and 57,700 students are assigned to non-popular 
schools, respectively.

Table 2
Social inequity and the average rank in popular schools.

α STB MTB

1
Social inequity 2.10 2.99
Average rank 1.83 2.21

1.5
Social inequity 1.47 2.87
Average rank 1.65 2.18
17
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Table 3
Social inequity and the average rank in non-popular schools.

α STB MTB

1
Social inequity 4.22 3.69
Average rank 2.52 2.50

1.5
Social inequity 3.90 3.58
Average rank 2.41 2.44

compute the outcome of the student-proposing DA, and compute the social inequity in popular 
schools in that sample as follows: We take the average, over all students assigned to popular 
schools, of the squares of the differences between the rank of a student and the average rank of 
students in popular schools. (This quantity is just the sample variance of the rank of the students 
assigned to popular schools.) We report the average of the social inequities computed in the 50 
samples. Similarly, Table 3 reports the average social inequity in non-popular schools. Consistent 
with Theorem 3.1, we observe that MTB results in higher social inequity than STB in popular 
schools, but lower social inequity in non-popular schools.

5. Discussion of practical implications

In over-demanded markets the trade-off between a single lottery and multiple independent 
lotteries disappears: STB outperforms MTB in both notions we consider, rank-wise dominance 
and social inequity. Hence, using multiple lotteries in “popular” schools leads to students being 
assigned to relatively worse ranks in those schools than using a single lottery.

One concern that arises when implementing an inefficient assignment is that students may 
realize that they are part of a Pareto-improving cycle. This indeed happened in Amsterdam; 
two families filed a lawsuit to exchange their children’s assignments (De Haan et al. (2015)). 
Although the judge ruled against the case, the following year Amsterdam adopted STB. We ran 
numerical experiments using NYC data to examine how common is it to be part of a pair of 
students who wish to swap schools. These are referred to as Pareto-improving pairs. In these 
experiments (Appendix G.2) we focus on cycles of length two because these are arguably easier 
for families to detect after the assignment. We find that there are no Pareto-improving pairs 
under STB, while under MTB there are “many” Pareto-improving pairs in popular schools and 
“few” in non-popular schools. This is consistent with the findings of Theorem 3.1 regarding the 
inefficiency of MTB in popular schools.

Finally, for policymakers who favor MTB, e.g., due to equity reasons,24 a possible alternative 
would be to use independent lotteries in non-popular schools and a common lottery in popular 
schools. Such a hybrid rule can lead to (i) lower social inequity in non-popular schools than under 
STB, and (ii) fewer Pareto-improving pairs in popular schools than when using MTB alone. For 
instance, a hybrid rule may have been an attractive alternative to MTB in Amsterdam, which 
has four “very popular” schools (De Haan et al., 2015); such a rule may have also prevented 
the lawsuit. These insights are confirmed by our computational experiments using the NYC data 
(Appendices G.1 and G.2).

24 As in Amsterdam and Chile.
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6. Conclusion

This paper revisits the impact of tie-breaking rules on students’ assignments in school choice. 
Splitting the market into popular and non-popular schools proves useful in explaining the source 
of the differences and trade-offs between STB and MTB with respect to our notions of effi-
ciency and equity. The trade-offs vanish within the set of popular schools but persist in the set 
of non-popular schools. These insights reduce the ambiguity documented by previous studies 
(Abdulkadiroğlu et al., 2009; De Haan et al., 2015).

The assumptions in the model do not typically hold in practice. The model assumes that 
schools have unit capacities and a single priority class. Nevertheless, the computational experi-
ments with NYC data indicate the robustness of the predictions of the model.

The popularity measure adopted in the empirical experiments is heuristic. It remains an inter-
esting direction to develop well-grounded empirical measures for popularity.

This study adds another rationale for selecting a single lottery for breaking ties (Pathak, 2017). 
Policymakers who favor MTB may find attractive a hybrid tie-breaking rule (a common lottery 
in popular schools and independent lotteries in non-popular schools), in that it is likely to reduce 
the inefficiencies of MTB in popular schools while maintaining some of its benefits, such as 
fewer unassigned students.

Appendix A. Preliminaries: notations and definitions

We will analyze simple school choice markets, as defined in Definition 2.1. For brevity, we 
often use the term market instead throughout our analysis in the appendix.

We recall the following definitions: �n,m and �n,m respectively denote the set of preference 
profiles and the set of tie-breaking profiles of all simple school choice markets with n students 
and m schools. Define �n,m

MTB = �n,m and

�
n,m
STB = {ψ : ψ ∈ �n,m and ψ(c) = ψ(c′) for all c, c′ ∈ C}.

A market profile is a tuple π = (φ, ψ) where φ is a preference profile and ψ is a tie-breaking 
profile. For a student s, we let π(s) denote φ(s), and for a school c, we let π(c) denote ψ(c). 
The set of all market profiles in a simple school choice market with n students and m schools is 
denoted by �n,m. Define �n,m

MTB = �n,m. Also, define

�
n,m
STB = {π : π ∈ �n,m and π(c) = π(c′) for all c, c′ ∈ C}.

In a market with market profile π , the student-optimal and the school-optimal stable assign-
ments are denoted by μπ and ηπ , respectively. Recall that these assignments are the outcomes of 
the student- and school-proposing DA, respectively (Gale and Shapley, 1962).

Given an assignment μ, let μ(s) denote the school assigned to student s, and μ(c) denote the 
student assigned to school c in μ. If s is unassigned under μ, we define μ(s) =∅. Similarly, we 
define μ(c) =∅ if no student is assigned to c. For any X ⊆ S ∪ C, let μ(X) = ∪x∈Xμ(x).

For every student s, let μ#(s) denote the rank of school μ(s) on the preference order of s. 
That is, μ#(s) = 1 if s is assigned to her first choice, μ#(s) = 2 if s is assigned to her second 
choice, and so on. When s is unassigned in μ, we define her rank in μ to be ∞, i.e., μ#(s) = ∞. 
By convention, we say that a rank r is better (worse) than a rank r ′ if r is smaller (larger) than 
r ′.

Let Ar (μ) denote the average rank of students that are assigned in μ, i.e., Ar (μ) = 1
|μ(C)| ·∑

μ#(s).
s∈μ(C)
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A rank distribution is a function from positive integers to nonnegative integers. For any rank 
distribution R, denote by R+ its corresponding cumulative rank distribution, which is defined by 
R+(k) =∑k

i=1 R(i) for every integer k > 0. The rank distribution of an assignment μ is a vector 
Rμ ∈ Zm+ where Rμ(i) denotes the number of students who are assigned to their i-th choice in 
the assignment μ. The cumulative rank distribution of μ then is denoted by R+

μ .
For a finite set X, let U(X) denote the uniform distribution over X.

A.1. Equivalence of DA-STB and Random Serial Dictatorship (RSD)

We will see here that, in a simple school choice market, the assignment under DA-STB can 
be attained using a very simple process. For exposition, interpret the common tie-breaker used 
by DA-STB as priorities (with lower numbers indicating higher priorities).

Assume all seats are initially empty and all students are unassigned. When running DA-STB, 
assume that the student with the highest priority among unassigned students is the next student 
to propose.25 Observe that the student with the highest priority (who proposes first) will never be 
rejected and therefore will be assigned to her top choice. Consider the student with the second-
highest priority. Either her first choice has an empty seat and she is assigned to it, or her first 
choice is tentatively assigned to the highest priority student, in which case she will be assigned 
to her second choice. This process continues until all students are assigned or there are no more 
empty seats. Observe that this process is equivalent to the algorithm in which students choose 
schools one at a time only from schools with empty seats according to a (random) priority order. 
This is the definition of Random Serial Dictatorship (Abdulkadiroğlu and Sönmez, 1998).

A.2. The Principle of Deferred Decisions

The idea behind The Principle of Deferred Decisions is that the entire set of random choices 
required to run an algorithm are not made in advance, but rather during the run of the algorithm. 
We use this principle when analyzing the school-proposing DA algorithm.

Recall that students’ preference orders are drawn i.i.d. from the set of all strict linear orders 
over the schools. One way to run school-proposing DA then would be to determine the students’ 
preferences in the course of running DA, rather than drawing their preferences before DA is run. 
That is, we can assume that, upon receiving each proposal, the student assigns a distinct rank
to the proposing school, which is an integer between 1 and m; this rank is chosen uniformly at 
random from the set of ranks that the student has not assigned so far. The assignment generated in 
this way has the same distribution as when the student’s preferences are generated before running 
DA.

A.3. Asymptotic notions

We say a statement S(i) holds for sufficiently large i if there exists i0 such that S(i) holds for 
all i > i0.

Let E(i) be an event parameterized by a positive integer i. We say that E(i) occurs with high 
probability as i grows large if limi→∞ P [E(i)] = 1. When i is clearly known from the context, 
we simply say that E(i) occurs with high probability or, briefly, E(i) occurs whp.

25 The order in which students propose has no impact on the final assignment (Gale and Shapley, 1962).
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Furthermore, we say that E(i) occurs with very high probability as i grows large if there 
exists α > 1 such that limi→∞ 1−P [E(i)]

exp(−(log i)α)
= 0. When i is clearly known from the context, we 

simply say that E(i) occurs with very high probability; or briefly, E(i) occurs wvhp.
For any two functions f, g : R+ → R+ we adopt the notation f = o(g) when for every posi-

tive constant ε there exists a constant iε such that f (i) ≤ εg(i) holds for all i > iε .
We define f = O(g) if there exist positive constants i0, � such that f (i) ≤ g(i)� holds for 

all i > i0. We write g = �(f ) when f = O(g) and g = O(f ), and g = �(f ) when f = O(g).

A.4. Inequalities

Fact A.1. When A ≤ B , the function f (x) = A−x
B−x

is decreasing at all x < B .

Proof. Observe that f ′(x) = A−B
(B−x)2 ≤ 0. �

Fact A.2. For every m > 0, the function f (x) = log(1+ m
x

)

log(m+1)
· m+x

m
is decreasing at all x ≥ 1.

Proof. Observe that f ′(x) = x log
(

m+x
x

)−m

mx log(m+1)
. Since log (1 + m/x) ≤ m/x holds, then

x log (1 + m/x) ≤ m. Therefore, f ′(x) ≤ 0. �
Fact A.3. For any positive integers m, x we have (m + x) log(1 + m

x
) ≥ m.

Proof. Define g(x) = (m + x) log(1 + m
x
). By Fact A.2, g(x) is decreasing in x. Therefore, to 

prove the claim, it suffices to show that limx→∞ g(x)
m

= 1. To this end, observe that

lim
x→∞

g(x)

m
= lim

x→∞
log(1 + m

x
)

m
m+x

= lim
x→∞

m + x

x
= 1,

where the second equality follows from L’Hopital’s rule. This concludes the proof. �
Fact A.4. For any positive integers n, m with n > m,

m

n
· 1

log n
n−m

≥ 1

log n
n−m

− n − m

m
.

Proof. We apply Fact A.3 with x = n − m, which implies that

(m + x) log(1 + m

x
) ≥ m

⇔ x

m
log(1 + m

x
) ≥ x

m + x

⇔1 − x

m + x
+ x

m
log(1 + m

x
) ≥ 1

Plugging x = n − m into the above inequality implies that

m

n
+ n − m

m
log

n

n − m
≥ 1.

This implies that
21



I. Ashlagi and A. Nikzad Journal of Economic Theory 190 (2020) 105120
m

n
≥ 1 − n − m

m
log

n

n − m
.

Dividing both sides of the above inequality by log n
n−m

concludes the proof. �
Fact A.5. Suppose that x1, . . . , xn and y1, . . . , yn are real numbers belonging to the unit interval 
such that yi ≤ xi holds for all i. Then

n∏
i=1

(xi − yi) ≥
n∏

i=1

xi −
n∑

i=1

yi.

Proof. The proof is by induction on n. The induction basis for n = 1 is trivial. For the induction 
step, we show that the claim holds, assuming that

n−1∏
i=1

(xi − yi) ≥
n−1∏
i=1

xi −
n∑

i=1

yi. (2)

By the above inequality, we can write

n∏
i=1

(xi − yi) ≥
(

n−1∏
i=1

xi −
n−1∑
i=1

yi

)
(xn − yn) (3)

≥
n∏

i=1

xi − yn

n−1∏
i=1

xi − xn

n−1∑
i=1

yi (4)

≥
n∏

i=1

xi − yn −
n−1∑
i=1

yi =
n∏

i=1

xi −
n∑

i=1

yi, (5)

which completes the induction step. �
Appendix B. Preliminaries: concentration bounds

B.1. Chernoff bounds

Chernoff bounds are well-known concentration inequalities that bound the deviations of a 
weighted sum of Bernoulli random variables from its mean. Here we present their multiplicative 
form (see, e.g., Bremaud (2017)). Let X1, . . . , Xn be a sequence of n independent random binary 
variables such that Xi = 1 with probability pi and Xi = 0 with probability 1 −pi . Let α1, . . . , αn

be arbitrary real numbers in the unit interval. Also, let μ =∑n
i=1 αiE [Xi]. Then for any ε with 

0 ≤ ε ≤ 1:

Pr

[
n∑

i=1

αiXi > (1 + ε)μ

]
≤ e−ε2μ/3 (6)

Pr

[
n∑

αiXi < (1 − ε)μ

]
≤ e−ε2μ/2. (7)
i=1
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B.2. Concentration bounds for stable assignments

The following three theorems are immediate corollaries from Pittel (2019) translated to our 
setting.

Theorem B.1 (Theorem 1.4 in Pittel (2019)). Consider a simple school choice market with n
students and m = n + λ(n) schools where λ : N → N is an arbitrary function. Let the market 
profile be drawn from �n,m

MTB uniformly at random. Also, let M denote the set of all assignments 
that are stable given the drawn market profile. For any μ ∈ M , let s(μ) denote the sum of ranks 
of the assigned students in μ. Then, for any constant ε > 0, the event

max
μ∈M

∣∣∣∣ s(μ)

m log m
m−n

− 1

∣∣∣∣< ε

holds with very high probability as n grows large.

Theorem B.2 (Theorem 1.5 in Pittel (2019)). Consider a simple school choice market with m
schools and n = m + λ(m) students where λ : N → N is such that λ(m) ≤ m3/2−d holds for 
all m where d ∈ (0, 12 ) is a constant. Let the market profile be drawn from �n,m

MTB uniformly at 
random. Also, let M denote the set of all assignments that are stable given the drawn market 
profile. For any μ ∈ M , let s(μ) denote the sum of ranks of the assigned students in μ. Then, for 
any constant ε > 0, the event

max
μ∈M

∣∣∣∣ s(μ)

m2f (log n
n−m

)
− 1

∣∣∣∣< ε

holds with very high probability as m grows large, where f (x) = 1
x

− 1
ex−1 .

Theorem B.3 (Theorem 1.6 in Pittel (2019)). Consider a simple school choice market with m
schools and n = m + λ(m) students where λ : N → N is such that λ(m) ≥ mα holds for every 
m where α > 0 is a constant. Let the market profile be drawn from �n,m

MTB uniformly at random. 
Also, let

Mπ = |{s ∈ S : μπ(s) �= ηπ(s)}|,
where μπ and ηπ denote the student- and school-optimal stable assignments, respectively. Then, 
for every constant ε > 0 there exists mε > 0 such that for all m > mε ,

Eπ [Mπ ] ≤ m3/2−α+ε .

Lemma B.4. Consider a simple school choice market in which every school has an arbitrary 
tie-breaker and the preference order of every student is drawn independently and uniformly at 
random from the set of all strict linear orders over the schools. For a student s, let ds denote the 
number of proposals that s receives when the school-proposing DA is run in this market. Also, 
let rs denote the rank of s in the assignment constructed by the school-proposing DA. Then,

P [rs > x|ds = t] ≤ e− tx
m .

Furthermore, for m ≥ 3, any positive integer t < m, and any α ≥ 3,

P
[
rs >

⌊m ⌋∣∣∣ds = t
]

≥ exp

(
− 2m

)
.

αt α(m − t)
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Proof. By the Principle of Deferred Decisions, we let students rank proposals upon receiving 
them. We assume that, upon receiving each proposal, the student assigns a distinct rank to the 
proposing school, which is an integer between 1 and m; this rank is chosen uniformly at random 
from the set of ranks that the student has not assigned so far.

The proof for the first inequality is as follows. The probability that s ranks the first school 
that proposes to her lower (worse) than x is 1 − x

m
. Conditional on that, the probability that the 

second school that proposes to s is ranked lower than x is at most 1 − x
m

. Conditional on the first 
and second schools being ranked lower than x by s, the third school that proposes to s is ranked 
lower than x with probability at most 1 − x

m
, and so on. Therefore, conditional on s receiving 

t proposals, the probability that all of the proposing schools are ranked lower than x is at most 
(1 − x

m
)t , which is at most e− tx

m . This proves the first inequality.
We next prove the second inequality in the lemma statement. The probability that the first 

school is ranked lower than 
⌊

m
αt

⌋
is at least 1 − m/αt

m
. More generally, the probability that s ranks 

the i-th school who proposes to her lower than m
αt

is at least 1 − m/αt
m−i

. Thus, we have

Pϕ

[
rs >

⌊m

αt

⌋∣∣∣ds = t
]

≥
t∏

i=1

1 − 1

αt(1 − i/m)

≥ exp

(
−

t∑
i=1

2

αt(1 − i/m)

)
≥ exp

(
− 2m

α(m − t)

)

where in the second inequality we used the fact that 1 − x ≥ e−2x for any x ≤ 1/2. Note that this 
inequality is applicable, because αt(1 − i/m) ≥ 2 holds for all m ≥ 3, i ≤ t and α ≥ 3. �
Lemma B.5. Consider a simple school choice market with m schools and n = m +λ(m) students 
where λ :N →N is an arbitrary function. Let the market profile be drawn from �n,m

MTB uniformly 
at random. Fix a student s and an arbitrary constant ε > 0. Then, in the school-proposing DA, the 
following event holds with high probability as m grows large: the number of proposals received 
by s is at most (1 + ε) logm.

Proof. The stochastic process governing the school-proposing DA is complicated. The proof 
idea is simplifying that process by coupling it with a simpler process, which we denote by 
B.26 Process B is defined by a sequence of binary random variables X1, . . . , Xk , where k =
(1 + δ)m logm for an arbitrary constant δ ∈ (0, ε).27 The idea behind the choice of k is that, 
whp, this is an upper bound on the total number of proposals in the school-proposing DA (due 
to Theorem B.1 and Fact A.2). Each random variable in this sequence takes the value 1 with 
probability 1

n−3 log2 m
, and 0 otherwise. For convenience, we also refer to these random variables 

as coins, and the process that determines the value of a random variable as a coin flip.
The coupling of the school-proposing DA and the coin-flipping process will be defined such 

that the number of successful coin flips would be an upper bound on the number of proposals 
that s receives in almost all of the sample paths of the coupled process. This will conclude the 
proof, since computing an upper bound on the number of successful coin flips can be done by a 
Chernoff concentration bound.

26 We recall the definition of coupling in probability theory; see, e.g., Levin and Peres (2017).
27 We defined k = (1 + δ)m logm, assuming that k is an integer. To not to clutter the notation with floors and ceilings, 
we drop these operators. This does not change the proofs but simplifies notation significantly.
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The coupled process, namely (DA, B), has two components. The first component, DA, cor-
responds to the stochastic process governing school-proposing DA. The second component, B, 
corresponds to the coin-flipping process. In the coupled process, the school-proposing DA runs 
as usual, and whenever a school c is about to propose, the following rules determine to whom 
the proposal is made.

R0. If there are no more coins left to flip in B, then the DA process runs independently. Other-
wise, if the school-proposing DA stops (i.e., finds an assignment), then stop B as well.

R1. If c has already proposed to s, let c propose to a student drawn uniformly at random from 
the set of students to whom it has not yet proposed.

R2. If c has not yet proposed to s, then B flips the next coin.
(a) Let dc denote the number of proposals that c has made so far. If dc > 3 log2 m, then let 

the school-proposing DA and B be run independently from this point forward. Other-
wise,

i. if the coin flip was successful: with probability n−3 log2 m
n−dc

let c propose to s, and 

otherwise (with probability 1 − n−3 log2 m
n−dc

) let c propose to a student drawn uniformly 
at random from the set of students that c has not already proposed to minus {s}.

ii. If the coin flip was not successful: c proposes to a student that is drawn uniformly 
at random from the set of students that c has not already proposed to minus {s}.

Observe that, every time a school c is about to propose, if c has not proposed to s before and if 

dc ≤ 3 log2 m, then s will receive a proposal with probability 1
n−3 log2 m

· n−3 log2 m
n−dc

= 1
n−dc

, which 

coincides with the probability that she receives an offer from c in the school-proposing DA. On 
the other hand, if dc > 3 log2 m, the school-proposing DA and the process B continue to run 
independently. Hence, the distribution of the number of proposals received by s in this coupling 
is identical to the distribution of the number of proposals received by s in the school-proposing 
DA.

If rule R0 is executed with no more coins left to flip in B, or if the condition dc > 3 log2 m is 
met at some point in a sample path of the coupled process, we call that sample path an ignored
sample path. Observe that in any sample path that is not ignored, student s receives at most one 
offer per successful coin flip. Therefore, the number of successful coin flips in that sample path 
gives an upper bound on the number of proposals that s receives in the same sample path.

Recall that k is, whp, an upper bound on the total number of proposals in the school-proposing 
DA (due to Theorem B.1 and Fact A.2). In addition, Pittel (1992) shows that, whp, no school 
makes more than 3 log2 m proposals in the school-proposing DA. That means the probability that 
a sample path is ignored approaches 0 as m approaches infinity. To complete the proof, we need 
to prove the following claim.

Claim B.6. For any constant ε > 0, it holds whp that the number of successful coin flips in the 
process B is at most (1 + ε) logm.

Proof. Choose δ to be a constant such that δ ∈ (0, ε). The expected number of successful coin 
flips in B is at most (1+δ)m logm

n−3 log2 m
. A standard application of Chernoff concentration bounds (as 

stated in Appendix B.1) then shows that, for any constant δ′ > 0, the number of successful coin 
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flips in B is smaller than (1 + δ′) (1+δ)m logm

n−3 log2 m
, whp. Choosing δ′ such that (1 + δ)(1 + δ′) < 1 + ε

proves the claim. �
Claim B.6 shows that the number of successful coin flips is at most (1 + ε) logm, whp. Re-

call that the number of successful coin flips bounds from above the number of proposals that s
receives, in sample paths that are not ignored. We showed the probability that a sample path is 
ignored approaches 0 as m approaches infinity. Therefore, for any constant ε > 0, the number of 
proposals that s receives is at most (1 + ε) logm, whp. �
Lemma B.7. Let λ : N → N , and consider a simple school choice market M with n students 
and m = n +λ(n) schools. Suppose that the market profile for M, namely π , is drawn uniformly 
at random from �n,m

MTB. Then, for any constant ε > 0, the following event holds with very high 
probability as n grows large: the number of proposals received by a fixed student in the school-
proposing DA is at least (1 − ε)nf (log m

m−n
)/2, where f (x) = 1

x
− 1

ex−1 .

Proof. Let P denote the total number of proposals made in the school-proposing DA. First, 
we define a parameter L, which, wvhp, will be a lower bound on P . By Theorem B.2, for any 
constant ε′ > 0, wvhp it holds that P ≥ (1 − ε′)L∗, where L∗ = n2f (log m

m−n
). Throughout this 

proof, we define ε′ = ε/4 and L = (1 − ε/2)L∗. We emphasize that the idea behind the choice 
of L is that, whp, L is a lower bound on the total number of proposals in the school-proposing 
DA (due to Theorem B.2).

We prove the lemma for a fixed student s ∈ S. The stochastic process governing the school-
proposing DA is a complicated process. The proof idea is simplifying that process by coupling 
it with a simpler process, which we denote by B. Process B is defined by a sequence of binary 
random variables X1, . . . , Xk . Each random variable in this sequence takes the value 1 indepen-
dently with probability 1/n, and 0 otherwise. For convenience, we also refer to these random 
variables by coins. The process B is formally defined as follows.

Definition B.8 (Definition of process B).

1. Let k = L.
2. Let i = 1.
3. While i ≤ k do

(a) Let Xi = 1 independently with probability 1/n, and let Xi = 0 otherwise. (I.e., flip a 
coin.)

(b) If Xi = 1 then k ← k − n. (I.e., remove n coins if the coin flip is successful.)
(c) i ← i + 1.

Note that the process stops when the condition i ≤ k is not met; then, we say there are no coins 
left to flip.

Next, we will define a coupling of the process B and the school-proposing DA. We denote 
this coupled process by (DA, B), where DA stands for the school-proposing DA. This coupling is 
defined such that, in almost all sample paths of the coupling (i.e., wvhp), the number of successful 
coin flips in B is a lower bound on the number of proposals that s has received in the school-
proposing DA, which we denote by ds .
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Definition of the Coupling (DA, B)

Recall that we fixed a student s, and aim to provide a lower bound on the number of pro-
posals made to s in the school-proposing DA algorithm. We do this by defining a coupled 
process, (DA, B). The first component, DA, corresponds to the stochastic process governing 
school-proposing DA, and the second component, B, corresponds to the coin-flipping process. 
In the coupled process, the results of the coin flips in B would be used to decide whether each 
proposal in DA is made to s or not.

In the coupled process (DA, B), a coin flip corresponds to a new proposal from a school to a 
student. If there are no coins left to flip in B, then (DA, B) continues to run DA but stops running 
B. If DA stops (by finding a stable assignment), the coupled process stops as well.

To complete the definition of the coupling, we need to define how DA and B interact. To this 
end, we first need a few definitions. While running the school-proposing DA, let Sc denote the 
set of students to whom c has proposed so far. In the coupling (DA, B), each school could have 
three possible states: active, idle, and inactive. At the beginning of the process, all schools are 
active. As the school-proposing DA process evolves, a school might change its state from active 
to idle, from active to inactive, or from idle to inactive.

We are now ready to state the formal definition of the coupled process (DA, B). In the coupled 
process, the school-proposing DA runs as usual, and whenever a school c is about to propose, 
the following rules determine to whom the proposal is made.

R0. If there are no more coins left to flip (i.e., the process B is stopped because the condition in 
line 3 of Definition B.8 is not met), then continue the process DA independently. Otherwise, 
if the school-proposing DA stops (i.e., finds an assignment), then stop B as well.

R1. If c is active, then flip the next coin (this action corresponds to line 3-a of Definition B.8). 
If the coin flip is successful, then let c propose to s and then make c inactive; moreover, 
dismiss n of the unflipped coins (this action corresponds to line 3-b of Definition B.8). If the 
coin flip is not successful, with probability 1 − 1−1/|S\Sc |

1−1/n
, c proposes to s and becomes idle, 

and with probability 1−1/|S\Sc|
1−1/n

, c proposes to one of the students in S\(Sc ∪ {s}) uniformly 
at random (without changing its state).

R2. If c is idle, then flip the next coin (this action corresponds to line 3-a of Definition B.8). If 
the coin flip is successful, make c inactive and dismiss n of the unflipped coins (this action 
corresponds to line 3-b of Definition B.8); otherwise, do not change the state of c. Let c
propose to one of the students in S\Sc uniformly at random.

R3. If c is inactive, then do not flip any coins. Let c propose to one of the students in S\Sc

uniformly at random.

First, we verify that the probability that s receives a proposal from c in the coupled process 
is identical to the probability that she receives a proposal from c when the school-proposing DA 
is run independently. To see this, observe that in the coupled process, every time that a school 
c wants to make a proposal, if it has not proposed to s before, then it will propose to s with 
probability

1

n
+ (1 − 1

n
)

(
1 − 1 − 1/|S\Sc|

1 − 1/n

)
= 1

|S\Sc| ,

which coincides with the probability that s receives a proposal from c if the school-proposing 
DA is run independently.
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The intuition behind the three states (active, idle, inactive) is as follows. All schools are active 
in the beginning of the process. Every time an active school is about to make a proposal, it flips 
a coin. If the coin flip is successful, the school proposes to s and becomes inactive. If the coin 
flip is not successful, then the school, namely c, proposes to s with a positive probability of 
1 − 1−1/|S\Sc |

1−1/n
; if the proposal is made to s, the school becomes idle, and otherwise the school 

remains active. Idle schools are thus schools who have proposed to s without flipping a coin 
successfully. These schools continue to flip a coin every time they are about to make a proposal, 
and become inactive once one of these coin flips is successful. Finally, we note that whenever a 
school becomes inactive, n of the unflipped coins are dismissed (which, as we will see, account 
for the proposals that the inactive school may make from then on).

We will show that the coupling satisfies the following properties: (i) the sum of the flipped 
and dismissed coins equals L, whp (Claim B.9) (ii) every successful coin flip corresponds to a 
proposal to s (Claim B.10), and (iii) the number of successful coin flips is “large” (Claim B.11). 
The rest of the proof formalizes this argument.

Claim B.9. The sum of the number of flipped and dismissed coins in the process (DA, B) equals 
L, wvhp.

Proof. Consider the time when the process (DA, B) stops. By rule R0, there are two possibilities: 
either there was a time in the coupled process when no coins were left to flip in B, after which 
the process DA was run independently, or not (in which case the process DA stopped when there 
were still coins left to flip in B). To prove the claim, we will show that the first possibility occurs 
wvhp.

To this end, consider the scenario where the second possibility occurs. By the definition of 
the coupling, a coin is flipped whenever an active or idle school makes a proposal. On the other 
hand, n coins are dismissed whenever a school becomes inactive (see rules R1 and R2), and every 
inactive school makes at most n proposals. Thus, when the second possibility occurs, the sum 
of the number of flipped and dismissed coins is larger than the total number of proposals made 
in DA. Since there exist only L coins, then the total number of proposals made in DA is smaller 
than L. However, recall that L is, wvhp, a lower bound on the total number of proposals in DA
(Theorem B.2). Therefore, wvhp, the second possibility does not occur. This implies that the first 
possibility occurs wvhp. �
Claim B.10. Let the random variable X∗ denote the number of successful coin flips in (DA, B). 
Then, ds ≥ X∗.

Proof. For the proof, we show that there is an injection from the set of successful coin flips in 
(DA, B) to the set of proposals made to s in (DA, B). First, observe that in the definition of the 
coupling, only rules R1 and R2 allow for coin flips. In R1, immediately after a successful coin 
flip, a proposal is made to s. We associate the successful coin flip with the proceeding proposal 
in the injection that we construct. It remains to define the injection for the successful coin flips 
that are allowed by R2. For any such coin flip f , there exists a school c satisfying the following 
condition: In the course of the coupled process, at a time before f happens, R1 has allowed 
the school c to make a proposal to s even though the preceding coin flip was unsuccessful. In 
this case, associate the successful coin flip in R2 with the proposal that c made to s in R1. This 
completes the construction of the injection and completes the proof. �
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Claim B.11. For any constant δ > 0, X∗ ≥ (1 − δ)L/(2n) holds wvhp.

Proof. It is useful to partition the L coins that are used by the process B into two subsets, namely 
A, B , with subset A containing L(1 + δ)/2 of the coins, and subset B containing the L(1 − δ)/2
remaining coins. (For example, assume A = {x1, . . . , xL(1+δ)/2} and B = {x1+L(1+δ)/2, xL}.) 
Without loss of generality, suppose that whenever process B is about to flip a coin (line 3-a of 
Definition B.8), it flips a coin from A if A is non-empty; otherwise, it flips a coin from B . Any 
coin that is flipped is removed from the subset that contains it (i.e., the subset A or B). On the 
other hand, if the process is about to remove n coins (line 3-b of Definition B.8), it removes the 
coins from B as long as B is non-empty.

By Claim B.9, both A, B will be empty by the end of the coupled process (DA, B), wvhp. 
We will show that, wvhp, B empties before A does. This would imply that at least |B|/n =
L(1 − δ)/(2n) of the coins in A are flipped successfully, which would conclude the proof.

It remains to show that set B empties before set A does. This is a direct consequence of 
Chernoff concentration bounds. (Recall their definition from Appendix B.1.) These bounds imply 
that if |A| = L(1 + δ)/2 coins are flipped independently, each with a success probability 1/n, 
then wvhp at least L/(2n) of the coin flips are successful. Since for each successful coin flip from 
A there are n removed from B , and since nL/(2n) > |B|, then wvhp B empties before A. �

Claims B.10 and B.11 together imply that ds ≥ (1 − δ)L/(2n) holds wvhp. Recalling that 
L = (1 − ε/2)L∗ and setting δ = ε/2 concludes the proof. �
Lemma B.12. Let λ : N → N , and consider a simple school choice market with n students and 
m = n +λ(n) schools. Suppose that the market profile is drawn from �n,m

MTB uniformly at random. 
Then, for any positive constant ε and any student s ∈ S, the following event holds with very high 
probability as n grows large: the number of proposals received by s in the school-proposing DA 
is at least (1 − ε) n

2 logn
.

Proof. The proof is a consequence of Lemma B.7, which states that for any constant ε > 0, the 
number of proposals received by a fixed student in the school-proposing DA is wvhp at least 
(1 − ε)nf (log m

m−n
)/2, where f (x) = 1

x
− 1

ex−1 .

Claim B.13. The function f (x) = 1
x

− 1
ex−1 is decreasing in x for x ≥ 0.

Proof. Observe that f ′(x) = ex

(ex−1)2 − 1
x2 . Algebraic manipulation of f ′(x) ≤ 0 reveals that this 

inequality holds if and only if

x2 + 2 ≤ ex + e−x. (8)

To see that the above inequality holds for every x ≥ 0, define h(x) = ex + e−x − (x2 + 2). We 
then observe that h′′(x) = e−x + ex − 2 ≥ 0, h′(0) = h′′(0) = h′′′(0) = 0, and h4(0) = 2, where 
h4(·) denotes the fourth derivative of h. Thus, h(x) is increasing at every x ≥ 0. �

Now, recall that m = n + λ(n). Hence,

f (log
m

m − n
) = f (log(1 + n

λ(n)
)) ≥ f (log(1 + n)) = 1

log(n + 1)
− 1

n
, (9)
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where the inequality follows from the fact that f (x) is decreasing at all x ≥ 0. By Lemma B.7 and 
by (9), to prove the claim of the lemma, it suffices to prove its claim for the case that λ(n) = 1
for all n ∈ N . In this case, observe that by Lemma B.7, the number of proposals received by 
a fixed student in the school-proposing DA is wvhp at least (1 − δ)n

2 ( 1
log(n+1)

− 1
n
), for any 

constant δ > 0. Choosing δ = ε/2 and noting that (1 − δ)n
2 ( 1

log(n+1)
− 1

n
) > (1 − ε) n

2 logn
holds 

for sufficiently large n concludes the proof. �
Lemma B.14. Let λ : N → N , and consider a simple school choice market M with m schools 
and n = m +λ(m) students. Suppose that the market profile for M, namely π , is drawn uniformly 
at random from �n,m

MTB. Then, for every constant κ > 0, there exists mκ such that for all m > mκ , 
the number of proposals received by a fixed student in the school-proposing DA is less than 

0.5(1 − κ) log n
n−m

with probability at most 1
m

+ e
− κ2(1−κ/2) log( n

n−m )

16(1+κ/2) .

Proof. Let P denote the total number of proposals made in the school-proposing DA. By Theo-
rem B.1, for any constant κ > 0, wvhp it holds that P ≥ (1 − κ/2)L∗, where L∗ = n log( n

n−m
). 

By the definition of the notion of wvhp, the latter fact also implies the existence of a constant 
mκ > 0 such that P ≥ (1 −κ/2)L∗ holds with probability at least 1 − 1

m
. Define L = (1 −κ/2)L∗.

We prove the lemma for a fixed student s ∈ S. The stochastic process governing the school-
proposing DA, namely, the process DA, is a complicated one. The proof idea is simplifying DA by 
coupling it with a simpler process, denoted by B. The process B and the coupled process (DA, B)

are defined identical to the proof of Lemma B.7 (with the difference that, here, the number of 
coins L is given as above).

As in the proof of Lemma B.7, we let ds denote the number of proposals that student s receives 
in (DA, B). Also, let X∗ denote the number of successful coin flips in (DA, B).

Claim B.15. ds ≥ X∗.

Proof. The proof is identical to the proof of Claim B.10. �
Claim B.16. For any constant δ > 0, X∗ < (1 − δ) L

2n
holds with probability at most 1

m
+

e
− δ2L

4(1+δ)n .

Proof. Let x1, . . . , xL be iid Bernoulli random variables with mean 1/n. We interpret these 
variables as coins: when (DA, B) is about to flip a coin, the variable with the smallest index 
whose value has not been used yet will be used to determine the result of the coin flip. On the 
other hand, when (DA, B) is about to dismiss a coin, the variable with the largest index that has 
not been dismissed yet will be dismissed. (The same structure is used in the proof of Claim B.11.)

By Theorem B.1, there exists mκ > 0 such that for every m > mκ , P < L holds with proba-
bility at most 1

m
. That is, the probability that, by the end of (DA, B), there exists a variable xi that 

is not used or dismissed is at most 1
m

.
Partition the variables to two subsets, A = {x1, . . . , xL(1+δ)/2} and B = {x1+L(1+δ)/2, xL}. We 

note that, by Chernoff concentration bounds (Appendix B.1), n 
∑

i∈A xi ≥ L
2 with probability at 

least 1 − e
− δ2L

4(1+δ)n .
Next, we note that if the event n 

∑
i∈A xi ≥ L

2 holds, so does the event n 
∑

i∈A xi > |B|. 
If the latter event and the event P ≥ L hold, then the number of successful coin flips X∗ is 
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at least |B|
n

= (1 − δ) L
2n

(because for every successful coin flip in A, n coins are dismissed 
from B). Therefore, a union bound implies that the probability that X∗ < (1 − δ) L

2n
holds is 

bounded by the sum of the probabilities of the events P < L and n 
∑

i∈A xi < L
2 , which is at 

most 1
m

+ e
− δ2L

4(1+δ)n . �
Claim B.15 shows that ds ≥ X∗, and Claim B.16 shows that X∗ ≥ (1 − δ)L/(2n) holds with 

probability at least 1 − 1
m

− e
− δ2L

4(1+δ)n . Therefore, ds ≥ (1 − δ)L/(2n) holds with probability at 

least 1 − 1
m

− e
− δ2L

4(1+δ)n . That is, ds < (1 − δ)L/(2n) holds with probability at most 1
m

+ e
− δ2L

4(1+δ)n . 
Recalling that L = (1 − κ/2)L∗ and L∗ = n log( n

n−m
), and setting δ = κ/2, implies that ds <

1
2 (1 − κ/2)2 log( n

n−m
) holds with probability at most

1

m
+ e

− κ2(1−κ/2) log( n
n−m )

16(1+κ/2) .

Observing that ds < 1
2 (1 − κ) log( n

n−m
) implies ds < 1

2 (1 − κ/2)2 log( n
n−m

) concludes the 
proof. �
Lemma B.17. Consider a market M with m schools and n students. Suppose that the market 
profile for M, namely π , is drawn uniformly at random from �n,m

STB. Let ε > 0 be an arbitrary 
constant. Then,

i. if n ≥ m, with high probability as m grows large,

RπSTB(1) ≥ (1 − ε)m

2
;

ii. if n < m, with high probability as n grows large, RπSTB(1) ≥ (1−ε)n
2 .

Proof. We first prove part (i). The proof uses the equivalence relation between the DA-STB and 
the RSD mechanism. (Recall this equivalence relation from Section A.1.) We fix the common tie-
breaker of the schools and let the preference order of every student be drawn independently and 
uniformly at random from the set of all linear orders over the schools. Let the random variable 
ϕ denote the preference profile of the students. (Hence, ϕ is drawn uniformly at random from 
�n,m.)

Let Xi be a binary random variable which is 1 iff the student with priority number i is assigned 
to her first choice, and let X = ∑m

i=1 Xi . Observe that Pϕ [Xi = 0] = (i − 1)/m. Therefore, 
Eϕ [X] = ∑m

i=1
m−i+1

m
= m+1

2 . Also, observe that the random variables X1, . . . , Xm are inde-
pendent. A standard application of Chernoff bounds (as stated in Section B.1) then implies that 
for any ε > 0, we have

Pϕ

[
X < (1 − ε) ·Eϕ [X]

]≤ exp

(
−ε2Eϕ [X]

2

)
.

This proves part (i).
The proof for part (ii) is identical to the above proof, but m is replaced with n. �
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Appendix C. Proof of Theorem 3.1: rank-wise dominance

For expositional purposes we state and prove in this section only the parts of Theorem 3.1 that 
concern rank-wise dominance.

Theorem C.1. Let λ :N → N .

(i) Consider a simple school choice market with m schools and n = m + λ(m) students. Let the 
preference profile ϕ be drawn independently and uniformly at random from �n,m, and let 
the tie-breaking profiles ψMTB, ψSTB be drawn independently and uniformly at random from 
�

n,m
MTB, �m

STB, respectively. Also, define the market profiles πMTB = (ϕ, ψMTB) and πSTB =
(ϕ, ψSTB). Then, for every constant ε > 0

lim
m→∞P

[
RπMTB �ε RπSTB

]= 1.

(ii) Consider a simple school choice market with n students and m = n + λ(n) schools. Let 
the preference profile ϕ be drawn independently and uniformly at random from �n,m, and 
the tie-breaking profiles ψMTB, ψSTB be drawn independently and uniformly at random from 
�

n,m
MTB, �m

STB, respectively. Also, define the market profiles πMTB = (ϕ, ψMTB) and πSTB =
(ϕ, ψSTB). Then, for every constant ε > 0,

lim
n→∞P

[
RπMTB �ε RπSTB

]= 0, lim
n→∞P

[
RπSTB �ε RπMTB

]= 0

hold when there exists a constant γ < 1 such that λ(n) ≤ nγ for all n.

C.1. Proof of Theorem C.1, part (i)

The following definitions and lemmas will be used in the proof. Denote by MMTB the simple 
school choice market defined in the theorem statement which has m schools, n = m + λ(m)

students, and market profile πMTB. Similarly, let MSTB denote the simple school choice market 
defined in the theorem statement which has m schools, n = m +λ(m) students, and market profile 
πSTB. We recall the definitions of πMTB, πSTB from the theorem statement.

C.1.1. Lemmas related to MMTB

Lemma C.2. In the market MMTB, for any t > 0, the following holds with high probability as m
grows large: at most 2m logm

t
students receive at least t proposals in the school-proposing DA.

Proof. By Theorem 1 in Ashlagi et al. (2017), the total number of proposals in the school-
proposing DA is at most 2m logm, whp. This implies that, whp, there are at most 2m logm

t
students 

who receive at least t proposals in the school-proposing DA. �
Lemma C.3. Let α > 4 be a constant and define t = 200 logm. Then, with high probability as m
grows large,

R+
πMTB

(
� m �

)
≤ 0.4m + m/

√
logm.
αt
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Proof. To prove the claim, first we run the school-proposing DA and prove the lemma statement 
for the school-optimal assignment. Then, using the fact that almost every student has the same 
match in the student-optimal assignment as shown in Ashlagi et al. (2017), we establish the 
lemma statement (which holds for the student-optimal assignment).

For any student s, let the random variable ds denote the number of proposals that s receives in 
the school-optimal assignment. Also, define the random vector d = (d1, . . . , dn). For any student 
s, let rs denote the rank of s in the school-optimal assignment. Also, let xs be a binary random 
variable that is equal to 1 iff rs > m

αt
.

Claim C.4. limm→∞PπMTB

[∑
s∈S xs ≥ 0.6m

]= 1.

Proof. Let S′ denote the subset of students who received at least one but no more than t offers. 
Lemma B.4 implies that

PπMTB

[
rs >

⌊m

αt

⌋∣∣∣s ∈ S′]≥ e−1/2

holds for sufficiently large m, since α > 4. This means that EπMTB

[∑
s∈S′ xs

]≥ e−1/2|S′| holds 
for sufficiently large m. Let M = e−1/2|S′|. Observe that, conditional on d, the random variables 
{rs}s∈S are independent. Therefore, conditional on d, the random variables {xs}s∈S are also inde-
pendent. Hence, Chernoff concentration bounds imply that, for any positive constant δ < 1, for 
any d, and for sufficiently large m,

PπMTB

[∑
s∈S′

xs ≤ (1 − δ)e−1/2|S′|
∣∣∣∣∣d
]

≤ e− δ2M
2 . (10)

On the other hand, Lemma C.2 implies that |S′| ≥ 0.99m holds whp. Therefore, (10) implies that, 
for any constant δ < 1,

PπMTB

[∑
s∈S′

xs ≤ (1 − δ)e−1/2|S′|
]

approaches 0 as m approaches infinity. The facts that S′ ⊆ S and 0.99e−1/2 > 0.6 conclude the 
proof. �

Recall that Claim C.4 was proved for the school-proposing DA. To complete the proof of the 
lemma, we will show that a slightly weaker version of Claim C.4 holds for the student-proposing 
DA as well. Let μ, η respectively denote the assignments generated by the student- and school-
proposing DA in the market MMTB. The number of students who have different matches under 
μ, η is at most m/

√
logm, whp, as shown by Ashlagi et al. (2017). Therefore, Claim C.4 implies 

that, whp, there are at most 0.4m + m/
√

logm students s for whom μ#(s) ≤ m
αt

. �
C.1.2. Lemmas related to MSTB

Lemma C.5. In the market MSTB, suppose that student s ∈ S is the (m − x)-th highest priority 
student in the common tie-breaker, with x ≥ 0. (That is, in the common tie-breaker that is used 
by all schools, the student has strictly higher priority than x + n − m other students.) Then, the 
probability that in the student-optimal assignment s is not assigned to one of her top i choices is 
at most (1 − x )i for any positive integer i > 0.
m
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Proof. This can be seen by the equivalence between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) The probability that s is not assigned to her 
top choice is 1 − x+1

m
, which is at most 1 − x

m
. The probability that s is not assigned to her second 

top choice is (1 − x+1
m

)(1 − x
m−1 ), which is at most (1 − x

m
)2. Similarly, the probability that s is 

not assigned to her i-th top choice is at most (1 − x
m

)i , for any positive integer i > 0. �
Lemma C.6. In the market MSTB, suppose that the student s ∈ S is the (m − x)-th highest 
priority student in the common tie-breaker, with x ≥ 0. Then, in the student-optimal assignment, 
s is assigned to one of her top 2m log(m)

x
choices with probability at least 1 − 1/m2.

Proof. Set i = 2m
x

log(m) and apply Lemma C.5. Noting that (1 − x
m

)i ≤ e− xi
m proves the 

claim. �
For the next lemma, we recall that, for a market profile π , we denote the rank distribution Rμπ

by Rπ , for notational simplicity.

Lemma C.7. Let t = 3 logm. For any constant α > 1, there exists a constant βα > 0 (indepen-
dent of m) such that the following event holds with high probability as m grows large:

R+
πSTB

(
� m

αt
�
)

≥ m − βα logm · log logm.

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) We fix the common tie-breaker of the schools 
and let the preference order of every student be drawn independently and uniformly at random 
from the set of all linear orders over the schools. Let the random variable ϕ denote the preference 
profile of the students. (Hence, ϕ is drawn uniformly at random from �n,m.)

Define x = 2αt logm. Let S′ be the subset of students in MSTB who receive priority numbers 
better (smaller) than m −x. First, we apply Lemma C.6 to each student in S′. Lemma C.6 implies 
that a student with priority number m − x or better gets assigned to one of her top m

αt
choices 

with probability at least 1 −m−2. Taking a union bound over all students with priority number no 
worse than m − x implies that at least m − x students are assigned to one of their top m

αt
choices, 

with probability at least 1 − 1/m. This means R+
πSTB

(
m
αt

)
≥ m −x holds with probability at least 

1 − 1/m. To prove the sharper bound in the lemma statement, we need to take the students in 
S\S′ into account.

Let μ denote the student-optimal assignment in MSTB. Also, let S′′ ⊂ S\S′ denote the subset 
of students who have a priority number between m − x and m − βt · log logm, where β =
2α2t/ logm. Lemma C.5 implies that for any s ∈ S′′,

Pϕ

[
μ#(s) >

m

αt

]
≤
(

1 − βt · log logm

m

) m
αt ≤ exp

(
−β

α
· log logm

)
.

Having β = 2α2t/ logm implies

Pϕ

[
μ#(s) >

m

αt

]
≤ (logm)

− 2αt
logm .

Now, we use the above bound to write a union bound over all s ∈ S′′:
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Pϕ

[
max
s∈S′′ μ

#(s) >
m

αt

]
≤ |S′′| · (logm)

− 2αt
logm

≤ x(logm)−6 ≤ 6α

(logn)4 .

Taking a union bound over the students in S′, S′′ implies that

Pϕ

[
max

s∈S′∪S′′ μ
#(s) >

m

αt

]
≤ 1/m + 6α

(logn)4 .

Consequently, R+
πSTB

(
� m

αt
�
)

≥ |S′ ∪ S′′| holds, whp. To conclude the proof, we note that |S′ ∪
S′′| = 2α2t

2 log logm
logm

= 18α2 logm · log logm. Setting βα = 18α2 completes the proof. �
Proof of Theorem C.1, part (i). Fix the constant ε > 0. By Lemma C.3,

R+
πMTB

(
� m

αt
�
)

≤ 0.4m + m/
√

logm (11)

holds with high probability as m grows large. On the other hand, by Lemma C.7, whp it holds 
that

R+
πSTB

(
� m

αt
�
)

≥ m − (logm)1+ε . (12)

Also, by Lemma B.17, whp it holds that

RπSTB(1) ≥ (1 − ε)m/2. (13)

A union bound then implies that, whp, (11), (12), and (13) hold simultaneously. The latter 
fact, together with the fact that there exists mε > 0 such that (1 − ε)m/2 > 0.4m + m/

√
logm

holds for all m > mε , implies that RπMTB �ε RπSTB holds whp. �
C.2. Proof of Theorem C.1, part (ii)

Let MMTB denote the simple school choice market defined in the theorem statement which has 
n students, m = n + λ(n) schools, and market profile πMTB. Similarly, we use MSTB to denote 
the same market but with market profile πSTB, as defined in the theorem statement.

Lemma C.8. In the market MSTB, suppose that the student s ∈ S is the (n − t + 1)-th highest 
priority student in the common tie-breaker of the schools, with t ≥ 0. Then, s is assigned to one 
of her top x choices with probability at most x�

m−x+1 , where � = t + m − n.

Proof. By the equivalence between the DA-STB and the RSD mechanism (which we recall from 
Section A.1), the probability that s is not assigned to her top choice is 1 − �

m
. The probability 

that s is not assigned to her top two choices is (1 − �
m

)(1 − �
m−1 ). Similarly, the probability that 

s is not assigned to her top i choices is �i
j=1(1 − �

m−j+1 ). Observing that �x
j=1(1 − �

m−j+1 ) ≥
1 − �x

m−x+1 completes the proof. �
Lemma C.9. For any ε > 0, in the student-optimal assignment in the market MSTB, the follow-
ing event holds with high probability as n grows large: at least n(1−ε)

25 log2 n
students are not assigned 

to one of their top 3 log2 n choices.
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Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) We fix the common tie-breaker of the schools 
and let the preference order of every student be drawn independently and uniformly at random 
from the set of all linear orders over the schools. Let the random variable ϕ denote the preference 
profile of the students. (Hence, ϕ is drawn uniformly at random from �n,m.)

Let s be a student with priority number n − t +1, and let Xs be a binary random variable which 
is 1 iff student s is not assigned to one of her top x choices. Let x = 3 log2 n and t = n

5 log2 n
. 

Applying Lemma C.8 implies that any student with a priority number below n − t is assigned to 
one of her top x choices with probability at most

x(t + m − n)

m − x + 1
= 3n/5 + 3(m − n) log2 n

m − 3 log2 n + 1
,

which is at most 4/5 for sufficiently large n. Hence, Pϕ [Xs = 1] ≥ 1/5 holds for sufficiently 
large n. Now, let St denote the set of students with the t lowest priority numbers. Since the 
students’ preference lists are drawn independently, Chernoff bounds apply, and imply that for 
any constant ε > 0, whp it holds that 

∑
s∈St

Xs ≥ (1 − ε)|St |/5. Observing that the right-hand 

side of the latter inequality is equal to n(1−ε)

25 log2 n
concludes the proof. �

Proof of Theorem C.1, part (ii). Fix ε > 0. First, we show that

lim
n→∞P

[
RπMTB �ε RπSTB

]= 0.

To this end, we recall a result from Pittel (1992) that shows, with high probability as n grows 
large, no student has a rank worse than 3 log2 n in the student-optimal assignment in the market 
MMTB. On the other hand, Lemma C.9 shows that at least n(1−ε)

25 log2 n
students are not assigned to 

one of their top 3 log2 n choices, whp. Therefore, whp it holds that RπSTB does not ε-rank-wise 
dominate RπMTB . This implies that the above equation holds.

Next, we show that limn→∞ P
[
RπSTB �ε RπMTB

]= 0. Lemma B.17 implies that, whp,

RπSTB(1) ≥ (1 − ε)n/2. (14)

On the other hand, Proposition 3.1 from Ashlagi et al. (2019) shows that

lim
n→∞EπMTB

[
R+

πMTB
(1)

]
/n = 0.

By the Markov inequality, this also implies that limn→∞ PπMTB

[
R+

πMTB
(1) > n/3

]= 0. This, to-
gether with (14), implies that limn→∞ P

[
RπSTB �ε RπMTB

]= 0. �
Appendix D. Proof of Theorem 3.1: social inequity

For expositional simplicity, here we state and prove the parts of Theorem 3.1 that are about 
social inequity.

Theorem D.1. Let λ :N → N .

(i) Suppose that there exists a constant γ < 3
2 such that λ(n) ≤ nγ for all n. Consider a simple 

school choice market with m schools and n = m + λ(m) students. Let the market profiles 
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πMTB and πSTB be drawn independently and uniformly at random from �n,m
MTB and �n,m

STB, 
respectively. Then,

lim
m→∞

EπMTB

[
Si(μπMTB)

]
EπSTB

[
Si(μπSTB)

] = ∞.

(ii) Suppose that there exists a constant γ < 1 such that λ(n) ≤ nγ for all n. Consider a simple 
school choice market with n students and m = n + λ(n) schools. Let the market profiles 
πMTB and πSTB be drawn independently and uniformly at random from �n,m

MTB and �n,m
STB, 

respectively. Then,

lim
n→∞

EπMTB

[
Si(μπMTB)

]
EπSTB

[
Si(μπSTB)

] = 0.

In under-demanded markets, we also consider a larger excess number of seats, as follows.

Theorem D.2. Consider a simple school choice market M with n students and m = (1 + λ)n

schools. Let the market profiles πMTB and πSTB be drawn independently and uniformly at random 
from �n,m

MTB and �n,m
STB, respectively. Then,

lim
n→∞

EπSTB [Si(μπ)]

EπMTB [Si(μπ)]
> 1

holds when λ is a positive constant no larger than 0.01.

D.1. Preliminaries

Fact D.3. Let k and d ≤ k be positive integers. Define the random variable X = min{X1, . . . , Xd}, 
where X1, . . . , Xd respectively represent the first d elements in a permutation of 1, . . . , k which 
is drawn uniformly at random. Then,

Var[X] = d(k + 1)(k − d)

(d + 1)2(d + 2)
,

E
[
X2
]

= d(k + 1)(k − d)

(d + 1)2(d + 2)
+ (k + 1)2

(d + 1)2 ≥ 2k(k − d)

(d + 2)2 .

Furthermore, the functions f (d) = d(k+1)(k−d)

(d+1)2(d+2)
and g(d) = d(k+1)(k−d)

(d+1)2(d+2)
+ (k+1)2

(d+1)2 are decreasing 
at all d ∈ (0, k).

Proof. The proof for variance is given, e.g., in Arnold et al. (1992), page 55. There, it is also 
shown that E [X] = k+1

d+1 . Plugging this equality and the expression for variance into E 
[
X2
] =

Var [X] +E [X]2 proves the claim for E 
[
X2
]
.

Observe that

d(k + 1)(k − d)

(d + 1)2(d + 2)
+ (k + 1)2

(d + 1)2 = (k + 1)(2k + 2 − d)

(d + 1)(d + 2)
≥ 2k(k − d)

(d + 2)2 .

To prove the last part of the lemma, we compute
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f ′(d) = d3 − d2(2k + 1) − 2d(k + 2) + 2k

(d + 1)3(d + 2)2 ,

g′(d) = (k + 1)
(
d2 − 4dk − 4d − 6k − 8

)
(d + 1)2(d + 2)2 .

Since 2d(k + 2) > 2k and d2(2k + 1) > d3, then f ′(d) < 0. Since d2 − 4dk − 4d − 6k − 8 < 0
holds for all d ∈ (0, k], then g′(d) < 0. �
Lemma D.4. Let π = (ϕ, ψ) be a market profile such that the preference profile ϕ is drawn 
independently and uniformly at random from �n,m and the tie-breaking profile ψ is drawn inde-
pendently and uniformly at random from �n,m

MTB. Then,

Varπ [μ#
π (s)

∣∣μπ(s) �= ∅] = Eπ [Si(μπ)] ,

Varπ [η#
π (s)

∣∣ηπ(s) �= ∅] = Eπ [Si(ηπ )] .

The same holds if ψ is drawn independently and uniformly at random from �n,m
STB, instead of 

�
n,m
MTB.

Proof. We prove the first equality by observing that

Eπ [Si(μπ)] = Eπ

⎡
⎣ 1

|μπ(C)| ·
∑

t∈μπ(C)

(Ar (μπ) − μ#
π(t))2

⎤
⎦

= Eπ

⎡
⎣ 1

|μπ(C)| ·
∑

t∈μπ(C)

Ar (μπ)2 + μ#
π (t)2 − 2Ar (μπ)μ#

π (t)

⎤
⎦

= 1

n
·
∑
t∈S

Eπ

[
Ar (μπ)2 + μ#

π (t)2 − 2Ar (μπ)μ#
π (t)

∣∣∣∣t ∈ μπ(C)

]
(15)

= Eπ

[
Ar (μπ)2 + μ#

π(s)2 − 2Ar (μπ)μ#
π (s)

∣∣∣∣s ∈ μπ(C)

]
(16)

= Varπ [μ#
π (s)

∣∣s ∈ μπ(C)]
= Varπ [μ#

π (s)
∣∣μπ(s) �= ∅]

where (16) holds because the term inside the summation in (15) is equal for all students, by 
symmetry. This proves the first equality in the lemma statement.

The second equality in the lemma statement holds by an identical argument as above but with 
μ replaced with η. �
D.2. Proof of Theorem D.1, part (i)

Lemma D.5. Let λ : N → N be such that λ(i) ≤ i3/2−δ for a positive constant δ and every i. 
Consider a random market, M, with m schools and n = m + λ(m) students. Suppose that the 
market profile for M, namely π , is drawn uniformly at random from �n,m

MTB. Then, Eπ [Si(μπ)] =
�( m2

2 ).

log m
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Proof. The proof has two steps. In Step 1, we show that Eπ [Si(ηπ )] = �( m2

log2 m
). In Step 2, we 

show that Eπ [Si(ηπ )] is close to Eπ [Si(μπ)]. In Step 3 we conclude the proof.

Step 1. Recall that ηπ is the outcome of the school-proposing DA. Let rπ(s) denote the rank of a 
student s in the assignment ηπ . Fix a student s ∈ S. Since Eπ [Si(ηπ )] = Varπ [rπ (s)|rπ (s) �= ∞]
holds by Lemma D.4, we will provide a lower bound on the right-hand side. Let ds denote the 
number of proposals that student s receives in the school-proposing DA. By the law of total 
variance (Weiss, 2006),

Varπ [rπ (s) | rπ (s) �= ∞]
=Eπ [Varπ [rπ (s) | (ds = d) ∧ (rπ (s) �= ∞)]]

+ Varπ [Eπ [rπ (s) | (ds = d) ∧ (rπ (s) �= ∞)]].
This implies that

Varπ [rπ (s) | rπ (s) �= ∞] ≥ Eπ [Varπ [rπ (s) | (ds = d) ∧ (rπ (s) �= ∞)]] .
Since the event rπ (s) �= ∞ is the same as the event ds > 0, then we can rewrite the above in-
equality as

Varπ [rπ (s) | rπ (s) �= ∞] ≥ Eπ [Varπ [rπ (s) | (ds = d) ∧ (d > 0)]] ,
which is equivalent to

Eπ [Si(ηπ )] ≥ Eπ [Varπ [rπ (s) | (ds = d) ∧ (d > 0)]] . (17)

In the remainder of the proof, we fix ε to be an arbitrary constant in the interval (0, 0.1).

Claim D.6. Let d̄ = 2(1 + ε) n
m

log n
n−m

. There exists mε > 0 such that for all m > mε ,

Pπ

[
ds > d̄ | ds > 0

]
<

1

2
.

Proof. Let Pπ denote the total number of proposals made under the school-proposing DA. 
Hence,

Eπ [ds |ds > 0] = Eπ [Pπ/m] .

Let K denote the right-hand side of the above equation. The Markov inequality then implies that

Pπ [ds > 2K|ds > 0] <
1

2
. (18)

By Theorem B.1, the event

(1 − ε/2)n log
n

n − m
≤ Pπ ≤ (1 + ε/2)n log

n

n − m

holds with very high probability as m grows large.28 Therefore, there exists a constant mε such 
that for all m > mε ,

28 While we are concerned with the number of proposals in the school-proposing DA here, Theorem B.1—which pro-
vides bounds for the number of proposals in the student-proposing DA—is applicable by symmetry.
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Eπ [Pπ ] ≤ (1 + ε)n log
n

n − m
,

which means that

K ≤ (1 + ε)
n

m
log

n

n − m
.

The above inequality, together with (18), concludes the proof. �
By Claim D.6 and Fact D.3, (17) implies that for every constant ε ∈ (0, 0.1),

Eπ [Si(ηπ )] ≥ 1

2
· d̄(m + 1)(m − d̄)

(d̄ + 1)2(d̄ + 2)
(19)

holds for all m > mε , where recall that mε is the constant given in Claim D.6 and d̄ = 2(1 +
ε) n

m
log n

n−m
. This completes Step 1.29

Step 2. In this step we show that a lower bound similar to (19) holds for the student-optimal 
assignment. (Recall that (19) holds for the school-optimal assignment.) To this end, we will show 
that the expected social inequities in the school-optimal and the student-optimal assignments are 
“close”, as follows.

Let qπ(s) denote the rank of student s in the student-optimal assignment. By Lemma D.4, and 
by the fact that the set of assigned students are the same in the student- and school-optimal stable 
assignments, we have

Eπ [Si(μπ) − Si(ηπ )]

= Varπ [qπ(s) | qπ(s) �= ∞] − Varπ [rπ (s) | rπ (s) �= ∞]

= 1

m
Eπ

⎡
⎣ ∑

t∈μπ(C)

qπ (t)2 − rπ (t)2

⎤
⎦

−
(
Eπ [qπ(s) | qπ(s) �= ∞]2 −Eπ [rπ (s) | rπ (s) �= ∞]2

)

= 1

m
Eπ

⎡
⎣ ∑

t∈μπ(C)

qπ (t)2 − rπ (t)2

⎤
⎦−

(
Eπ [Ar (μπ)]2 −Eπ [Ar (ηπ )]2

)
. (20)

Let ϒm = 1
m
Eπ

[∑
t∈μπ(C) qπ (t)2 − rπ (t)2

]
and �m = − 

(
Eπ [Ar (μπ)]2 −Eπ [Ar (ηπ )]2). 

To complete Step 2, we provide lower bounds for ϒm and �m.

A lower bound for �m. We note that, for every π and every student s, qπ(s) ≤ rπ (s), because 
the rank of a student s in the student-optimal matching is not worse than her rank in the school-
optimal matching. Thus, Eπ [Ar (μπ)] ≤ Eπ [Ar (ηπ )]. This implies that

�m ≥ 0. (21)

A lower bound for ϒm. We provide a lower bound that holds for all m > m̃, where m̃ is a 
sufficiently large constant that will be set at the end of this step. First, we write

29 Later in the proof, Claim D.9 formally shows that the right-hand side of (19) is �( m2
2 ).
log m
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−ϒm = 1

m
Eπ

⎡
⎣ ∑

t∈μπ(C)

rπ (t)2 − qπ(t)2

⎤
⎦ . (22)

We will provide an upper bound for (22) by considering two cases in the following two claims.

Claim D.7. There exists m1 > 0 such that for all m > m1, if n ≥ m + m
2
3 , then

−ϒm ≤ m
11
6 + 1

100 .

Proof. For a market profile π , define

Mπ = |{t ∈ S : μπ(t) �= ηπ(t)}|.
Let δ = 1/100. Then, by Theorem B.3, there exists mδ > 0 such that

Eπ [Mπ ] ≤ m3/2−2/3+δ = m5/6+δ

holds for all m > mδ . Then, by the above inequality and by (22) we can write

−ϒm ≤ 1

m
Eπ

[
Mπm2

]
≤ m11/6+δ.

Setting m1 = mδ concludes the proof. �
Claim D.8. There exists m2 > 0 such that for all m > m2, if n < m + m2/3, then −ϒm ≤

m2

500(logm)2 .

Proof. First, we need a few definitions. Define

α = 1/321, β = 12α,

r = mβ

(logm)3/4 ,

θ = 2ne−α(logm)1/4
(logm)3.

Let xπ denote the number of students with rank worse than r in ηπ . (We recall that, by definition, 
an unassigned student has rank ∞, and that such a rank is worse than any finite rank.) Let E be 
the event xπ ≤ θ . (We recall that the random variable π is drawn uniformly at random from 
�

n,m
MTB.)
For market profile π , define

Mπ = |{s ∈ S : μπ(s) �= ηπ(s)}|.
Let F be the event Mπ ≤ m√

logm
.

Using the above definitions we can write

−ϒm =
Pπ

[
Ē
] ·Eπ

[−ϒm|Ē] (23)

+Pπ

[
E ∩ F̄

] ·Eπ

[−ϒm|E ∩ F̄
]

(24)

+Pπ [E ∩ F ] ·Eπ [−ϒm|E ∩ F ] . (25)
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To prove the claim, we will provide upper bounds for (23), (24), and (25). For every student 
t , let dπ(t) denote the number of proposals that t receives in the school-proposing DA when the 
market profile is π .

An upper bound for (23). To provide an upper bound for (23), we apply Lemma B.14 with 
κ = 1/2. This implies that there exists mκ such that, for all m > mκ ,

Pπ

[
dπ(s) <

1

4
log

n

n − m

]
≤ 1

m
+ e− 1

107 log( n
n−m

).

The above inequality, together with Lemma B.4, implies that there exists a constant m̃k such that 
for every m > m̃k ,

Pπ [rπ (s) > r] ≤ 1

m
+ e− 1

107 log( n
n−m

) + e−
r
4 log n

n−m
m

≤ 1

m
+ e− logm

321 + e− r logm
12m

≤ e− logm + e− logm
321 + e−α(logm)1/4 ≤ 2e−α(logm)1/4

holds, where the second inequality follows from the fact that n < m + m
2
3 , the third inequality 

follows from the definition of r , and the last inequality follows from the definition of α and the 

fact that e− logm + e− logm
321 ≤ e−α(logm)1/4

holds for sufficiently large m. Recall that xπ denotes 
the number of assigned students with rank worse than r in ηπ . By the above inequality, for every 
m > m̃κ

Eπ [xπ ] ≤ 2ne−α(logm)1/4
.

Hence, by the Markov inequality, for every m > m̃κ ,

Pπ

[
xπ > 2ne−α(logm)1/4

(logm)3
]

< (logm)−3.

Recall that θ = 2ne−α(logm)1/4
(logm)3, by definition. Also, recall that E is the event xπ ≤ θ , by 

definition. Hence, we can rewrite the above inequality as

Pπ

[
Ē
]
< (logm)−3.

The above bound, together with the fact that −ϒm ≤ m2 (which follows directly from (22)), 
implies that

Pπ

[
Ē
] ·Eπ

[−ϒm|Ē]≤ m2

(logm)3 (26)

holds for every m > m̃κ . This is the promised upper bound for (23). Define m2,1 = m̃κ .

An upper bound for (24). We first note that Pπ

[
E ∩ F̄

]≤ Pπ

[
F̄
]
. Then, we recall Theorem 1 

from Ashlagi et al. (2017) that shows there exists a constant m2,2 such that, for all m > m2,2,

Pπ

[
F̄
]≤ e−(logm)0.4

.

On the other hand, −ϒm ≤ m2 (which follows directly from (22)). The two latter inequalities 
imply that, for all m > m2,2,
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Pπ

[
E ∩ F̄

] ·Eπ

[−ϒm|E ∩ F̄
]≤ e−(logm)0.4

m2, (27)

which is the promised upper bound for (24).

An upper bound for (25). Recall that (22) is

−ϒm = 1

m
Eπ

⎡
⎣ ∑

t∈μπ(C)

rπ (t)2 − qπ(t)2

⎤
⎦ .

Then, let S′ ⊆ S denote the set of students who have different ranks under the school- and student-
optimal assignments. Since event F holds, |S′| ≤ m√

logm
. Let S′′ ⊆ S′ contain every student s ∈ S′

for whom rπ (s′) > r . Since event E holds, we must have |S′′| ≤ θ . Therefore, by (22),

Eπ [−ϒm|E ∩ F ] ≤ 1

m

(
m2|S′′| + r2|S′\S′′|

)
≤ 1

m

(
m2θ + r2m√

logm

)

≤ 4m2(logm)3

eα(logm)1/4 + m2β2

(logm)2

holds, where recall that α = 1/321 and β = 12α. Since 4m2(logm)3

eα(logm)1/4 = o(
m2β2

(logm)2 ), then there exists 
a constant m2,3 such that, for all m > m2,3,

Eπ [−ϒm|E ∩ F ] ≤ m2

500(logm)2 .

By the above inequality,

Pπ [E ∩ F ] ·Eπ [−ϒm|E ∩ F ] ≤ m2

500(logm)2 (28)

holds for all m > m2,3. This is the promised upper bound for (25).
We are now ready complete the proof of the claim by providing an upper bound on −ϒm. 

Recall that we wrote −ϒm as the sum of three summands, namely, (23), (24), and (25). The three 
upper bounds that we provided above for these three summands, namely, (26), (27), and (28)
together imply that for every m > max{m2,1, m2,2, m2,3},

−ϒm ≤ m2

500(logm)2 .

Setting m2 = max{m2,1, m2,2, m2,3} concludes the proof of the claim. �
By Claim D.7 and Claim D.8, for every m > max{m1, m2} we have

−ϒm ≤ max

{
m

11
6 + 1

100 ,
m2

500(logm)2

}
.

Observe that m
11
6 + 1

100 = O( m2

500(logm)2 ). Therefore, there exists m̃ such that for all m > m̃,

ϒm ≥ − m2

500(logm)2 . (29)
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This is the promised lower bound on ϒm.
We are now ready to complete Step 2. Recall that by (20) we have

Eπ [Si(μπ) − Si(ηπ )] = ϒm + �m.

By (21) and (29),

Eπ [Si(μπ) − Si(ηπ )] ≥ − m2

500(logm)2 (30)

holds for m > m̃, where we recall the definition of m̃ from (29). This completes Step 2.

Step 3. In this step, we will use (19) and (30) to conclude the proof of the lemma.
We recall (19) by which, for any constant ε ∈ (0, 0.1), there exists mε > 0 such that

Eπ [Si(ηπ )] = Varπ [rπ (s) | rπ (s) �= ∞] ≥ 1

2
· d̄(m + 1)(m − d̄)

(d̄ + 1)2(d̄ + 2)︸ ︷︷ ︸
Xm

(31)

holds for all m > mε , where recall that d̄ = 2(1 + ε) n
m

log n
n−m

. We denote the right-hand side of 
the above inequality by Xm.

Claim D.9. There exists m∗ such that for all m > m∗,

Xm/4 ≥ m2

500(logm)2 + 1.

Proof. We first provide an upper bound for d̄ by applying Fact A.2. This implies that

d̄ ≤ 2(1 + ε)
m + 1

m
log

(m + 1)

(m + 1) − m
≤ 2(1 + ε)(1 + 1

m
) log(m + 1).

Let d = 2(1 + ε)(1 + 1
m

) log(m + 1). The above bound, (31), and Fact D.3 together imply that

Xm ≥ 1

2
· d(m + 1)(m − d)

(d + 1)2(d + 2)

≥ 1

2
· d

d + 2
· (m + 1)(m − d)

(d + 1)2

≥ 1

2
· (1 − 2

d + 2
)(1 − 1

d + 1
)2(1 − 1

m
) · m(m − d)

d2 . (32)

Now, we observe that there exists a constant m∗ > 10 such that, for all m > m∗ we have

d ≤ m

10
, (33)

1 − 1

d + 1
,1 − 2

d + 2
≥ 9

10
, (34)

4

500

m2

(logm)2 ≥ 1, (35)

(1 + 1

m
) log(m + 1) ≤ 1.1 logm. (36)
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(32), (33), and (34) together imply that

Xm ≥ 1

2
· (1 − 2

d + 2
)(1 − 1

d + 1
)2(1 − 1

m
) · m(m − d)

d2

≥ 0.94

2
· m(m − m/10)

d2

≥ 0.95

2
· m2

d2

The above bound implies that

Xm/4 ≥ 0.95

8
· m2

d2 ≥ 0.95

8(2.2(1 + ε))2 · m2

(logm)2 >
5

500
· m2

(logm)2 ≥ 1

500
· m2

(logm)2 + 1,

where the second inequality follows from (35) and (36), and the third inequality follows from the 
fact that ε < 0.1. This concludes the proof. �

We are now ready to prove the lemma. For m > max{m̃, m∗, mε} it holds that

Eπ [Si(μπ)] = Eπ [Si(ηπ )] +Eπ [Si(μπ) − Si(ηπ )]

≥ Xm +Eπ [Si(μπ) − Si(ηπ )] (37)

≥ Xm − m2

500 logm
(38)

≥ m2

500(logm)2 (39)

where (37) follows from (31); (38) follows from (30); and (39) follows from Claim D.9. Hence, 
Eπ [Si(μπ)] = �(m2/(logm)2). �
Lemma D.10. Let λ :N →N . Consider a market M with m schools and n = m +λ(m) students. 
Suppose that the market profile for M, namely π , is drawn uniformly at random from �n,m

STB. 
Then,

Eπ

[
μ#

π (s)2
∣∣μπ(s) �= ∅

]
≤ m(2 + π2/3).

Proof. Let t = √
m logm. The proof uses the equivalence relation between the DA-STB and the 

RSD mechanism. Recall this equivalence relation from Section A.1. For any student s, let ps

denote the priority number of s in the mechanism. We consider two cases: either ps ≤ m − t or 
not. Observe that

Eπ

[
μ#

π(s)2
∣∣μπ(s) �= ∅

]
=Pπ

[
ps ≤ m − t

∣∣μπ(s) �= ∅
] ·Eπ

[
μ#

π(s)2
∣∣ps ≤ m − t

]
+ Pπ

[
m − t < ps ≤ m

∣∣μπ(s) �= ∅
] ·Eπ

[
μ#

π (s)2
∣∣m − t < ps ≤ m

]
. (40)

We will provide an upper bound for each of the terms on the right-hand side of (40).

Claim D.11. A student s with priority number m − t is assigned to one of her top m logm
t

choices 
with probability at least 1 − 1/m.
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Proof. The probability that s is not assigned to her top choice is 1 − t+1
m

. The probability that 
s is not assigned to her second top choice is (1 − t+1

m
)(1 − t+1

m−1 ), which is at most (1 − t+1
m

)2. 
Similarly, it is straightforward to see that the probability that s is not assigned to her i-th top 
choice is at most (1 − t+1

m
)i , which is at most e− t i

m . Setting i = m logm
t

proves the claim. �
By Claim D.11, we have:

Eπ

[
μ#

π (s)2
∣∣ps ≤ m − t

]
≤ (1 − 1

m
) · (m logm/t)2 + 1

m
· (m2) ≤ 2m,

which implies that

Pπ

[
ps ≤ m − t

∣∣μπ(s) �= ∅
] ·E

[
μ#

π (s)2
∣∣ps ≤ m − t

]
≤ 2m. (41)

Also, we have that

Pπ

[
m − t < ps ≤ m

∣∣μπ(s) �= ∅
] ·Eπ

[
μ#

π(s)2
∣∣m − t < ps ≤ m

]
≤ t

m
·

t∑
i=1

1

t
E
[
r2
s

∣∣ps = m − i + 1
]

≤ 1

m
·

t∑
i=1

2 − i/m

(i/m)2 (42)

≤ 1

m
·

t∑
i=1

2(m/i)2

≤ m · π2

3
, (43)

where (42) holds because (i) conditional on ps = m − i +1, the distribution of rs is stochastically 
dominated by the geometric distribution with mean m/i; this holds because for any integer k ∈
[0, m − i], we have

Pπ [rs > k|ps = m − i + 1] = m − i

m
· m − i − 1

m − 1
· . . . · m − i − k + 1

m − k + 1
≤
(

m − i

m

)k

,

and (ii) for a geometric random variable X with mean 1/p, we have E 
[
X2
]= 2−p

p2 .
Finally, putting (40), (41), and (43) together concludes the proof:

Eπ

[
μ#

π (s)2
∣∣μπ(s) �= ∅

]
≤ m(2 + π2

3
). �

Lemma D.12. Let λ :N →N . Consider a market M with m schools and n = m +λ(m) students. 
Suppose that the market profile for M, namely π , is drawn uniformly at random from �n,m

STB. 
Then, Eπ [Si(μπ)] = �(m).

Proof. For notational brevity, let the random variable rs denote the rank of a student s in the 
assignment μπ . Since the expected social inequity and the conditional variance of the rank of 
a fixed student given that she is assigned are equal (by Lemma D.4), we can analyze the latter 
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notion instead of the former. Hence, we will show that Eπ

[
(rs − r)2|rs �= ∞] = �(m), where 

r = Eπ [rs |rs �= ∞] = Eπ [Ar (μπ)].
We observe that, with probability at least 1/2, the student with the priority number m has a 

rank worse than m/2 in μπ . So, for any student s ∈ S we can write:

Eπ

[
(rs − r)2|rs �= ∞

]
≥ 1

m
· 1

2
· (r − m/2)2 .

As shown by Knuth (1996), r = �(logm). Thus, by the above inequality, Eπ [(rs − r)2|rs �=
∞] = �(m).30 On the other hand,

Eπ

[
(rs − r)2|rs �= ∞

]
= Eπ

[
r2
s |rs �= ∞

]
− r2

≤Eπ

[
r2
s |rs �= ∞

]
≤ m(2 + π2

3
),

where the last inequality holds by Lemma D.10. Therefore, Eπ

[
(rs − r)2|rs �= ∞]= �(m). �

Proof of Theorem D.1, part (i). Observe that Lemma D.5 and Lemma D.12 together imply that

Eπ∼U(�
n,m
MTB) [Si(μπ)]

Eπ∼U(�
n,m
STB) [Si(μπ)]

= �

(
m2/log2 m

m

)
,

which proves the claim. �
D.3. Proof of Theorem D.1, part (ii)

Lemma D.13. Let λ :N → N . Consider a market M with n students and m = n +λ(n) schools. 
Suppose that the market profile for M, namely π , is drawn uniformly at random from �n,m

MTB. 
Then, Eπ [Si(μπ)] = O(log2 n).

Proof. The proof has two steps. Loosely speaking, in Step 1, we show that Eπ [Si(μπ)] cannot 
be “much larger” than Eπ [Si(ηπ )]. In Step 2, we show that Eπ [Si(ηπ )] = O(log2 n).

Step 1. First, write the following equality. For every student s ∈ S,

n ·Eπ [Si(μπ) − Si(ηπ )] = nVarπ [μ#
π (s) | μπ(s) �= ∅] − nVarπ [η#

π (s) | ηπ(s) �= ∅] (44)

=
− n ·Eπ

[
Ar (μπ)2 − Ar (ηπ )2

]
(45)

+Eπ

[∑
t∈S

μ#
π (t)

2 − η#
π (t)

2

]
, (46)

where the first equality holds by Lemma D.4. We will complete Step 1 by providing upper bounds 
for (45) and (46).

30 To see why this holds, we recall that f = �(g) if there exist constants m0, c > 0 such that for every m > m0, 
f (m) ≥ cg(m).
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An upper bound for (45). By Theorem B.1, the event Ar (ηπ ) ≤ Ar (μπ)(1 + ζ ) holds with very 
high probability as n grows large. Hence, for any constant ζ > 0, there exists a constant nζ such 
that for n > nζ ,

Pπ [Ar (ηπ ) ≤ Ar (μπ)(1 + ζ )] ≥ 1 − 1

m2 .

This implies the following upper bound on (45), which holds for n > nζ :

−n ·Eπ

[
Ar (μπ)2 − Ar (ηπ )2

]
≤ n(2ζ + ζ 2)Eπ [Ar (μπ)]2 + nm2 · 1

m2

= n(2ζ + ζ 2)Eπ [Ar (μπ)]2 + n.

An upper bound for (46). By the definition of μ, η, we always have μ#
π(s) ≤ η#

π (s). Therefore, 
0 is a valid upper bound for (46), i.e.,

Eπ

[∑
t∈S

μ#
π (t)

2 − η#
π (t)

2

]
≤ 0.

The upper bounds that we provided above for (45) and (46) imply that, for every constant 
ζ > 0 and every n > nζ ,

Eπ [Si(μπ) − Si(ηπ )] ≤ (2ζ + ζ 2)Eπ [Ar (μπ)]2 + 1. (47)

Step 2. We will show that Eπ [Si(ηπ )] = O(log2 n). First, see that for any s ∈ S,

Eπ [Si(ηπ )] = Eπ

[
(Ar (ηπ ) − η#

π (s))2
∣∣ηπ(s) �= ∅

]
= Eπ

[
η#

π (s)2
∣∣ηπ(s) �= ∅

]
−Eπ [Ar (ηπ )]2

≤ Eπ

[
η#

π (s)2
∣∣ηπ(s) �= ∅

]
.

For notational simplicity, let rs denote η#
π(s). Also, observe that the event rs �= ∞ holds in all 

realizations of π , because n < m. Hence, we can rewrite the above bound as

Eπ [Si(ηπ )] ≤ Eπ

[
r2
s

]
. (48)

Next, we provide an upper bound on Eπ

[
r2
s

]
. Fix an arbitrary small constant ε > 0. Let Es

denote the event in which student s receives at least d̄ = (1−ε)n
2 logn

proposals in the school-proposing 
DA.

Claim D.14. Eπ

[
r2
s

]= O(log2 n).

Proof. We start by writing

Eπ

[
r2
s

]
= Pπ [Es]Eπ

[
r2
s

∣∣Es

]
+ (1 − Pπ [Es])Eπ

[
r2
s

∣∣Es

]
≤ Eπ

[
r2
s

∣∣Es

]
+ (1 − Pπ [Es])m2. (49)
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We can provide an upper bound on the right-hand side of (49) by observing the following two 
facts. First, we have

E
[
r2
s

∣∣Es

]
= O(m2/d̄ 2) = O(log2 n), (50)

which holds by Fact D.3. Second, by Lemma B.12, Es happens with very high probability as n
grows large. Therefore, 1 − Pπ [Es] ≤ n−2 holds for sufficiently large n. This implies that

(1 − Pπ [Es])m2 ≤ m2

n2 ≤ 4 (51)

holds for sufficiently large n, where the last inequality follows from the fact that m ≤ 2n.
Finally, observe that (49), (50), and (51) together imply that Eπ

[
r2
s

]= O(log2 n). �
We are now ready to finish the proof. Observe that (48) and Claim D.14 together imply that

Eπ [Si(ηπ )] = O(log2 n). (52)

Therefore, (47) and (52) imply that, for every constant ζ and all n > nζ ,

Eπ [Si(μπ)] ≤ Eπ [Si(μπ) − Si(ηπ )] +Eπ [Si(ηπ )]

≤ (2ζ + ζ 2)Eπ [Ar (μπ)]2 + 1 + O(log2 n).

Theorem B.1, together with Fact A.2, implies that, for any constant δ > 0, Ar (μπ) ≤ (1 +
δ) logn holds wvhp. This fact, together with the above inequality, implies that Eπ [Si(μπ)] =
O(log2(n)). �

So far, we have shown that the expected social inequity under MTB is “small”. In the fol-
lowing lemmas, we show that the expected social inequity under STB is “large”, and then we 
conclude the proof.

Lemma D.15. Let λ :N → N . Consider a market M with n students and m = n +λ(n) schools. 
Suppose that the market profile for M, namely π , is drawn uniformly at random from �n,m

STB. 
Then, Eπ [Ar (μπ)] ≤ m

n
( 1

2m
+ log( m

m−n
)).

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) For any student s, let ps denote the priority 
number of s. Let rs denote the rank of a student s in μπ .

Observe that, for any integer k ≥ 0 and any integer i ∈ [0, k], we have

Pπ [rs > i|ps = k + 1] = k

m
· k − 1

m − 1
· . . . · k − i + 1

m − i + 1
≤ (k/m)i .

Let X denote a geometric random variable with parameter (i.e., success probability) 1 − k
m

. 
The above inequality implies that

Eπ [rs |ps = k + 1] ≤ E [X] = m

m − k
.

Hence,

Eπ [Ar (μπ)] ≤ 1

n
·
n−1∑
k=0

m

m − k
= m

n
(Hm − Hm−n), (53)
49



I. Ashlagi and A. Nikzad Journal of Economic Theory 190 (2020) 105120
where Hi denotes the i-th harmonic number. Finally, we recall the following bound on harmonic 
numbers (see, e.g., Villarino (2005)),

γ + log i ≤ Hi ≤ γ + 1

2i
+ log i,

where γ is the Euler–Mascheroni constant. This bound, together with (53), concludes the lemma:

Eπ [Ar (μπ)] ≤ m

n
(Hm − Hm−n),

≤ m

n
·
(

γ + 1

2m
+ logm − γ − log(m − n)

)
= m

n
(

1

2m
+ log

m

m − n
). �

Lemma D.16. Let λ : N → N be such that λ(n) ≤ nγ for a positive constant γ < 1. Consider a 
market M with n students and m = n + λ(n) schools. Suppose that the market profile for M, 
namely π , is drawn from �n,m

STB uniformly at random. Then, there exist positive constants cγ , nγ

(independent of n) such that Eπ [Si(μπ)] ≥ ncγ holds for all n > nγ .

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) For any student s, let ps denote the priority 
number of s. Let rs denote the rank of a student s in μπ .

Fix a student s. Using Lemma D.4, we can write

Eπ [Si(μπ)] = Eπ

[
(rs − r)2|rs �= ∞

]
= Eπ

[
r2
s |rs �= ∞

]
− r2, (54)

where r denotes Eπ [rs |rs �= ∞] and rs denotes the rank of s in μπ . To provide a lower bound 
for (54), we provide a lower bound for Eπ

[
r2
s |rs �= ∞]

and use Lemma D.15, which provides an 
upper bound for r .

Lower bound for Eπ

[
r2
s |rs �= ∞]

. First, see that

Eπ

[
r2
s |rs �= ∞

]
= 1

n
·
n−1∑
i=0

E
[
r2
s

∣∣ps = i + 1
]
.

Claim D.17. Let �k = m − n + k. Then, Eπ

[
r2
s |ps = n − k + 1

]≥
(

m
5�k

)2
.

Proof. By Lemma C.8, a student s who receives a priority number n −k+1 is assigned to one of 
her top x choices with probability at most x�k

m−x+1 . For any ε ∈ (0, 1), choosing x = εm
�k

implies 
that a student s who receives a priority number n − k +1 is assigned to one of her top εm

�k
choices 

with probability at most ε
1−ε

. Letting ε = 1/3 implies that

Pπ

[
rs ≥ εm

�k

∣∣∣ps = n − k + 1

]
≥ 1

2
.

Therefore,

Eπ

[
r2
s

∣∣∣ps = n − k + 1
]

≥
(

εm√
)2

≥
(

m
)2

. �

2�k 5�k
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Observe that by Claim D.17, for any positive integer k, we have

Eπ

[
r2
s |rs �= ∞

]
≥ 1

n
·

k∑
k=0

(
m

5�k

)2

≥ k

n
·
(

m

5�k

)2

≥ m

25
· k

(�k)
2 ≥ kn

25(nγ + k)2
,

where the last inequality uses the fact that m − n ≤ nγ for a constant γ ∈ (0, 1). Let b =
kn

25(nγ +k)2 . Choose a positive constant ζ < 1 − γ , and set k = n2γ−1+ζ . Then, observe that

Eπ

[
r2
s |rs �= ∞

]
≥ b ≥ n2γ+ζ

25(2nγ )2 = nζ

100
.

Recall that, by Lemma D.15, Eπ [rs |rs �= ∞] ≤ m
n
( 1

2m
+ log( m

m−n
)). This and the above in-

equality together imply that

Eπ [Si(μπ)] = Eπ

[
r2
s |rs �= ∞

]
− (Eπ [rs |rs �= ∞])2 = �(nζ ),

which concludes the proof. �
Proof of Theorem D.1, part (ii). By Lemma D.13, we have that Eπ∼U(�

n,m
MTB) [Si(μπ)] =

O(log2 n), and by Lemma D.16 we have that Eπ∼U(�
n,m
STB) [Si(μπ)] = �(ncγ ) for some constant 

cγ > 0. Therefore,

lim
n→∞

Eπ∼U(�
n,m
STB) [Si(μπ)]

Eπ∼U(�
n,m
MTB) [Si(μπ)]

= ∞. �

D.4. Proof of Theorem D.2

Lemma D.18. Let λ > 0 be a constant. Consider a market M with n students and m = n(1 + λ)

schools. Suppose that the market profile for M, namely π , is drawn uniformly at random from 
�

n,m
MTB. Then,

Eπ [Si(ηπ )] ≤ 8(1 + λ)2

f (log 1+λ
λ

)2
−
(

(1 + λ) log
1 + λ

λ

)2

+ o(1),

where f (x) = ex−1−x
x(ex−1)

and o(1) suppresses a term that approaches 0 as n approaches infinity.

Proof. For every student s ∈ S, let rs = η#
π (s). Fix a student s ∈ S. Define r = Eπ [rs |rs �= ∞]. 

First, we use Lemma D.4 to write

Eπ [Si(ηπ )] = Eπ

[
(rs − r)2|rs �= ∞

]
= Eπ

[
r2
s |rs �= ∞

]
− r2.

The proof works by providing an upper bound on Eπ

[
r2
s |rs �= ∞]

and a lower bound on 
Eπ [rs |rs �= ∞].
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Upper bound on Eπ

[
r2
s |rs �= ∞]

. Let the random variable ds denote the number of proposals 
that student s receives when the school-proposing DA is run in the market M. By Fact D.3, for 
any positive integer d ≤ m, we have

Eπ

[
r2
s |ds = d

]
= d(m + 1)(m − d)

(d + 1)2(d + 2)
+ (m + 1)2

(d + 1)2 ≤ 2
(m

d

)2
, (55)

because each summand in the middle term is at most (m
d
)2. (In particular, the first summand is 

bounded by (m
d
)2 because (m + 1)(m − d) ≤ m2.) In addition, by Lemma B.7, for any constant 

ε > 0, ds ≥ (1 − ε)nf (log m
m−n

)/2 holds with high probability as n grows large, where f (x) =
ex−1−x
x(ex−1)

. This fact together with (55) imply that, for any constant ε ∈ (0, 1), there exists nε > 0
such that for all n > nε ,

Eπ

[
r2
s |rs �= ∞

]
≤ 8(1 + λ)2

(1 − ε)2f (log 1+λ
λ

)2
. (56)

This is the promised upper bound.

Lower bound on r = Eπ [rs |rs �= ∞]. Theorem B.1 shows that, for any constant δ > 0, wvhp, 
rs ≥ m(1−δ)

n
log m

m−n
. Therefore, for any constant δ ∈ (0, 1), there exists a constant nδ such that

r = Eπ [rs |rs �= ∞] ≥ (1 − δ)(1 + λ) log
1 + λ

λ
(57)

holds for all n > nδ .
Finally, observe that (56) and (57) together imply that for any constant γ > 0, there exists 

nγ > 0 such that

Eπ [Si(ηπ )] = Eπ

[
r2
s |rs �= ∞

]
− r2

≤ 8(1 + λ)2

(1 − γ )2f (log 1+λ
λ

)2
−
(

(1 − γ )(1 + λ) log
1 + λ

λ

)2

.

This just means that

Eπ [Si(ηπ )] ≤ 8(1 + λ)2

f (log 1+λ
λ

)2
−
(

(1 + λ) log
1 + λ

λ

)2

+ o(1),

where o(1) suppresses a term that approaches 0 as n approaches infinity. �
Lemma D.19. Let λ > 0 be a constant. Consider a market M with n students and m = n(1 + λ)

schools. Suppose that the market profile for M, namely π , is drawn uniformly at random from 
�

n,m
MTB. Then,

lim
n→∞Eπ [Si(μπ) − Si(ηπ )] = 0.

Proof. First, write the following equality. For every student s ∈ S,

Eπ [Si(μπ) − Si(ηπ )] = Varπ [μ#
π (s) | μπ(s) �= ∅] − Varπ [ηπ(s) | ηπ(s) �= ∅] (58)

=
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−Eπ

[
Ar (μπ)2 − Ar (ηπ )2

]
(59)

+ 1

n
Eπ

[∑
t∈S

μ#
π (t)

2 − η#
π (t)

2

]
, (60)

where the first equality holds by Lemma D.4. We next provide upper bounds for (59) and (60).

An upper bound for (59). Recall that m = (1 + λ)m. By Theorem B.1, there exists a constant 
cλ > 0 such that for every constant ζ > 0, there exists a constant nζ such that

Pπ [Ar (ηπ ), Ar (μπ) ∈ [(1 − ζ )cλ, (1 + ζ )cλ]] ≥ 1 − 1

n3

holds for n > nζ . This implies the following upper bound on (59), which holds for every constant 
ζ > 0 and all n > nζ :

−Eπ

[
Ar (μπ)2 − Ar (ηπ )2

]
≤ 4ζc2

λ + n2 · 1

n3 .

An upper bound for (60). By the definition of μ, η, we always have μ#
π(s) ≤ η#

π (s). Therefore, 
0 is a valid upper bound for (60), i.e.,

Eπ

[∑
t∈S

μ#
π (t)

2 − η#
π (t)

2

]
≤ 0.

The upper bounds that we provided above for (45) and (46) imply that, for every constant 
ζ > 0 and all n > nζ ,

Eπ [Si(μπ) − Si(ηπ )] ≤ 4ζc2
λ + 1

n
,

which means that Eπ [Si(μπ) − Si(ηπ )] = o(1). �
Lemma D.20. Let λ > 0 be a constant. Consider a market M with n students and m = n(1 + λ)

schools. Suppose that the market profile for M, namely π , is drawn from �n,m
STB uniformly at 

random. Then,

Eπ [Si(μπ)] ≥ 2(1 + λ)

λ
− (1 + λ) log(1 + 1/λ) − (1 + λ)2 log(1 + 1

λ
)2 − o(1),

where o(1) suppresses the terms that approach 0 as n approaches infinity.

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) For a student s, let ps denote the priority 
number of s. Also, let rs denote the rank of s in μπ .

Fix a student s, and let r denote Eπ [rs |rs �= ∞]. Using Lemma D.4, we can write

Eπ [Si(μπ)] = Eπ

[
(rs − r)2|rs �= ∞

]
= Eπ

[
r2
s |rs �= ∞

]
− r2. (61)

To provide a lower bound for (61), we provide a lower bound for Eπ

[
r2
s |rs �= ∞]

and use 
Lemma D.15, which provides an upper bound for r .
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Lower bound for Eπ

[
r2
s |rs �= ∞]

. First, see that

Eπ

[
r2
s |rs �= ∞

]
= 1

n
·
n−1∑
i=0

Eπ

[
r2
s

∣∣ps = i + 1
]
.

Claim D.21. For all integers k ∈ [2 log1+λ n, n], it holds that

Eπ

[
r2
s |ps = k + 1

]
≥ z + 1 − (2 + 2 log1+λ n)2/n2

(1 − z)2 − (t̄ + 1)
5

2m
,

where z = k
m

and t̄ = 2 log1+λ n.

Proof. First, we observe that

Eπ

[
r2
s |ps = k + 1

]
=

k∑
j=0

(j + 1)2 · (1 − k − j

m − j
) ·

j−1∏
l=0

k − l

m − l
, (62)

which holds because (1 − k−j
m−j

) · ∏j−1
l=0

k−l
m−l

is the probability that rs = j + 1 conditional on 
ps = k + 1.

For any nonnegative integer t ≤ k, we provide a lower bound for the summand on the right-
hand side of (62) corresponding to j = t . This summand contains the term 

∏t−1
l=0

k−l
m−l

, which we 
bound from below as follows:

t−1∏
l=0

k − l

m − l
≥

t−1∏
l=0

k

m
−

t−1∑
l=0

(
k

m
− k − l

m − l

)

≥
t−1∏
l=0

k

m
−

t−1∑
l=0

l

m
≥ (k/m)t − t2

2m
,

where the first inequality holds by Fact A.5. Now, using the above inequality and (62), we can 
write

Eπ

[
r2
s |ps = k + 1

]
≥

t̄∑
j=0

(j + 1)2 · (1 − k

m
) ·
(

(k/m)j − j2

2m
.

)

≥
t̄∑

j=0

(j + 1)2 · (1 − k

m
) · (k/m)j −

t̄∑
j=0

j2(t̄ + 1)2

2m

≥
t̄∑

j=0

(j + 1)2 · (1 − k

m
) · (k/m)j − (t̄ + 1)

5

2m
. (63)

To provide a lower bound for (63), let z = k/m. We will show that

t̄∑
j=0

(j + 1)2 · (1 − k

m
) · (k/m)j ≥ z + 1 − (2 + 2 log1+λ n)2/n2

(1 − z)2 , (64)

which will conclude the proof. To this end, we observe that
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t̄∑
j=0

(j + 1)2 · (1 − z) · zj =
−(t̄ + 1)2zt̄+3 +

(
2t̄

2 + 6t̄ + 3
)

zt̄+2 − (t̄ + 2)2zt̄+1 + z + 1

(1 − z)2

≥ −(t̄ + 2)2zt̄+1 + z + 1

(1 − z)2 ≥ z + 1 − (2 + 2 log1+λ n)2/n2

(1 − z)2

holds.31 Hence, (64) holds. This completes the proof. �
We now provide the lower bound on Eπ

[
r2
s |rs �= ∞]

using Claim D.21, as follows. Let k =
2 log1+λ n. (Hence, k = t̄ .)

Eπ

[
r2
s |rs �= ∞

]
≥ 1

n
·
n−1∑
k=k

E
[
r2
s

∣∣ps = k + 1
]

≥ 1

n
·
n−1∑
k=k

(
k/m + 1 − (2 + 2 log1+λ n)2/n2

(1 − k/m)2 − (t̄ + 1)
5

2m

)

≥ 1

n
·
⎛
⎝n−1∑

k=k

2 − (1 − k/m)

(1 − k/m)2

⎞
⎠− (2 + 2 log1+λ n)2/n2

(1 − 1/(1 + λ))2 − (t̄ + 1)
5

2m

= m2

n
·
n−1∑
k=k

2

(m − k)2 − m

n
·
n−1∑
k=k

1

m − k
− o(1)

≥ m2

n
·
n−1∑
k=k

2

(m − k)2 − m

n
·
(

1

2m
+ log

m

m − n

)
− o(1), (65)

where o(1) suppresses the term (2+2 log1+λ n)2/n2

(1−1/(1+λ))2 + (t̄+1)
5

2m
, which approaches 0 as n approaches 

infinity. The last inequality uses the fact that γ + log i ≤ Hi ≤ 1
2i

+ γ + log i, where Hi is the 
i-th harmonic number and γ is the Euler–Mascheroni constant (see, e.g., Villarino (2005)).

Next, we use the inequality 1
x2 ≥ 1

x
− 1

x+1 to bound the summation in (65) from below:

m2

n
·
n−1∑
k=k

2

(m − k)2 ≥ 2m2

n
·
(

1

m − n + 1
− 1

m − k + 1

)
= 2(1 + λ)

λ
− o(1),

where o(1) suppresses a term that approaches 0 as n approaches infinity. Plugging the above 
inequality into (65) implies that

Eπ

[
r2
s |rs �= ∞

]
≥ 2(1 + λ)

λ
− (1 + λ) log(1 + 1/λ) − o(1), (66)

where o(1) suppresses a term that approaches 0 as n approaches infinity.

Claim D.22. E [rs |rs �= ∞] ≤ (1 + λ) log(1 + 1
λ
) + 1

2n
.

31 We note that we computed the equality using Mathematica 12. A direct derivation is possible by writing the left-hand 
side in terms of 

∑
j zj , 

∑
j jzj , and 

∑
j j2zj .
55



I. Ashlagi and A. Nikzad Journal of Economic Theory 190 (2020) 105120
Fig. 7. We plot the right-hand side of (67), namely R(λ), for λ ∈ (0,0.1) and λ ∈ [0.01,0.011].

Proof. The proof follows immediately from Lemma D.15, which shows that

Eπ∼U(�
n,m
STB) [Ar (μπ)] ≤ m

n
(

1

2m
+ log(

m

m − n
)). �

Claim D.22 and (66) together conclude the proof of the lemma:

Eπ [Si(μπ)] = E
[
r2
s |rs �= ∞

]
−E [rs |rs �= ∞]2

≥ 2(1 + λ)

λ
− (1 + λ) log(1 + 1/λ) − (1 + λ)2 log(1 + 1

λ
)2 − o(1). �

Proof of Theorem D.2. The proof is a direct consequence of Lemmas D.18, D.19, and D.20. 
The first lemma provides an upper bound for expected social inequality under MTB in school-
proposing DA. The second lemma shows that, under MTB, the expected social inequalities in 
school- and student-proposing DA are essentially the same, in the limit. The third lemma provides 
a lower bound for expected social inequality under STB in student-proposing DA. By these 
lemmas we have:

lim
n→∞

E [Si(μSTB)]

E [Si(μMTB)]
≥

2(1+λ)
λ

− (1 + λ) log(1 + 1/λ) − (1 + λ)2 log(1 + 1
λ
)2

8(1+λ)2

f (log 1+λ
λ

)2 − (
(1 + λ) log 1+λ

λ

)2 , (67)

where f (x) = ex−1−x
x(ex−1)

. It is straightforward to verify that the right-hand side of the above in-
equality is always greater than 1 when λ ≤ 0.01. We omit the algebra and instead demonstrate 
this by plotting the right-hand side in Fig. 7. �
Appendix E. Alternative version of the main theorem

Theorem E.1. Let λ :N →N .

(i) Consider a simple school choice market with m schools and n = m + λ(m) students. Let 
the market profiles πMTB, πSTB be drawn independently and uniformly at random from 
�

n,m
MTB, �n,m

STB, respectively. Then, for any ε > 0, there exists mε > 0 such that, for all m > mε ,

EπMTB

[
RπMTB

]�ε EπSTB

[
RπSTB

]
.
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(ii) Consider a simple school choice market with n students and m = n + λ(n) schools. Let 
the market profiles πMTB, πSTB be drawn independently and uniformly at random from 
�

n,m
MTB, �n,m

STB, respectively. Then, for any ε > 0, there exists nε > 0 such that, for all n > nε ,

EπMTB

[
RπMTB

]
�ε EπSTB

[
RπSTB

]
and EπSTB

[
RπSTB

]
�ε EπMTB

[
RπMTB

]
hold if there exists a constant γ < 1 such that λ(n) = O(nγ ).

E.1. Proof of Theorem E.1, part (i)

We use MMTB to denote the simple school choice market defined in the theorem statement, 
which has m schools, n = m + λ(m) students, and market profile πMTB. Similarly, we use MSTB

to denote the simple school choice market defined in the theorem statement, which has m schools, 
n = m + λ(m) students, and market profile πSTB.

The proof follows the same steps as the proof for part(i) of Theorem C.1, with the difference 
that we provide the following counterparts for Lemmas C.7 and B.17.

Lemma E.2. Let t = 3 logm. For any constant α > 1, there exists a constant βα > 0 (independent 
of m) such that the following holds:

EπSTB

[
R+

πSTB

(
� m

αt
�
)]

≥ m − βα logm · log logm.

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) We fix the common tie-breaker of the schools 
and let the preference order of every student be drawn independently and uniformly at random 
from the set of all strict linear orders over the schools. Let the random variable ϕ denote the 
preference profile of the students. (Hence, ϕ is drawn uniformly at random from �n,m.)

Define x = 2αt logm. Let S′ be the subset of students in MSTB who receive priority numbers 
better (smaller) than m −x. First, we apply Lemma C.6 to each student in S′. Lemma C.6 implies 
that a student with priority number m − x or better gets assigned to one of her top m

αt
choices 

with probability at least 1 −m−2. For every student s, let the binary random variable zs be equal 
to 1 iff s is assigned to one of her top m

αt
choices. Linearity of expectation then implies that

Eϕ

[∑
s∈S′

zs

]
≥ (1 − m−2) · |S′|. (68)

To prove the bound in the lemma statement, we need to take the students in S\S′ into account. 
Also, let S′′ ⊂ S\S′ denote the subset of students who have a priority number between m − x

and m − βt · log logm, where β = 2α2t/ logm. Lemma C.5 implies that, for any s ∈ S′′,

Pϕ [zs = 0] ≤
(

1 − βt · log logm

m

) m
αt ≤ exp

(
−β

α
· log logm

)
.

Having β = 2α2t/ logm implies that, for any s ∈ S′′,

Pϕ [zs = 0] ≤ (logm)
− 2αt

logm .

The above bound and linearity of expectation imply that
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Eϕ

[∑
s∈S′′

zs

]
≥ |S′′| · (1 − (logm)

− 2αt
logm ). (69)

Finally, (68) and (69) imply that

Eϕ

[∑
s∈S

zs

]
≥ |S′| · (1 − m−2) + |S′′| · (1 − (logm)−6)

= (m − x)(1 − m−2) + (x − βt · log logm)(1 − (logm)−6)

≥ m − x − 1

m
+ x − βt · log logm − x(logm)−6

= m − 18α2 logm · log logm − 6α(logm)−4 − 1

m

= m − 18α2 logm · log logm − o(1).

Observing that Eϕ

[∑
s∈S zs

]= EπSTB

[
R+

πSTB

(
� m

αt
�
)]

completes the proof. �
Lemma E.3. EπSTB

[
R+

πSTB
(1)

]= m+1
2 .

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) We fix the common tie-breaker of the schools 
and let the preference order of every student be drawn independently and uniformly at random 
from the set of all strict linear orders over the schools. Let the random variable ϕ denote the 
preference profile of the students. (Hence, ϕ is drawn uniformly at random from �n,m.)

Suppose that, first, the student with the highest priority number chooses her favorite school. 
Then, the student with the next highest priority number chooses, and so on. We call the student 
with the i-th highest priority number student i. Let Xi be a binary random variable which is 
1 iff student i is assigned to her first choice, and let X =∑m

i=1 Xi . Observe that Pϕ [Xi = 0] =
(i −1)/m holds for i ≤ m. Therefore, Eϕ [X] =∑m

i=1
m−i+1

m
= m+1

2 . This proves the claim. �
Now, we are ready to prove part(i) of Theorem E.1.

Proof of Theorem E.1, part (i). By Lemma C.3, R+
πMTB

(
� m

αt
�
)

≤ 0.4m +m/
√

logm holds with 
high probability as m grows large, which implies that

EπMTB

[
R+

πMTB

(
� m

αt
�
)]

≤ 0.4m + o(m).

On the other hand, by Lemma E.2, for every constant ε > 0 there exists m̂ε such that, for all 
m > m̂ε ,

EπSTB

[
R+

πSTB

(
� m

αt
�
)]

≥ m − (logm)1+ε .

Moreover, by Lemma E.3,

EπSTB

[
R+

πSTB
(1)

]= m + 1

2
.

The above three bounds together imply that, for any ε > 0, there exists mε such that

EπMTB

[
RπMTB

]�ε EπSTB

[
RπSTB

]
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holds for m > mε . �
E.2. Proof of Theorem E.1, part (ii)

We use MMTB to denote the simple school choice market defined in the theorem statement, 
which has n students, m = n + λ(n) schools, and market profile πMTB. Similarly, we use MSTB

to denote the same market but with market profile πSTB, as defined in the theorem statement.
The proof follows the same steps as the proof for part(ii) of Theorem C.1, with the difference 

that we provide the following counterpart for Lemma C.9.

Lemma E.4. There exists n0 > 0 such that for all n > n0, in the student-optimal assignment in 
market MSTB, the expected number of students that are not assigned to one of their top 3 log2 n

choices is at least n

25 log2 n
.

Proof. The proof uses the equivalence relation between the DA-STB and the RSD mechanism. 
(Recall this equivalence relation from Section A.1.) We fix the tie-breaker of the schools and let 
the preference order of every student be drawn independently and uniformly at random from the 
set of all strict linear orders over the schools. Let the random variable ϕ denote the preference 
profile of the students. (Hence, ϕ is drawn uniformly at random from �n,m.)

Define x = 3 log2 n and t = n

5 log2 n
. Let s be a student with priority number n − t + 1, and 

let Xs be a binary random variable which is 1 iff student s is not assigned to one of her top x
choices. Applying Lemma C.8 implies that a student with a priority number n − t + 1 or worse 
(i.e., a larger number) is assigned to one of her top x choices with probability at most

x(t + m − n)

m − x + 1
=

(3 log2 n)(m − n + n

5 log2 n
)

m + 1 − 3 log2 n
= 3n/5 + 3(m − n) log2 n

m + 1 − 3 log2 n
,

which is at most 4/5 for sufficiently large n. That is, there exists n0 > 0 such that for all n > n0, 
the above expression is at most 4/5. Hence, P [Xs = 1] ≥ 1/5 holds for sufficiently large n. Now, 
let St denote the set of students with priority numbers n − t + 1, . . . , n. Linearity of expectation 
then implies that Eϕ

[∑
s∈St

Xs

]≥ |St |/5 holds for n > n0. Observing that the right-hand side of 
the latter inequality is equal to n

25 log2 n
concludes the proof. �

Proof of Theorem E.1, part (ii). Fix ε > 0. First, we show that EπMTB[RπMTB ] �ε EπSTB [RπSTB ]. 
To this end, we recall a result in Pittel (1992) that shows there exists a constant γ > 0 such that, 
with probability at least 1 −n−γ , no student has a rank worse than 3 log2 n in the student-optimal 
assignment in the market MMTB. This implies that

EπMTB

[
R+

πMTB
(3 log2 n)

]
≥ n(1 − n−γ ) = n − n

nγ
. (70)

On the other hand, Lemma E.4 shows that

EπSTB

[
R+

πMTB
(3 log2 n)

]
≤ n − n

25 log2 n
. (71)

Finally, observe that (70) and (71) together imply that there exists nε ≥ n0 such that for all 
n > nε , EπMTB

[
RπMTB

]
�ε EπSTB

[
RπSTB

]
.
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It remains to show that there exists n′
ε > 0 such that EπSTB

[
RπSTB

]
�ε EπMTB

[
RπMTB

]
holds for 

all n > n′
ε . To this end, we recall the proof of Lemma B.17, which shows that EπSTB

[
R+

πSTB
(1)

]=
n−1

2 . On the other hand, Proposition 3.1 of Ashlagi et al. (2019) shows that

lim
n→∞EπMTB

[
R+

πMTB
(1)

]
/n = 0.

The latter two equations conclude the proof. �
Appendix F. School choice markets with a discrete choice model

Consider a school choice market with n students and m schools with identical capacities. Stu-
dents’ preferences are based on a symmetric multinomial-logit discrete choice model, defined as 
follows. Each school c has a quality factor wc > 0, and each student’s preference list is generated 
as follows. A student’s first choice is drawn proportionally to the schools’ quality factors. That 
is, her top choice is school c with probability wc∑

c′ wc′
. Her second choice is drawn in a similar 

way after her top choice is removed. That is, conditional on her top choice being school c1, her 
second top choice is school c with probability wc∑

c′ �=c1
wc′

. Her third choice is drawn in a similar 

way after her two top choices are removed, and so on.
Given one realization of the students’ preferences drawn from the above discrete choice 

model, let p1(c) denote the number of students who list school c as their top choice. Then, p1(c)

is an unbiased estimator for wc. We note that every school c with αc = p1(c)
qc

≥ 1 is assigned as 
many students as its capacity, qc, in the student-proposing DA algorithm.

Appendix G. Further computational experiments

G.1. A hybrid tie-breaking rule

We present computational experiments regarding a hybrid tie-breaking rule that uses a com-
mon lottery in popular schools and independent lotteries in non-popular schools.

G.1.1. A hybrid tie-breaking rule in a two-tier model
Consider a simple school choice market as described in Section 2.1. That is, some schools are 

considered as top (popular) schools and others are considered as bottom (non-popular) schools. 
Every student prefers every top school to every bottom school, and preferences within a tier are 
drawn independently and uniformly at random. Three tie-breaking rules are considered: STB, 
MTB, and Hybrid Tie-Breaking rule (HTB), in which all top schools use a common priority 
order as their tie-breaker which is drawn independently and uniformly at random, and every 
bottom school uses a tie-breaker that is drawn independently and uniformly at random.

The markets we consider have 1000 students and 1000 schools, 100 of which are top schools. 
For each of the three tie-breaking rules, we draw 50 independent samples, compute the assign-
ment generated by the student-proposing DA in each sample, and then compute the cumulative 
rank distribution in that assignment. Finally, we compute and report the average cumulative rank 
distribution, with the average taken over the 50 samples (as in Section 4). Fig. 8 reports the aver-
age cumulative rank distribution under the three tie-breaking rules. Observe that the distributions 
under STB and HTB coincide in top schools (i.e., schools ranked 100 or better) and perform bet-
ter than the one under MTB. On the other hand, the distributions under MTB and HTB coincide 
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Fig. 8. Cumulative rank distributions under MTB, STB, and HTB. The horizontal axis represents rank and the vertical 
axis fraction of students.

in bottom schools (i.e., schools ranked 101 or worse). Note that there is no rank-wise dominance 
in this range.

So HTB inherits the properties of STB in top schools and those of MTB in non-popular 
schools.

G.1.2. Experimenting with a hybrid rule using NYC data
In NYC the market is not perfectly tiered as in the previous experiment. Therefore, to test 

the hybrid tie-breaking rule (HTB), we heuristically select a set of popular schools.32 For each 
popularity threshold α, we define the set of popular schools as the set of schools with a popularity 
threshold higher than α.

Table 4 reports the (average) number of students assigned to each rank under each tie-breaking 
rule for different popularity thresholds. First, we fix a popularity threshold α ∈ {1, 1.5, 2}. Then, 
for each tie-breaking rule we draw 50 independent samples, run the student-proposing DA in 
each sample, and compute the number of students assigned to each rank. Then, for each rank r
we compute the average number of students assigned to a school ranked r or better on his or her 
list with the average taken over the 50 samples. (Since the students are allowed to rank up to 12 
schools, r ∈ {1, . . . , 12}.)

Observe that none of the tie-breaking rules rank-wise dominates the other two. When we 
measure the number of assigned students, MTB performs better than HTB, and HTB performs 
better than STB. However, when we measure how many students are assigned to their first choice, 
STB performs better than HTB, and HTB better than MTB. Naturally, the lower the popularity 
threshold α, the “closer” the rank distribution under HTB is to the rank distribution under STB.

To understand the effect of each tie-breaking rule within each tier, we plot the rank distribution 
in popular and non-popular schools for a fixed popularity threshold α = 2. Figs. 9a and 9b report 
the average cumulative rank distributions. Observe that the rank distribution in popular schools 
under HTB rank-wise dominates the one under MTB, whereas these rank distributions almost 
coincide in non-popular schools.

32 A careful study on classifying schools based on their popularity is an essential prerequisite of using the hybrid rule 
in practice.
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Table 4
The average cumulative rank distribution under each tie-breaking rule. The numbers 1, . . . , 12 in the table header corre-
spond to ranks. The digits after the decimal points are truncated.

α Tie-breaking 1 2 3 4 5 6 7 8 9 10 11 12

1
STB 36670 50976 59117 64059 67141 69066 70314 71057 71570 71892 72093 72234
HTB 35234 49927 58588 63889 67175 69197 70491 71245 71758 72070 72263 72392
MTB 32379 48076 57778 63715 67347 69510 70844 71605 72097 72384 72552 72667

1.5
STB 36675 50987 59133 64069 67157 69086 70333 71080 71595 71913 72109 72254
HTB 34196 49272 58302 63825 67232 69307 70600 71351 71851 72157 72340 72462
MTB 32389 48094 57784 63728 67343 69501 70833 71592 72084 72370 72538 72654

2
STB 36672 50983 59124 64072 67154 69077 70325 71069 71582 71903 72100 72243
HTB 33283 48716 58065 63787 67291 69400 70715 71475 71968 72263 72437 72556
MTB 32381 48069 57765 63715 67341 69503 70837 71601 72094 72381 72548 72660

Fig. 9. Students’ rank distributions in popular schools (left) and non-popular schools (right) under STB, MTB, and HTB 
with popularity threshold α = 2. The horizontal axis represents the rank and the vertical axis the number of students.

G.2. Pareto-improving pairs

We ran experiments to measure the average number of students involved in Pareto-improving 
(PI) pairs. These are pairs of students who both would be better off if they swap their seats. Each 
statistic is calculated by taking an average over 50 samples for each tie-breaking rule. We find no 
PI pairs under STB in any of these samples. We report the results about MTB and HTB below.

A student is a PI student if she is involved in at least one PI pair. Fig. 10 reports the fraction of 
students involved in a PI pair for various α’s under MTB and HTB. The following three statistics 
are reported for each α: (i) overall: the fraction of PI students, (ii) in popular schools: the fraction 
of PI students in popular schools, i.e., the number of PI students in popular schools divided by 
the total number of students assigned to popular schools, and (iii) in non-popular schools: the 
fraction of PI students in non-popular schools.

Under MTB (Fig. 10a), there exists a clear gap between the fraction of PI students in popular 
and non-popular schools. At α = 1, these fractions are 20% and 1%, respectively. At α = 2, this 
gap naturally shrinks, because fewer schools are categorized as popular as α goes up. Under 
HTB (Fig. 10b), there are no PI students in popular schools. However, there are such students 
in non-popular schools, as expected, since MTB is used in non-popular schools. The fraction 
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Fig. 10. The horizontal axes represent popularity thresholds and the vertical axes the fraction of PI students.

of PI students increases with the popularity threshold, because more schools are categorized as 
non-popular (and run independent lotteries) at higher values of α.
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Abdulkadiroğlu, Atila, Pathak, Parag A., Roth, Alvin E., 2009. Strategy-proofness versus efficiency in matching with 
indifferences: redesigning the New York City high school match. Am. Econ. Rev., 1954–1978.
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