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Abstract

Lotteries are a common way to resolve ties in assignment mechanisms that ration

resources. We compare two standard tie-breaking rules that are paired with the de-

ferred acceptance algorithm. One uses a common lottery shared by all resources, and

the other uses a separate, independent lottery for each resource.

We consider a model with a continuum of agents and a finite set of resources with

heterogeneous qualities, where the agents’ preferences are generated from a multinomial-

logit (MNL) model based on the resource qualities. We show that all agents prefer a

common lottery to separate lotteries (in the sense of first order stochastic dominance)

if every resource is popular, meaning that the mass of agents ranking that resource as

their first choice exceeds its capacity.

Building on this finding, we prove a stronger result where the assumption that every

resource is popular is not required and agents’ preferences are drawn from a (more

general) nested MNL model. By appropriately adapting the notion of popularity to

resource types, we show that a hybrid tie-breaking rule in which the objects in each

popular type share a common lottery dominates the multiple tie-breaking rule.
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1 Introduction

Lotteries are often used to allocate scarce resources without monetary transfers. How lotter-

ies are conducted naturally affects distributional outcomes. This problem arises, for example,

in the assignment of students to schools, when ties must be resolved in over-demanded schools

(Erdil and Ergin, 2008a) or in on-campus housing where students list residences or categories

of housing to which they wish to be assigned to.1

A common way to allocate resources applies the Deferred Acceptance (DA) algorithm

of Gale and Shapley (1962) after resolving ties using lottery numbers. This approach is

strategy-proof and creates assignments without justified envy2 and, in particular, provides

a transparent reference for explaining the (potentially) unequal assignments of equals.

We consider allocation problems where a set of resources is allocated to unit-demand

agents. In these problems, there are two common types of lotteries used along with DA: the

single tie-breaking (STB) and the multiple tie-breaking (MTB) rules. The STB rule assigns

each agent a single random number which is used to break the ties between agents at every

resource, whereas the MTB rule assigns each agent a different, independently drawn, random

number at each resource. These lotteries naturally result in different assignments. This paper

uncovers distributional properties of agents’ ranks in stable assignments under these lotteries

when resources have heterogeneous qualities and agents have random multinomial-logit-based

preferences.

Previous empirical (Abdulkadiroğlu et al., 2009; De Haan et al., 2015) and theoretical

(Arnosti, 2015; Ashlagi et al., 2019) studies in the setting of school choice find that a single

lottery assigns more students to their top-ranked choices, but also more students to lower-

ranked choices. Ashlagi and Nikzad (2016) further identify that in random markets with

short supply, this trade-off vanishes and STB is in fact preferable to MTB in the sense of

“approximate” first-order stochastic dominance. Their stylized model assumes that students’

preference lists are generated independently and uniformly at random and every school has

one seat.

This paper considers a general model for rationing resources using lotteries, where re-

sources have heterogeneous qualities and capacities and agents have a rich model of random

preferences that takes into account resource qualities. Note that if resources have identical

1For example, lottery numbers are used to determine the housing assignments on Stanford and Columbia
campuses. (See https://rde.stanford.edu/studenthousing/assignment-rounds#lottery and https:

//housing.columbia.edu/content/point-values-lottery-numbers-selection-appointments.)
2No justified envy means that no individual prefers another assignment over her assignment and has a

higher priority than someone else assigned to the preferred assignment.
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qualities, preferences are generated uniformly at random as in Ashlagi and Nikzad (2016).

We are interested in comparing agents’ rank distributions at each resource (and not just in

the entire market as done in previous studies).

In the setup we consider there are n resources and a continuum of agents (Abdulkadiroğlu

et al., 2015; Azevedo and Leshno, 2016). Each resource j has a fixed quality µj > 0 and

capacity qj > 0. Agents have complete and strict preference orders over resources, drawn

independently from a multinomial-logit (MNL) model induced by the resource qualities.

That is, an agent’s top choice is resource j with probability
µj∑n

k=1 µk
; more generally, the

probability that resource j is an agent’s most preferred resource from a subset of resources

S 3 j equals
µj∑

k∈S µk
.3 It is assumed (for simplicity and tractability) that resources are

indifferent between all agents, so priorities of agents at each resource are solely determined

by lotteries. We compare agent-optimal stable matchings under the STB and MTB lotteries.

A key notion in the results is related to the demand for a resource. A resource is popular

if the mass of agents who rank it as their first choice exceeds its capacity. For example, when

all resources have the same capacity and also the same quality, then any resource is popular

if and only if the mass of agents is larger than the sum of the capacities of the resources.

This is an adaptation of the notion of popularity for uniformly generated preferences from

Ashlagi and Nikzad (2016) to the continuum setup here with MNL preferences.4 We first

consider the case where all resources are popular, and find that every agent prefers STB

to MTB in the sense of first-order stochastic dominance (Theorem 1, Part 1). Moreover,

every resource admits agents that rank it higher under STB than under MTB in a first-order

stochastic dominance sense (Theorem 1, Part 2).

When the market also includes non-popular resources, the first part of the theorem no

longer holds, which is consistent with empirical evidence. However, we show that, when

the agents’ preferences are (more generally) drawn from a nested MNL model,5 a hybrid tie-

breaking rule that uses the same lottery number within each popular resource type dominates

3Such preferences were also used in Kojima and Pathak (2009) and also referred to as popularity-based
preferences, e.g., in Gimbert et al. (2019). Moreover MNL preferences are often used to estimate demand in
school choice problems (e.g., Shi (2015); Agarwal and Somaini (2018); Pathak and Shi (2013)).

4In the setup of Ashlagi and Nikzad (2016) there are a finite number of schools and students, and
a student’s preference order is drawn independently and uniformly at random from the set of all strict
orderings of schools. There, when the number of schools is less than the number of students, the expected
number of students that rank a fixed school as their first choice is larger than one, the capacity of the school.
In our continuum model, this expectation equals the realized value, and a school is popular when the realized
value exceeds the school’s capacity.

5So an agent’s preferences can be interpreted as if there are two levels of choice, with the first level being
the choice of the category (or type) and the second level the choice within the category.
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MTB in the sense of first-order stochastic dominance. This leads to a strengthening of the

theorem applicable to settings where there is excess supply, as detailed next.

In the more general setup with the nested MNL model, the set of resources is partitioned

to different types, and the resources of the same type are ranked consecutively by every

agent (but not necessarily in the same order). An agent’s ordering over the resource types

is drawn from an arbitrary distribution, and her ordering over the resources within each

type is drawn from a type-specific MNL model. Under an appropriate adaptation of the

notion of popularity to resource types, in Proposition 1 we show that a hybrid tie-breaking

rule, in which the resources in each popular type share the same lottery number, dominates

MTB. That is, every agent prefers a hybrid tie-breaking rule to MTB, and every resource is

assigned to agents that rank it higher, in the sense of first-order stochastic dominance (as in

the first and second parts of Theorem 1).

The adapted notion defines popular resource types as follows. The demand for a resource

type is the set of agents who are assigned to that type or prefer a resource of that type to

their assignment, under MTB.6 A type t is popular if, for every resource of type t, the mass

of agents who demand t and rank the resource first among the resources of type t is no less

than the capacity of the resource. For example, when all resources of a given type have the

same capacity and quality, that type is popular if the demand for it is more than the sum

of the capacities of its resources.

A rough intuition for Theorem 1 is that when resources are sufficiently popular, a coordi-

nated lottery essentially determines which agents will be assigned, and among these agents

the allocation is efficient. A separate lottery for each resource results in inefficiencies among

assigned agents who may wish to trade their assignments. For further intuition consider

the following simple example. Consider a market with two resources that have qualities

µ1 ≥ µ2. In the execution of the DA, at each round every unassigned agent applies to her

favorite choice to which she has not yet applied. Observe that, under STB, an agent who is

rejected from resource 2 cannot be admitted to resource 1, because her lottery number did

not suffice to allow her to be admitted to a resource in lower demand. This implies that,

under STB, agents assigned to the first resource must rank it as their first choice. Moreover,

under both lotteries, the same mass of agents whose first choice is resource 1 are rejected

from that resource after all agents apply to their first choice. But more of these agents will

be admitted to their second choice under MTB than under STB, because under MTB they

6We show that the notion of demand is in fact invariant to the choice of the tie-breaking rules that
Proposition 1 concerns with.
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receive a new lottery number for resource 2. DA will terminate after 2 rounds for STB, but

for MTB the process will continue, with each round assigning more agents to resources that

they rank second. Observe that the outcome satisfies the results in Theorem 1.7

A direct analysis is already challenging with only three resources, and more subtle ar-

guments are required that build on the cutoff characterization of stable matchings. Under

a single lottery and MNL preferences the outcome has a simple structure and cutoffs have

a closed form (Ashlagi and Shi, 2014). Under MTB, however, the cutoffs do not have a

closed-form expression. We compare the two tie-breaking rules by developing bounds on the

distribution of agents’ ranks.

This paper contributes to the analysis of rank distributions in matching markets where

agents’ preferences are generated from a rich and empirically relevant model (Agarwal and

Somaini, 2018). Techniques and intermediate results, which establish properties about the

cutoff structures, may be of independent interest.

1.1 Related Literature

Abdulkadiroğlu and Sönmez (2003); Abdulkadiroğlu et al. (2009, 2005) apply matching the-

ory to develop strategyproof mechanisms for school choice. Policy decisions surrounding

school choice also involve resolving tie-breaking (Erdil and Ergin, 2008b; Abdulkadiroğlu

et al., 2009; Feigenbaum et al., 2020), design of menus and priorities (Ashlagi and Shi, 2016;

Dur et al., 2013; Shi, 2021) and diversity-related constraints (Ehlers et al., 2014; Echenique

and Yenmez, 2015; Kominers and Sönmez, 2016).

Several papers analyze trade-offs between STB and MTB in addition to those discussed

above. Arnosti (2019) compares single and multiple lotteries in a model in which there is a

continuum of schools, each of which has capacity for a finite number of students. The paper

analyzes the effect of students having preference lists of varying length, and establishes a

single crossing property between the cumulative rank distribution of students under STB

and MTB (see also Ashlagi et al. (2019), which explains why STB assigns more students to

their top choices in a model with random preferences).8 Additionally, he shows that among

students who submit short lists, the rank distribution under a single lottery stochastically

dominates the corresponding distribution under independent lotteries. Our paper assumes

7In fact, in this simple example, the result holds true even if the second resource is not popular.
8Abdulkadiroğlu et al. (2015) analyze the cutoffs that clear the market in a continuum model and

establish that STB is ordinally efficient (see also Che and Kojima (2010), Liu and Pycia (2012), and Ashlagi
and Shi (2014)).
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a rich preference model over qualities but distinguishes between popular and non-popular

schools to explain the source of these trade-offs.

Shi (2021) optimizes over the space of all priority-based mechanisms and finds that a sin-

gle lottery maximizes the total utility of students when the utilities follow an MNL model.

Our paper in contrast looks at the rank distributions under common and independent lot-

teries and identifies when these distributions exhibit a rank dominance relation.

Arnosti and Shi (2020) compare common and multiple lotteries in a dynamic model where

agents have heterogeneous values for distinct items and heterogeneous outside options. They

show that using independent lotteries for each item is equivalent to using a waitlist in which

agents lose priority when they reject an offer, and that using a common lottery for each item

improves the quality of matches.

2 Model

We study a large matching model based on the framework in Azevedo and Leshno (2016).

There is a finite set of resources S = {1, ..., n} and a continuum of agents with mass N .

Each agent demands to be allocated a resource, and each resource j ∈ S has capacity

qj > 0, meaning that it can be allocated to a mass of at most qj agents. Each agent has

a strict preference ranking, which is a linear order over all resources. Let Πn be the set

of all permutations of n elements. A matching market is given by C = (m, q,N) where m

is a probability measure over Πn and q = (q1, ..., qn) is the vector of the capacities of the

resources.

Tie breakers. For tractability, we assume that resources do not have any exogenous pri-

orities over the agents; rather, their priorities are solely determined by lotteries. Each agent

i is assigned a vector of lottery numbers Li ∈ [0, 1]n, where Lij is agent i’s lottery number at

resource j. Each resource j is assumed to prefer agents in decreasing order of their lottery

number at j. To generate lottery numbers for agents, the following definition will be helpful.

Definition 1. A tie-breaking rule is a probability measure ν defined on [0, 1]n where each

marginal of ν is non-atomic.9

Requiring that the marginals of a tie-breaking rule are non-atomic ensures that each

9Where ν is defined on the Lebesgue σ-algebra on [0, 1]n.
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resource has strict preferences over agents. A tie-broken market is given by E = (C, ν),

where C is a matching market and ν is a tie-breaking rule.

Two commonly applied tie-breaking rules are studied, Single Tie-Breaking (STB) and

Multiple Tie-Breaking (MTB). Under STB each agent receives the same lottery number for

all resources, uniformly distributed on [0, 1]. So, STB is the uniform measure on the line

{(x, x, ..., x) : x ∈ [0, 1]}. Under MTB each agent receives a lottery number independently

for each resource, where each number is chosen uniformly on [0, 1]. So, MTB is the uniform

measure on [0, 1]n.

Matching, stability and cutoffs. Consider a tie-broken market E = (m, q,N, ν) with

tie-breaking ν. Let Λ = Πn × [0, 1]n be the set of all pairs of agent preferences and lottery

numbers. A matching is a function f : S ∪ Λ→ 2Λ ∪ S ∪ {∅} such that

1. For all i ∈ Λ, f(i) ∈ S ∪ {∅}.

2. For all j ∈ S, f(j) ⊆ Λ is (m×ν)-measurable and (m×ν)(f(j)) ≤ qj/N , where (m×ν)

is the product measure between m and ν.

3. For all i ∈ Λ and j ∈ S, j = f(i) if and only if i ∈ f(j).

4. For any sequence ik = (P k, Lk) ∈ Λ and i = (P,L) ∈ Λ, with Lk converging to L and

weakly decreasing with k in each component, there is some K such that f(ik) = f(s)

for all k > K.

The first condition ensures that an agent is assigned either to a resource (and thus matched)

or to the empty set (remaining unmatched). The second condition ensures that the mass of

agents assigned to each resource does not exceed its capacity. The third condition ensures

that if an agent is assigned to a resource, the resource is matched to the agent. The fourth

technical condition eliminates multiplicities of matchings that differ by a set of measure 0

(Azevedo and Leshno, 2016).

A matching f is stable if there is no agent i and resource j such that i strictly prefers

j to f(i), and either there is some i′ ∈ f(j) such that Lsj > Li
′
j or j has excess capacity.

Azevedo and Leshno (2016) show that every stable matching corresponds to a set of cutoffs

c = (c1, ..., cn) ∈ [0, 1]n, where every agent i is matched to her most preferred resource j for

which her lottery number exceeds the cutoff (Lij ≥ cj). Furthermore, they show that there
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exists a unique agent-optimal stable match, wherein each agent is matched to their most

preferred resource that they can be matched to in any stable match.10

Denote by f ν the agent-optimal stable matching for the tie-broken market. So fSTB

and fMTB denote that agent-optimal matching when the tie-breaking rules are STB and

MTB, respectively. When it is clear from the context we denote by α = (α1, ..., αn) and

β = (β1, ..., βn) the cutoffs under the matchings fSTB and fMTB, respectively.

The STB cutoffs can be calculated in closed form (Ashlagi and Shi, 2014). This is not

the case for the MTB cutoffs, but these can be computed through an iterative algorithm,

which progressively increases the cutoffs to clear the market and converges to β.

Ranks and dominance. For a given matching, the rank of an agent is the position on

the agent’s preference list of the resource to which the agent is assigned. For example, if an

agent is matched to her second choice, then her rank is two.

Consider a matching market and a tie-breaking rule ν ∈ {STB,MTB}. Denote by Rν
j

the distribution of agent ranks at resource j in the stable matching f ν . That is, Rν is the

n-dimensional vector in which its kth element is the fraction of agents assigned to resource

j with rank k in f ν .

For a preference order P ∈ Πn let Rν
P denote the distribution of ranks of agents with

preference P who are matched in f ν . That is, Rν
P is the n−dimensional vector in which

its kth element is the fraction of agents with preference order P who are assigned their

kth-ranked resource in f ν .

Observe that for any j ∈ S and P ∈ Πn the vectors Rν
j and Rν

P are stochastic vectors,

i.e., vectors with nonnegative entries that sum to 1.

Definition 2. If v = (v1, ..., vn) and w = (w1, ..., wn) are stochastic vectors with equal length

n, v rank-dominates w, indicated by v � w if for all k ∈ {1, ..., n},

k∑
j=1

vj ≥
k∑
j=1

wj.

Observe that rank dominance is equivalent to first-order stochastic dominance but with

the order of the two vectors reversed. This definition is adopted for clarity of exposition,

since in this setting lower agent ranks are preferable to higher ranks in terms of welfare.

10Azevedo and Leshno (2016) also show that under some regularity conditions the stable matching is
unique.
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Definition 3. STB dominates MTB for agents with preference order P ∈ Πn if

RSTB
P � RMTB

P .

Definition 4. STB dominates MTB at resource j if

RSTB
j � RMTB

j .

3 Main Results

We first consider a setting where there is excess demand and the agents’ preferences are

drawn from a multinomial-logit (MNL) model. We then extend this setting to one with a

nested MNL preference model for the agents, where there can be an excess of resources.

3.1 MNL preferences

We suppose that each resource j has quality µj > 0. Informally, an agent’s first choice (most

preferred resource) is drawn independently from the multinomial distribution with a weight

for each resource that equals its quality. The agent’s second choice is then drawn similarly

from all remaining resources, and so forth.

Definition 5. A matching market C = (m, q,N) has MNL preferences with resource qualities

µ1, ..., µn if for any preference order P = (r1, ..., rn) ∈ Πn,

m(P ) =
n∏
k=1

µrk∑n
j=k µrj

.

When clear from the context, we sometimes say that agents have MNL preferences.

We note that this definition is just multiplying the chance that r1 is the agent’s first

choice by the chance that r2 is the agent’s second choice, and so on. Throughout the paper,

when a matching market has MNL preferences, we assume that resources are indexed such

that
µ1

q1

≥ ... ≥ µn
qn
.

We also assume without loss of generality that the qualities sum to one.
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Definition 6. A resource j is popular if the mass of agents who rank it as their first choice

is at least the capacity of j.

Note that under MNL preferences, resource j ∈ S is popular if and only if Nµj ≥ qj.

Theorem 1. Consider a matching market that has MNL preferences and every resource is

popular. Then

1. STB dominates MTB for agents with any preferences.

2. STB dominates MTB at every resource.

The assumption that all resources are popular can be natural in some applications such as

housing allocation, but unrealistic in other applications such as school choice. In Section 3.2

we relax this limitation by considering a more general model with multiple resource types

and adapt the notion of popularity to resource types.

The intuition for the dominance of STB over MTB when there are only two resources is

relatively simple. Under STB agents who first apply to resource 2 but are rejected remain

unassigned, whereas under MTB these agents have a chance to apply to resource 1 and

displace agents who otherwise would have been assigned there. So, agents are more likely to

receive their second choice resource under MTB, and thus are less likely to receive their first

choice. In fact, Theorem 1 applies when there are only two resources even if the resources

are not popular.

When there are at least three resources, this intuition breaks down, and even proving the

theorem for when there are three resources is nontrivial. We were unable to find a simple or

inductive proof of the theorem, as adding an additional resource to a matching market has

a complicated effect on the resources and the agents of different types.

In Appendix B we demonstrate the necessity of the conditions in Theorem 1 through

Example 1, which shows that STB may not dominate MTB at resources that are non-

popular.11 In general it is possible that neither STB nor MTB would dominate the other at

a non-popular resource. Moreover, when there are both popular and non-popular resources,

the theorem does not imply that STB dominates MTB in every popular resource.

3.2 Nested MNL Preferences

We now generalize the MNL preference model of Section 3.1 to a nested preference model

in which resources are of multiple types. There are t̄ resource types, with T = {1, . . . , t̄}
11In the example, MTB dominates STB at a non-popular resource, even though that resource is fully

allocated by the end of DA.
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denoting the set of all types. Each resource j ∈ {1, . . . , n} has a type tj ∈ T . Denote by nt

the number of resources of type t. Every agent has a complete strict preference order over

resource types. The agent prefers a resource of type t to a resource of type t′ if she prefers

the resource type t to t′. Thus, if P ∈ Πn is the preference order of an agent over resources,

then resources of the same type are ranked consecutively on P .

As in Section 3.1, a resource j has a quality µj. An agent’s preference order over the

resources of the same type are defined by a type-specific MNL model, as formalized next. This

model first draws a preference order over the resource types for an agent from an arbitrary

distribution m̄, and then ranks the resources within each type independently, according to

a MNL model based on the corresponding qualities.

Definition 7. A matching market C = (m, q,N) with resource types 1, . . . , t̄ specified as

above and resource qualities µ1, ..., µn has nested MNL preferences over the resource types

if it satisfies the following conditions. For all preference orders P ∈ Πn, if P does not rank

all resources of the same type consecutively, then m(P ) = 0. Otherwise, let m̄(P ) denote the

probability that an agent ranks the resource types in the order that they are ranked in P . For

each t ∈ T let mt(P ) denote the probability that an agent with MNL preferences would rank

the resources of type t in the order that they are ranked in P , as in Definition 5. Then

m(P ) = (m̄×m1 × ...×mt̄)(P ).

Without loss of generality, we will assume that the qualities of the resources of the same

type sum to one. We will extend Theorem 1 to this multi-type setting, proving that when the

resources of a given type are at sufficiently high demand, then using a common lottery for

resources of that type (HTB) dominates MTB. First we give some preliminaries formalizing

what we mean by sufficiently high demand.

Definition 8. For a given matching market and tie-breaking rule, the demand for a subset

R of the resources is the mass of agents in the agent-optimal stable assignment who are either

assigned to a resource in R or who prefer a resource in R to their assignment. When R is

the set of resources of the same type t, we use Dt to denote the demand for R.

Definition 9. In a given matching market with nested MNL preferences and tie-breaking

rule ν, a resource type t is popular if for every resource j of that type,

µjDt ≥ qj,
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where Dt is the demand for the set of resources of type t.

The left-hand side of the above inequality µjDt is the mass of agents who demand type

t and rank j first among resources of type t. To see why, let St denote the set of resources

of type t. As the agents’ preferences over the resources of type t are drawn from a MNL

model, then
µj∑

j′∈St
µj′
Dt equals the mass of agents who demand type t and rank j first among

resources of type t. Recall that we normalized the qualities of the resources of the same type

so that they sum to one. Thus, µjDt is the mass of agents who demand type t and rank j

first among resources of type t. The above inequality asserts that this mass is at least the

capacity of j. Notably, if all resources have the same type, then that type is popular if and

only if all of the resources are popular in the sense of Definition 6.

We next describe a natural class of hybrid tie-breaking rules that interpolate between

STB and MTB, and then show a dominance relation between them.

Definition 10. For a subset of resource types X ⊆ T , we denote by HTB(X) the hybrid

tie-breaking rule that (i) for each t ∈ X, assigns to each agent the same independently drawn

lottery number at all resources of type t, and (ii) at each resource with type not belonging to

X assigns to each agent an independently drawn lottery number.12

We note that, according to this definition, an agent is assigned the same lottery number

at two resources if they belong to the same popular resource type, but she is assigned

independently drawn lottery numbers at resources that belong to different popular types.

The next lemma shows that the set of popular resource types under HTB(X) is invariant to

the choice of X, as the demand for a resource type does not depend on X.

Lemma 1. For a matching market with set T of resource types and nested MNL preferences

over T , for every T1, T2 ⊆ T , a resource type is popular under HTB(T1) if and only if it is

popular under HTB(T2).

Proof. Fix a subset of types X ⊆ T and consider the assignment of agents under HTB(X).

For resource type t, let Qt be the sum of the capacities of resources of type t. Conditional on

an agent demanding resource type t, regardless of her preferences she has the same probability

of being assigned to a resource of type t. This holds because the tie-breakers for resources of

type t are independent of the tie-breakers for the other resources. Call this probability pt.

See that then each agent has an independent probability pt of having at least one resource

of type t available to her, and each agent will be assigned to a resource of her most preferred

12As in the previous tie-breaking rules, every lottery number is distributed uniformly over the unit interval.
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type among the resource types for which at least one resource is available to her. Now,

consider the assignment of the agents to resource types, where the capacity of each type is

Qt and types have independent random preferences over the agents. In this assignment, the

cutoffs of the types as defined in Azevedo and Leshno (2016) must be unique. The values pt

must satisfy the same set of “market clearing” conditions as these cutoffs, namely that the

expected mass of agents assigned to any type t does not exceed Qt, and for any type t if the

expected mass of agents assigned to t is strictly less than Qt then pt = 1. So, the values pt

must equal the cutoff values, which are unique and do not depend on X.

Proposition 1. Consider a matching market with a set T of resource types and nested MNL

preferences over T . Let T1 ⊆ T2 ⊆ T , where every type in T2 is popular. Then

1. HTB(T2) dominates HTB(T1) for agents with any preferences.

2. HTB(T2) dominates HTB(T1) at every resource.

We remark that the above proposition is a generalization of Theorem 1, as HTB(∅)

coincides with MTB, and HTB(T ) coincides with STB when T contains a single type t̄ = 1.

Nevertheless, the two latter properties alone do not imply Proposition 1. In Example 4 we

discuss other hybrid rules that satisfy these two properties, but not the properties described

in Proposition 1.

We next discuss two examples and then present the proof of the proposition.

Example: Student Housing. Consider a student housing problem where there are h

housing options available (such as low-rise and mid-rise apartments, and houses), each with

limited capacity. Each housing option is available either on campus or off campus. A student

first determines whether she prefers an on-campus type of housing or an off-campus type.

The options in each type are ranked for her according to a type-specific MNL preference

model. When on-campus housing is a popular type of housing, Proposition 1 implies that

the same lottery numbers should be used in all housing options of that type to break ties

between students.

Example: School Choice. Consider a school choice problem, where each school is a

resource and is associated with a specific type (which could represent the school’s academic

focus or language immersion program, for example). Each student ranks the types according

to a complete strict preference order. If two schools are of distinct types, then the student

prefers one over the other if and only if she prefers its type to the other one’s type. The
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student ranks the schools of the same type according to a type-specific MNL preference

model.

Proof of Proposition 1. Fix T1 ⊆ T2 ⊆ T where every type in T2 is popular. It suffices to

prove the result for the case that |T2\T1| = 1, since the result for this case can be used

iteratively to prove the general case. So, assume that |T2\T1| = {t} for some type t. Then,

each agent has the same probability of being assigned to a resource of type t under HTB(T1)

and under HTB(T2), because of the uniqueness of the pt values described in the proof of

Lemma 1. So, we can create a coupling between the assignments under HTB(T1) and under

HTB(T2) as follows. Each agent is assigned to a resource of the same type under the two

tie-breaking rules, and for each type t′ 6= t, agents assigned to a resource of type t′ are

assigned to the same resource under the two tie-breaking rules. Finally, agents assigned to a

resource of type t are assigned independently according to the respective tie-breaking rules.

Considering this coupling between the two assignments, in both assignments the same

set of agents are assigned to a resource of type t; denote this set by St. Moreover, the

distribution of ranks under the two tie-breaking rules only differs for agents in St and for

resources of type t. So, HTB(T2) would dominate HTB(T1) for agents with any preferences

if and only if HTB(T2) dominates HTB(T1) for agents in St with any preferences. Similarly,

HTB(T2) would dominate HTB(T1) at every resource if and only if HTB(T2) dominates

HTB(T1) at every resource of type t. We will complete the proof by showing that these

equivalent conditions hold.

Consider the assignment of agents under HTB(T1). Let the random variable X1
P denote

the number of resources that an agent with preference order P over resources of type t prefers

to all resources in t, conditional on the agent being in St. (The random elements are the

agent’s tie-breaking lottery numbers in the coupled process and the order that the agent

prefers the resource types.) Also, let the random variable Y 1
P denote the number of resources

of type t that the agent weakly prefers to her assigned resource. Then, the rank of the agent

can be written as

Z1
P = X1

P + Y 1
P .

Similarly, we can write Z2
P = X2

P + Y 2
P under HTB(T2), where each variable with a super-

script 2 corresponds to its counterpart variable with superscript 1 but under HTB(T2).

From the definition of the coupling, it follows that X1
P and X2

P have the same distribution.

We thus have reduced the problem to the single-type setting: consider the matching market C

with MNL preferences containing only the resources of type t, and a total mass of Dt agents.
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Then Y 1
P and Y 2

P respectively have the same distribution as the rank distributions for an

agent in C with preferences P , under MTB and STB. Since type t is popular, every resource

is popular in C, and so Theorem 1 implies that the distribution of Y 2
P rank dominates the

distribution of Y 1
P for every P . Thus, the distribution of Z2

P rank dominates the distribution

of Z1
P for every P , which concludes the proof of point 1 of the proposition. Similarly, point 2

follows from the fact that the ranks of agents assigned to the resources of type t are equal to

the ranks of the agents assigned to the resources in C plus values drawn from the distribution

of X1
P .

4 Analysis

4.1 Preliminary Results

This section presents preliminary results that will be useful in our proofs. Consider a match-

ing market C = (m, q,N) that has MNL preferences with resource qualities µ1, . . . , µn. The

next result shows that agents’ (MNL) preferences can be generated equivalently using a

stochastic process involving exponential clocks.

Claim 1. Consider drawing an agent’s preferences by the following process. For each re-

source j, let Xj be an independent exponential random variable with rate µj. For each k ∈ [n],

let X(k) be the kth-smallest value in X1, ..., Xn. For each resource j, if Xj = X(k) then set

resource j as the agent’s kth-ranked resource. The distribution of preferences generated by

this process is equivalent to the distribution of preferences generated by the MNL preference

model.

The above process can be interpreted as n exponential clocks, where Xj is the time that

clock j rings, and the agent ranks the resources in the order of the time the clocks ring. We

call this method of drawing agent preferences the clock process.

Proof. For an agent i and resource j, the probability that i ranks resource j as her first

choice in the clock process is

P{Xj = X(1)} = P{Xj = min(X1, ..., Xn)} =
µj∑n
p=1 µp

.

Thus, the distribution of i’s first choice is the same in both the clock process and the MNL

preference model. Now suppose that in the clock process, clock k is the first clock to ring

14



and Xk = t. Conditional on this event, by the memoryless property of exponential random

variables, for each resource k′ 6= k we see that Xk′ − t is exponentially distributed with rate

µk′ . So, the probability that resource k′ 6= k is the next clock to ring is

µk′

(
∑n

p=1 µp)− µk
,

which is the same as in the MNL preference model. Continuing this reasoning inductively

proves the claim.

Next we provide properties of the STB and MTB cutoffs.

Proposition 2 (Ashlagi and Shi (2014)). The STB cutoffs α = (α1, . . . , αn) are the follow-

ing:

αk = 1−min{
k−1∑
j=1

qj
N

+
rkqk
Nµk

, 1}, k = 1, ..., n, (1)

where rk =
∑n

j=k µj.

Note that the αk values are decreasing in k.

Proposition 3. Suppose all resources are popular. Then for all k ∈ [n] the MTB cutoffs

β = (β1, . . . , βn) satisfy
k∏
j=1

βj ≥ 1−
∑k

j=1 qj

N
·
∑n

j=1 µj∑k
j=1 µj

.

Proof. Fix a randomly chosen agent i. For a subset of resources G ⊆ S, let ZG be the event

that i is not assigned to a resource in G. Let L = [k].

Since ZL ∩ ZS\L is the event that i is unassigned, P (ZL ∩ ZS\L) =
∏n

j=1 βj. Moreover, i

will not be assigned to a resource in S \ L if her lottery number at each of these resources

does not exceed the cutoff. Therefore P (ZS\L) ≥
∏n

j=k+1 βj. By Bayes’ rule,

P (ZL|ZS\L) ≤
k∏
j=1

βj. (2)

Let M be the mass of agents that are not assigned to resources in S\L. Since the total

capacity of the resource in L is
∑k

j=1 qj,

M = N −
n∑

j=k+1

qj and M(1− P (ZL|ZS\L)) =
k∑
j=1

qj. (3)
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Since all resources are popular, Nµj ≥ qj for all j ∈ [n], implying that

n∑
j=k+1

qj ≤ N

n∑
j=k+1

µj. (4)

By (2), (3) and (4) we obtain that

k∏
j=1

βj ≥ 1−
∑k

j=1 qj

M
= 1−

∑k
j=1 qj

N −
∑n

j=k+1 qj
≥ 1−

∑k
j=1 qj

N(1−
∑n

j=k+1 µj)
= 1−

∑k
j=1 qj

N
∑k

k=1 µj
.

The next property is a simple observation about stochastic vectors. For convenience,

define the notation [n] = {1, ..., n}.

Definition 11. Let v and w be stochastic vectors of length n. Vector v crosses under w

if there is some k ∈ [n] such that v(p) ≤ w(p) when 1 ≤ p ≤ k, and v(p) ≥ w(p) when

k < p ≤ n.

Claim 2. Let v and w be stochastic vectors and suppose v crosses under w. Then w � v.

Proof. Suppose that v crosses under w, and k ∈ [n] satisfies v(p) ≤ w(p) for all 1 ≤ p ≤ k

and v(p) ≥ w(p) for all k < p ≤ n. If t ≤ k, then

t∑
p=1

v(p) ≥
t∑

p=1

w(p).

If t ≥ k, then
t∑

p=1

v(p) = 1−
n∑

p=t+1

v(p) ≤ 1−
n∑

p=t+1

w(p) =
t∑

p=1

w(p).

4.2 Proof of Theorem 1, Part 1

Proof. Consider a matching market C = (m, q,N) with n resources, satisfying MNL pref-

erences, with resource qualities µ. Without loss of generality assume
∑n

j=1 µj = 1. Fix an

agent i with preferences P = (r1, ...rn). Let (RSTB
P )≤k denote the probability that i will be
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assigned to one of her top k choices under STB, and let (RMTB
P )≤k denote the same under

MTB. Then RSTB
P � RMTB

P if and only if for all k ∈ [n]

(RSTB
P )≤k ≥ (RMTB

P )≤k.

Fix an arbitrary integer k, where 1 ≤ k ≤ n, and let mk = max{r1, ..., rk}. Since the STB

cutoffs are weakly decreasing in the index (of resources), i will be assigned to a resource in

{r1, ..., rk} if and only if she has lottery number at least αmk
, so

(RSTB
P )≤k = 1− αmk

.

Under MTB, i will not be assigned to a resource in {r1, ..., rk} if and only if for each resource

j ∈ {r1, ..., rk} her lottery number for j is below βj. So

(RMTB
P )≤k = 1−

∏
j∈{r1,...,rk}

βj.

Since k is chosen arbitrarily, it is sufficient to show that∏
j∈{r1,...,rk}

βj ≥ αmk
. (5)

Since mk ≥ k, then αmk
≤ αk. Therefore it is sufficient to show that

k∏
j=1

βj ≥ αk. (6)

This will be done by comparing the cutoffs for the matching market C to the cutoffs for

another matching market C ′, which is similar to C but contains additional resources and a

larger mass of agents.

Let C ′ = (m′, q′, N ′) be a matching market with n′ > n resources, where agents have

MNL preferences. Let µ′1, ..., µ
′
n be the resource qualities in C ′. For j ∈ [n], let q′j = qj and

µ′j = µj, and assume that
µn
qn
≥
µ′n+1

q′n+1

≥ ... ≥ µ′n′

q′n′
.

Let N ′ = N
∑n′

j=1 µ
′
j. Note that for each resource j ∈ [n], the mass of agents who rank j

as their top choice in C is equal to the mass of agents who rank j as their top choice in C ′.
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Let α′ = (α′1, ..., α
′
n′) and β′ = (β′1, ..., β

′
n′) be the STB and MTB cutoffs for C ′, respectively.

For each j ∈ [n], let

γj =

j∏
p=1

βp

and for each j ∈ [n′], let

γ′j =

j∏
p=1

β′p.

Then we must show that γk ≥ αk. Note that since αn and γn are the probabilities that

an agent will be assigned to any resource under STB and MTB, respectively, we have

αn = γn = 1−
∑n

j=1 qj

N
. (7)

So, assume k < n. In the remainder of the proof, we present two lemmas, show how the

lemmas imply the theorem, and finally prove the lemmas.

Lemma 2. For all j ∈ [n], α′j ≤ αj.

Lemma 3. γ′n ≥ γn.

We apply the two lemmas to complete the proof. The lemmas essentially say that when

resources are added to a matching market and the mass of agents is increased accordingly,

the STB cutoffs decrease while the MTB cutoffs increase. We will use this fact in reverse:

when resources are removed and the mass of agents decreased accordingly, the STB cutoffs

increase while the MTB cutoffs decrease.

Consider the matching market C ′′ = (m′′, q′′, N ′′) satisfying MNL preferences, containing

k < n resources with qualities µ1, ..., µk. For all j ∈ [k], let q′′j = qj, and let

N ′′ = N
k∑
j=1

µj.

We know α′′k = γ′′k since C ′′ has k resources; thus, Lemmas 2 and 3 imply that γk ≥ αk,

which completes the proof.

In the remainder of this section we prove the two lemmas.

Proof of Lemma 2: For a given matching market with n resources satisfying MNL preferences,

consider computing the α values by the following “water-filling algorithm.” Let each resource

j be able to hold a mass qj of water, and a total mass N of water needs to be poured. The

18



algorithm starts at time 0 and in stage 1. At time 0, all resources are empty. During stage 1,

water is poured into each resource j at a rate of
Nµj

µ1+...+µn
. Stage 1 concludes when resource

1 is filled to capacity. Then the next stage begins. During stage k, resources k − 1 have

already been filled to capacity, and the water poured into them “spills over” into resources

k, ..., n: during stage k each resource j ∈ {k, ..., n} fills at a rate of
Nµj

µk+...+µn
. It can be shown

that for each resource j, 1− αj is the time that j becomes full (that is, the time that stage

j + 1 begins).

Now, consider using the water-filling algorithm on C and C ′, to compute α and α′. We

prove the lemma inductively over k, showing that α′k ≤ αk for all 1 ≤ k ≤ n. As a base case,

in both problems resource 1 fills at a rate of Nµ1, so α′1 = α1. Now for the inductive step,

assume for some k < n, α′k ≤ αk. Note that for both problems, before time 1− αk the ratio

of the rate that resource k + 1 fills to the rate that resource k fills is

µk+1

µk + µk+1

.

Furthermore, at the end of stage k, resource j has been filled with mass qk. Thus, in both

problems, at the end of stage k resource k + 1 has been filled with mass

qkµk+1

µk + µk+1

.

For C, stage k concludes at time 1− αk, and in stage k + 1 resource k + 1 fills at rate

r = N
k∑
j=1

µj
µk+1

µk+1 + ...+ µn
+Nµk+1.

In C ′, stage k concludes at time 1− α′k, and then in stage k + 1 resource k + 1 fills at rate

r′ = N(µ1 + ...+ µn′)
k∑
j=1

µj
µk+1

µk+1 + ...+ µn′
+Nµk+1.

Observe that r′ < r since

µ1 + ...+ µn′

µk+1 + ...+ µn′
≤ 1

µk+1 + ...+ µn
,
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which follows from the following inequality: if a, b, c > 0 and b ≤ a, then

a+ c

b+ c
≤ a

b
.

Now by assumption α′j ≤ αj, so for C ′ stage k + 1 begins at a later time than stage k + 1

begins for C. Furthermore, since r ≥ r′, during stage k + 1 resource k + 1 fills at a slower

rate for C ′ than for C. Thus, 1 − α′k+1 ≥ 1 − αk+1, so α′k+1 ≤ αk+1. This concludes the

induction and the proof of the lemma.

Proof of Lemma 3: Observe that αn is the probability that an agent is not assigned to any

resource under STB, and γn is the same under MTB. Thus,

γn = αn = 1−
∑n

j=1 qj

N
.

Proposition 3 gives

γ′n ≥ 1−
∑n

j=1 q
′
j

N ′
·
∑n′

j=1 µ
′
j∑n

j=1 µ
′
j

= 1−
∑n

j=1 qj

N
= γn,

where the last equality follows from Equation 7.

4.3 Proof of Theorem 1, Part 2

The proof uses an auxiliary assignment process, referred to as virtual MTB (VMTB), which

assigns (or leaves unassigned) each agent independently as follows.

VMTB independent assignment process

Input: vector of cutoffs β′ = (β′1, β
′
2, . . . , β

′
n). Initialize: k = 1.

Step k: Let j be the resource that is the agent’s kth rank. The agent applies to

resource j. With probability 1 − β′j, the resource admits the agent and the process

ends. Otherwise, the agent is rejected from j. If k = n, the agent remains unassigned

and the process terminates. Otherwise, increase k by one, and go to the next step.

We refer to the VMTB assignment process with inputs β′ simply as VMTB(β′). Note

that the VMTB process may violate resources’ capacities. However, due to a result by

Azevedo and Leshno (2016), the process generates the MTB assignment with the “correct”
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input:13 Observe that by construction, if β are the MTB cutoffs, then the assignment under

VMTB(β) is equivalent to the assignment under MTB.

We fix the notation for the distribution of agent ranks under VMTB. Let β′ be a vector

of cutoffs, and C = (m, q,N) be a matching market. Let qβ
′

= (qβ
′

1 , ..., q
β′
n ), where qβ

′

j is the

mass of agents assigned to resource j under VMTB(β′). For each resource j ∈ S, let Rβ′

j

denote the value of RMTB
j for the matching market Cβ′ = (m, qβ

′
, N). That is, Rβ′

j is the

value of RMTB
j when the agents are assigned according to VMTB(β′). So, Rβ

j = RMTB
j for

every resource j.

Consider a matching market C = (m, q,N) with n resources, satisfying MNL preferences,

with resource qualities µ. Without loss of generality assume
∑n

k=1 µk = 1. Fix a resource j;

we will show that RSTB
j � RMTB

j . Let β be the market-clearing cutoffs for C under MTB,

let β0 = (β1, ..., βj, 0, ..., 0), and let Vj = Rβ0

j . The proof of the theorem proceeds by first

showing that RSTB
j � Vj in Lemma 4, and then showing that Vj � RMTB

j in Lemma 5. By

the transitivity of the rank dominance relation, it will follow that RSTB
j � RMTB

j . Here we

briefly sketch the proofs of these two lemmas, and leave the full proofs for the Appendix.

Lemma 4. RSTB
j � Vj.

Proof sketch for Lemma 4. The proof of the lemma proceeds by constructing a stochastic

vector W of length n, and then showing that both RSTB
j � W and W � Vj. These relations

are shown by proving thatW crosses underRSTB
j and that Vj crosses underW as in Definition

11, and then applying Claim 2.

Observe that under both VMTB(β0) and STB, an agent can only be assigned to resource

j if she prefers j to all resources j′ > j. Let Aj denote the set of agents who prefer j to all

resources j′ > j. We construct W by setting W (1) = RSTB
j (1), and for k ≥ 2 we set W (k)

to be proportionate to the mass of agents who rank resource j their kth choice and are in

Aj. Note that for k > j, this results in W (k) = 0.

We show that W crosses under RSTB
j by proving that for k ≥ 2, conditional on an agent

being in Aj and ranking j her kth choice, the probability that the agent is assigned to j is

weakly decreasing in k. But W (1) = RSTB
j (1), and for k ≥ 2 the W (k) values were chosen

as if conditional on an agent being in Aj and ranking j her kth choice, the probability she

is assigned to j is equal over k. Since W and RSTB
j are normalized to have the same sum, it

is straightforward to show that then W crosses under RSTB
j .

13Azevedo and Leshno (2016) show that a stable matching corresponds to a set of cutoffs where each
agent is assigned to her most preferred resource, in which her lottery number exceeds the cutoff.
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To complete the proof of the lemma, we show that Vj crosses under W by proving that

W (1) ≥ Vj(1), proving a lower bound on Vj(k) for k ≥ 2, and finally showing that W (k)

does not exceed this lower bound for k ≥ 2.

To complete the proof of the theorem, it remains to show that Vj � RMTB
j . Recall that

β are the MTB cutoffs, and β0 = (β1, ..., βj, 0, ..., 0). Recall that we have RMTB
j = Rβ

j ,

and we defined Vj = Rβ0

j . Since βk ≥ β0
k for all k ∈ [n], the following lemma implies that

Vj � RMTB
j .

Lemma 5. Let β and β′ be vectors of cutoffs such that βk ≤ β′k for all k ∈ [n]. Then

Rβ
j � Rβ′

j .

Proof sketch for Lemma 5. To prove the lemma we fix a resource j′ 6= j and show that

Rβ
j � Rβ′

j when β′k = βk for all k 6= j′. This would prove the claim because this special case

can be applied successively. Let β and β′ be sets of cutoffs such that βk = β′k for all k 6= j′,

and βj′ ≤ β′j′ . The major step in the proof is to show that Rβ′

j � Rβ
j when βj′ = 0 and

β′j′ = 1. Intuitively, if the cutoff for j′ is reduced from 1 to 0, then the mass of agents who

would be assigned to j who prefer j′ will now be assigned to j′ instead. We show that this

mass of agents is rank-dominated by the rest of the agents who are assigned to j, so reducing

the cutoff for j′ improves the rank distribution of agents at j. Finally, we show how this fact

can be used to prove Rβ′

j � Rβ
j for general values of β′j′ , by interpolating between Rβ′

j when

βj′ = 0, and Rβ′

j when βj′ = 1.

5 Experiments

We ran simulations to verify whether our results hold in small discrete markets involving finite

numbers of agents and resources. We focused on the setting of Theorem 1, and considered

discrete markets with 3 resources, each of the same capacity q and N = 3q + k agents. The

markets had excess demand, i.e., k > 0. Setting q = k = 50, we performed one hundred

simulations as follows. (In the end, we repeated these simulations for other parameterizations

as well.)

In each simulation, first the resource qualities µ1, µ2, µ3 were drawn independently from

the uniform distribution over the unit interval. If there was a resource i that is not popular

(i.e., µi
µ1+µ2+µ3

N < q), then we redrew all resource qualities. This was repeated until all of

the resources were popular according to the drawn qualities. Then, the next step of the

simulation proceeded as follows. For each tie-breaking rule τ ∈ {MTB, STB} we constructed
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100,000 tie-broken matching markets (i.e., samples) by drawing the agents’ preferences and

the tie-breakers according to the setup of Section 3.1. Then, we computed the outcome of

DA in each sample. For a tie-breaking rule τ ∈ {MTB, STB} and each rank r, we computed

the average number of agents assigned to a rank at least as good as r in the outcome of DA,

where the average is taken over the 100,000 samples associated with the tie-breaking rule τ .

Denote this average by Aτr . We observed that AMTB
r ≤ ASTB

r + 0.001 holds for every rank

r, in all of the one hundred simulations that we performed. (The second summand on the

right-hand side is a slack variable; which can be reduced to a smaller constant with a larger

number of samples.)

This observation confirms the predictions of Theorem 1 in reasonably small markets. We

also repeated the same set of simulations for two other parameterizations q = 50 and k = 10,

and q = 20 and k = 1, and observed the same result.

6 Extensions

The result of the first part of Theorem 1 can be extended to apply to a much broader set

of distributions of agent preferences, when the mass of agents relative to the capacity of the

resources is sufficiently large. The distribution of agent preferences needs only to satisfy a

minor technical condition we call non-ordered.

Definition 12. A matching market has non-ordered agent preferences if there is no resource

j < n such that the full mass of agents prefer j to all resources j′ > j.

Theorem 2. For any matching market C = (m, q,N) with non-ordered agent preferences,

there exists N ′ ∈ R such that if N ≥ N ′, STB dominates MTB for agents with any preference

order.

The following corollary relaxes the non-ordered condition of Theorem 2 at the expense

of a slightly weaker result. First, a few definitions are needed. For fixed measure m and

capacities q, define RMTB
P (N) to be RMTB

P for matching market C = (m, q,N). Define

DP = lim
N ′→∞

RMTB
P (N ′),

which is the distribution of ranks of agents with preferences P under MTB in the limit as

the mass of agents approaches infinity.
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Corollary 2.1. For any matching market with n resources, for all P ∈ Πn

RSTB
P � DP .

The proofs of Theorem 2 and Corollary 2.1 appear in Appendices A.3 and A.4.

7 Conclusion

This paper considered the problem of resolving ties when assigning agents to resources with

heterogeneous qualities using the deferred acceptance mechanism. It is shown that when

resources are “popular,” a single lottery used by all resources is preferable to having each

resource use a separate lottery, in a first stochastic order sense, for all agents and resources.

The above result also extends to scenarios where there is excess supply. In particular,

when the set of resources is partitioned into different types and the agents have nested MNL

preferences over resources, we adapt the notion of popularity to resource types and show

that a hybrid rule in which resources in each popular type use the same lottery number

dominates the multiple tie-breaking rule.

The notion of popularity defined for resources types exploits the nested MNL structure

of the preferences. It remains an interesting direction to develop well-grounded measures for

popularity that relax this assumption on preferences. For more general preference structures,

our theory is silent and it is unknown, for example, whether there are tie-breaking rules that

dominate MTB. Moreover, in some markets agents are given priorities at different resources

and lotteries are used to resolve ties between agents with equal priorities. Defining the notion

of popularity becomes more involved in such settings, as the notion would depend also on

the priority structure.14
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A Proofs

A.1 Proof of Lemma 4

Let Aj be the set of agents who prefer j to all resources k > j, and see that all agents

assigned to j under both VMTB(β0) and STB are in Aj. Recall that m(Aj) denotes the

probability that a randomly chosen agent is in Aj. For k ∈ [n], let Qk
j denote the set of

agents for whom j is their kth choice. We construct a stochastic vector W of length j as

follows. Let W (1) = RSTB
j (1). For each k ∈ [2, ..., j] let

W (k) = d ·m(Aj ∩Qk
j ),

for some constant d, and for k > j let W (k) = 0.

First, we show that RSTB
j � W . For a stochastic vector D of length n and constant

k ∈ [n], we define the simplifying notation

P (D ≥ k) =
n∑
p=k

D(p).

We also define

Q̃k
j =

n⋃
p=k

Qk
j .

Let Mj be the set of agents assigned to j under STB. Since Mj ⊆ Aj, for any k ∈ [j] we have

P (RSTB
j ≥ k) =

m(Mj ∩ Q̃k
j )

m(Mj)
=
m(Mj|Aj ∩ Q̃k

j )m(Aj ∩ Q̃k
j )

m(Mj)
, (8)

and

P (W ≥ k) = d

j∑
p=k

m(Aj ∩Qp
j) = d ·m(Aj ∩ Q̃k

j ). (9)

Next, since W (1) = RSTB
j (1) we have P (W ≥ 2) = P (RSTB

j ≥ 2), so

d ·m(Aj ∩ Q̃2
j) =

m(Aj ∩ Q̃2
j)m(Mj|Aj ∩ Q̃2

j)

m(Mj)

and thus

d =
m(Mj|Aj ∩ Q̃2

j)

m(Mj)
. (10)
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Then from equations (8), (9) and (10) we get

P (W ≥ k)

P (RSTB
j ≥ k)

=
d ·m(Mj)

m(Mj|Aj ∩ Q̃k
j )

=
m(Mj|Aj ∩ Q̃2

j)

m(Mj|Aj ∩ Q̃k
j )
.

The following claim then implies that P (W ≥ k) ≥ P (RSTB
j ≥ k) for all k ∈ [n], and hence

RSTB
j � W .

Claim 3. For any k ∈ [2, ..., j],

m(Mj|Aj ∩ Q̃k
j ) ≤ m(Mj|Aj ∩ Q̃2

j).

Proof. Fix a value of k ∈ [2, ..., j]. Fix a lottery number L ≥ αj, and let i be a randomly

chosen agent with lottery number L. Let P = (r1, ..., rn) denote the preferences of i. Let

i′ be a randomly chosen agent in Aj with lottery number L, who does not rank j her top

choice. Let BL be the set of resources in [j − 1] with STB cutoffs above L. Then for each

resource s ∈ [j − 1],

P (P ′1 = s) = P (r1 = s|i ∈ Aj ∩ Q̃2
j) =

P (i ∈ Aj ∩ Q̃2
j |r1 = s)P (r1 = s)

P (i ∈ Aj ∩ tildeQ2
j)

=
P (i ∈ Aj|r1 = s)P (r1 = s)

P (i ∈ Aj ∩ Q̃2
j)

=
P (i ∈ Aj|r1 = s)P (r1 = s)∑j−1
p=1 P (i ∈ Aj|r1 = p)P (r1 = p)

.

(11)

The value of P (i ∈ Aj) and P (i ∈ Aj|P ′1 = p) can be determined as follows. When an agent’s

preferences are being drawn from the MNL model, her first choice is drawn first, then her

second choice, and so on. When a resource in {j, ..., n} is first drawn, the probability that

resource j is drawn is
µj∑n
p=j µp

.

Thus,

P (i ∈ Aj) =
µj∑n
p=j µp

, (12)

and by the same argument, for any resource k′ ∈ [j − 1],

P (i ∈ Aj|r1 = k′) =
µj∑n
p=j µp

.
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So from (11) we get

P (r′1 = s) =
P (r1 = s)∑j−1
p=1 P (r1 = p)

=
µs∑j−1
p=1 µp

.
(13)

Observe that for any p ∈ BL,

P (i′ ∈Mj|P ′1 = p) = P (i ∈Mj|i ∈ Aj). (14)

This follows from the independence of irrelevant alternatives of the MNL preference model.

So, from (13) and (14) we get

P (i′ ∈Mj) =
∑
p∈BL

P (i′ ∈Mj|P ′1 = p)P (P ′1 = p)

=
∑
p∈BL

P (i ∈Mj|i ∈ Aj)P (P ′1 = p)

= P (i ∈Mj|i ∈ Aj)
∑

p∈BL
µp∑j−1

p=1 µp
.

(15)

Now, let i∗ be a randomly chosen agent in Aj ∩ Q̃k
j with lottery number L and preferences

P ∗ = (r∗1, ..., r
∗
n). We define the notation

r[p] = {r1, ..., rp}

for p ∈ [n]. See that if i∗ ∈Mj, then r[k−1] ⊆ BL. So,

P (i∗ ∈Mj) = P (i ∈Mj|i ∈ Aj ∩ Q̃k
j ) = P (r[k−2] ⊆ BL|i ∈ Aj ∩ Q̃k

j )

× P (r[k−1] ∈ BL|i ∈ Aj ∩ Q̃k
j , r[k−2] ⊆ BL)

× P (i ∈Mj|i ∈ Aj).
(16)

For every set G ⊆ BL such that |G| = k − 2, let

p(G) = P (P ∗[k−2] = G|P ∗[k−2] ⊆ BL).
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Then

P (r[k−1] ∈ BL|i ∈ Aj ∩ Q̃k
j , r[k−2] ⊆ BL) =

∑
G⊆BL,|G|=k−2

p(G)

∑
p∈BL

µp −
∑

p∈G µp∑j−1
p=1 µp −

∑
p∈G µp

≤
∑
G⊆BL

p(G)

∑
p∈BL

µp∑j−1
p=1 µp

=

∑
p∈BL

µp∑j−1
p=1 µp

(17)

and thus from (16),

P (i∗ ∈Mj) ≤ P (r[k−2] ⊆ BL|i ∈ Aj ∩ Q̃k
j )

∑
p∈BL

µp

P (i ∈Mj|i ∈ Aj)

j−1∑
p=1

µp.

≤ P (i ∈Mj|i ∈ Aj)
∑

p∈BL
µp∑j−1

p=1 µp
.

(18)

By (15) and (18) we obtain

P (i∗ ∈Mj) ≤ P (i′ ∈Mj). (19)

Finally, if L < αj, then

P (i′ ∈Mj) = P (i∗ ∈Mj) = 0.

So, P (i′ ∈Mj) ≤ P (i∗ ∈Mj) for all L ∈ [0, 1], and we have proven Claim 3.

Next, it needs to be shown that W � Vj. Fix an agent i with preferences P = (r1, ..., rn).

If i ∈ Aj, rj = j and j ∈ Mj, then r[j−1] = [j − 1] so i must have been rejected by every

resource in [j − 1]. Let

K =
Vj(j)

P (Aj ∩Qj
j)
∏j−1

p=1 βp
,

so

Vj(j) = K · P (Aj ∩Qj
j)

j−1∏
p=1

βp.

If i ∈ Aj and rk = j for some k ≤ j, then i only needs to be rejected by a subset of the

resources in [j − 1] for her to apply to resource j. Therefore for k ∈ [j − 1],

Vj(k) ≥ K · P (Aj ∩Qk
j )

j−1∏
p=1

βp.
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Recall that for all p ∈ {2, ..., j},
W (p)

P (Aj ∩Qp
j)

= d.

Thus, if it is shown that

d ≤ K ·
j−1∏
p=1

βp, (20)

then W (k) ≤ Vj(k) for all 2 ≤ k ≤ j. It will then follow that W � Vj by Claim 2. So, it

remains to show that inequality (20) holds. For all k ∈ [j − 1] we have

Vj(k) ≤ K ·m(Aj, Q
k
j )

and
j∑

p=1

Vj(p) = 1.

So,

1 =

j∑
p=1

Vj(p) ≤ K

j∑
p=1

m(Aj ∩Qp
j) = K ·m(Aj)

and thus

K ≥ 1

m(Aj)
.

Proposition 3 gives that
j−1∏
p=1

βp ≥ 1−
∑j−1

i=1 qp

N
∑j−1

p=1 µp
,

and so

K ·
j−1∏
p=1

βp ≥
1

m(Aj)
(1−

∑j−1
i=1 qp

N
∑j−1

p=1 µp
). (21)
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Next we need an upper bound for d. Observe that

1 =

j∑
p=1

W (p)

= W (1) +

j∑
p=2

W (p)

= RSTB
j (1) + d

j∑
p=2

m(Aj ∩Qp
j).

(22)

The mass of agents who rank resource j as their first choice is Nµj, and these agents are

accepted to resource j with probability 1 − αj. Since the total mass of agents assigned to

resource j is qj, we have

RSTB
j (1) =

Nµj(1− αj)
qj

. (23)

Moreover,

j∑
p=2

m(Aj ∩Qp
j) = m(Aj, Q̃

2
j)

= m(Aj)−m(Aj ∩Q1
j)

= m(Aj)− µj.

(24)

Then (22), (23) and (24) give

1 = N
µj
qj

(1− αj) + (m(Aj)− µj)d. (25)

Let rj =
∑n

p=j µp. Then by (12),

m(Aj) =
µj
rj
.

From Proposition 1,

1− αj =
1

N
(

j−1∑
p=1

qp +
rjqj
µj

).
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Thus, equation (25) becomes

1 =
µj
qj

j−1∑
p=1

qp + rj + (
µj
rj
− µj)d

=
µj
qj

j−1∑
p=1

qp + rj +
µj
rj

(1− rj)d

which implies

d =
rj
µj
· 1

1− rj
(1− rj −

µj
qj

j−1∑
p=1

qp)

=
rj
µj

(1− µj
qj(1− rj)

j−1∑
p=1

qp).

Since resource j is popular, Nµj ≥ qj, so

d ≤ rj
µj

(1−
∑j−1

p=1 qp

N(1− rj)
)

=
1

m(Aj)
(1−

∑j−1
p=1 qp

N(1− rj)
).

(26)

By (21) and (26) we obtain (20), which gives Vj � W . This concludes the proof of Lemma

4.

A.2 Proof of Lemma 5

The proof makes use of the following definitions. Recall that we fixed a randomly chosen

agent i with preferences (r1, ..., rn).

Definition 13. For a set of cutoffs β∗ and k ∈ [n], let Hβ∗

k be the event that agent i is

assigned to resource k under VMTB(β∗).

Definition 14. For k ∈ [n], let qik be the rank of resource k in agent i’s preference order.

Now, suppose that βj′ = 0 and β′j′ = 1. The following claim shows a convenient reformu-

lation of the problem.
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Claim 4. Suppose that for all k ∈ [n],

P (qij′ < qij|H
β′

j , q
i
j ≥ k) ≥ P (qij′ < qij|H

β′

j ). (27)

Then Rβ
j � Rβ′

j .

Proof. Suppose inequality (27) holds for all k ∈ [n]. It needs to be shown that for all k ∈ [n],

n∑
p=k

Rβ′

j (p) ≥
n∑
p=k

Rβ
j (p).

Consider initially assigning agents according to VMTB(β′). This initial assignment can be

transformed to an assignment according to VMTB(β), by lowering the cutoff for resource j′

to 0, and any agent who prefers j′ to her initial assignment becomes reassigned to j′. Then

if i was initially assigned to resource j with rank p, she will be reassigned to resource j′ with

probability

P (qij′ < qij|H
β′

j , ij = p).

Thus, for all p ∈ [n],

Rβ
j (p) = C · (1− P (qij′ < qij|H

β′

j , ip = j)) ·Rβ′

j (p),

where C is a normalizing constant so that Rβ
j has a total mass of one. For k ∈ [n], conditioned

on i being assigned to resource j and having rank no better than k, we have

n∑
p=k

Rβ
j (p) = C · (1− P (qij′ < qij|H

β′

j , q
i
j ≥ k)) ·

n∑
p=k

Rβ′

j (p).

Setting k = 1 in the above equation, we get

n∑
p=1

Rβ
j (p) = C · (1− P (qij′ < qij|H

β′

j )) ·
n∑
p=1

Rβ′

j (p).

Since
n∑
p=1

Rβ
j (p) =

n∑
p=1

Rβ′

j (p) = 1,

this gives

C =
1

1− P (qij′ < qij|H
β′

j )
.
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So, for k ∈ [n], by inequality (27)

n∑
pkm

Rβ
j (p) =

1− P (qij′ < qij|H
β′

j , q
i
j ≥ k)

1− P (qij′ < qij|H
β′

j )
·

n∑
p=k

Rβ′

j (p)

≥
n∑
p=k

Rβ′

j (p).

Thus Rβ
j � Rβ′

j .

The next step is to prove that inequality (27) holds for all k ∈ [n]. Consider the exponen-

tial clock process of drawing agent preferences described in Claim 1, where for each p ∈ [n],

Xp is the time that clock p rings and X(p) is the pth earliest clock to ring. Then inequality

(27) is equivalent to

P (Xj′ < Xj|Hβ′

j , Xj ≥ X(k)) ≥ P (Xj′ < Xj|Hβ′

j ). (28)

We will now show that inequality (28) holds for all k ∈ [n]. For k ∈ [n − 1] and S ′ ⊆ S

where |S ′| = k and j, j′ /∈ S ′, let

p(S ′) = P (i[k] = S ′|Hβ′

j , q
i
j ≥ k + 1).

That is, p(S ′) is the probability that i’s top k ranked resources are S ′, conditional on i being

assigned to j with rank k + 1. For a set of resources B ⊆ S where j′, j /∈ B, we define a

set of cutoffs βB as follows: for all resources p ∈ B, (βB)p = 1, and for all resources p /∈ B,

(βB)p = β′p. Note that VMTB(βB) is equivalent to VMTB(β′) where resources in B have

been removed from the matching market. Let

PB = P (Xj′ < Xj|HβB

j ).

Observe that if i is assigned to j with rank no better than k, then she must have been

rejected by each resource in i[k−1]. If j′ ∈ i[k−1], then the probability that i prefers j′ to j is

one. Otherwise, the probability that i prefers j′ to j will be Pi[k−1]
. Let

bk = P (j′ ∈ i[k−1]|Hβ′

j , Xj ≥ X(k)).
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Then

P (Xi < Xj|Hβ′

j , Xj ≥ X(k)) = bk + (1− bk)

 ∑
S′⊆S:|S′|=k−1,j,j′ /∈S′

p(S ′)PS′

 . (29)

The following proposition, along with equation (29) gives inequality (28).

Proposition 4. For all S ′ ⊆ S where j, j′ /∈ S ′,

PS′ ≥ P (Xj′ < Xj|Hβ′

j ).

Proof. Let X̃j be a random variable with distribution equal to the distribution of Xj con-

ditional on Hβ′

j . Since Xj′ is an exponential random variable with rate µj′ , the CDF of Xj′

is

F (x) = 1− e−µj′x.

Since β′j′ = 1, the value of Xj′ does not affect the assignment of i, so Xj′ is independent of

Hβ′

j . Furthermore, since Xj′ is independent of Xj, we have

P (Xi < Xj|Hβ′

j ) = P (Xi < X̃j) = EX̃j
[F (x)].

For a set of resources B ⊆ S where j, j′ /∈ B, let X̃B
j be a random variable with distribution

equal to the distribution of Xj conditional on HβB

j . Then

PS′ = P (Xi < X̃S′

j ) = EX̃S′
j

[F (x)].

Since F (x) is an increasing function, if X̃j � X̃S′
j then this will imply

EX̃S′
j

[F (x)] ≥ EX̃j
[F (x)],

which gives the proposition. So, it remains to show X̃j � X̃S′
j , which will follow from the

next claim. The claim implies that for any B1 ⊆ B2 ⊆ S where j, j′ ∈ B1 ∩ B2, we have

X̃B1
j � X̃B2

j . First, fix an indexing of the resources excluding j and j′,

S \ {i, j} = {a1, a2, ..., an−2}.

For p ∈ {0, 1, ..., n− 2}, let

X̃p
j = X̃

{a1,...,ap}
j .
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Claim 5.

X̃0
j � X̃1

j � ... � X̃n−2
j .

Proof. For p ∈ {0, 1, ..., n − 2}, let fp(x) be the PDF of X̃p
j . Consider assigning i by

VMTB(β{a1,...,an−2}). Since β
{a1,...,an−2}
p = 1 for all resources p 6= j, conditional on any

value of Xj we have that i will be assigned to resource j with probability 1− β′j. Thus, the

distribution of X̃n−2
j is equal to the distribution of Xj, so

fn−2(x) = µje
−µjx.

Hence, f(x) is decreasing over x ≥ 0. Now, as an inductive hypothesis, assume that for

some p ∈ {1, 2, ..., n− 2}, fp(x) is decreasing over x ≥ 0. We will show that this implies that

both fp−1(x) is decreasing over x ≥ 0 and that X̃p−1
j � X̃p

j . Now, suppose that i is assigned

to j by VMTB(β{a1,...,ap}, and Xj = x. Since β
{a1,...,ap}
ap = 1, the probability that i prefers

resource ap to j is

Fp(x) = P (Xap < x) = 1− e−µapx.

Consider now lowering the cutoff for resource ap to β′ap , and reassigning agents with high

enough lottery numbers to resource ap if they prefer it to their initial assignment. Observe

that this process will result in the assignment under VMTB(β{a1,...,ap−1}). Then for some

positive normalizing constant K ′ > 0,

fp−1(x) = K ′fp(x)[Fp−1(x)(1− β′ap−1
) + (1− Fp−1(x)].

Since 1− β′ap−1
≤ 1 and Fp−1(x) is increasing in x, we have that

K ′[Fp−1(x)(1− β′ap−1
) + (1− Fp−1(x))]

is decreasing in x for x ≥ 0. Since by hypothesis fp(x) is decreasing for x ≥ 0, we have

fp−1(x) is decreasing for x ≥ 0. To show X̃p−1
j � X̃p

j we need the following claim.

Claim 6. Let Y be a nonnegative random variable with decreasing PDF f(x), and Z be

a non-negative random variable with PDF h(x) = f(x)g(x), where g(x) is a nonnegative

decreasing function. Then Z � Y .
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Proof. By definition, Z � Y is equivalent to∫ t

0

f(x)dx ≤
∫ t

0

h(x)dx, ∀t ≥ 0. (30)

Since ∫ ∞
0

f(x)dx =

∫ ∞
0

h(x)dx = 1,

we get that (30) is equivalent to∫ ∞
t

f(x)dx ≥
∫ ∞
t

h(x)dx, ∀t ≥ 0. (31)

By (30) and (31) we obtain that Y � Z if∫ t
0
f(x)dx∫∞

t
f(x)dx

≤
∫ t

0
h(x)dx∫∞

t
h(x)dx

.

Since g(x) is decreasing,∫ t
0
h(x)dx∫∞

t
h(x)dx

=

∫ t
0
f(x)g(x)dx∫∞

t
f(x)g(x)dx

≥
∫ t

0
f(x)g(t)dx∫∞

t
f(x)g(t)dx

=

∫ t
0
f(x)dx∫∞

t
f(x)dx

,

which gives Claim 6.

Using Claim 6 with Y = X̃p
j , Z = X̃p−1

j , f(x) = fp(x) and

g(x) = K[Fp−1(x)(1− βak+1
) + (1− Fp−1(x)],

we get that if X̃p
j has a decreasing PDF, then X̃p−1

j � X̃p
j . This completes the proof of

Claim 5, and the proof of Proposition 4.

Lemma 5 has now been proven in the special case that βj′ = 0 and β′j′ = 1. It remains

to show that the lemma holds in the general case. Now, suppose β and β′ satisfy βj′ ≤ β′j′

and βp = β′p for all p 6= j′. Let ei be the vector with one in the ith entry and zero in the

other entries. See that β − βiei is equal to β, but with the ith entry set to zero. Similarly,

β + (1− βi)ei is equal to β but with the ith cutoff set to one. Let

E = Rβ−βiei
j
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and

F = R
β+(1−βi)ei
j .

By the special case of the lemma, we have that E � F . Now, consider assigning agents

by VMTB(β) according to the following equivalent process. Each agent is independently

put into case 1 with probability βj′ , and put into case 2 with probability 1 − βj′ . Then,

agents in case 1 are assigned according to VMTB(β−βiei), and agents in case 2 are assigned

according to VMTB(β + (1 − βi)ei). The case 1 agents correspond to the agents who have

a lottery number for resource j′ below βj′ , and the case 2 agents to the agents who have a

lottery number above βj′ . Thus, this process is indeed equivalent to VMTB(β). Let c1 be

the probability that a randomly chosen case 1 agent is assigned to resource j, and let c2 be

the probability that a randomly chosen case 2 agent is assigned to resource j. Then, for

some normalizing constant C ′ > 0,

Rβ
j = C ′[(1− βj′)c1E + βj′c2F ]. (32)

See that for some λ1 ∈ [0, 1],

Rβ
j = λ1E + (1− λ1)F. (33)

To solve for λ1, from (32) we obtain

λ1 = C ′(1− βj′)c1

and

1− λ1 = C ′βj′c2.

Adding the above two equations together and solving for C ′ gives

C ′ =
1

(1− βj′)c1 + βj′c2

.

Thus

λ1 =
(1− βj′)c1

(1− βj′)c1 + βj′c2

.

Similarly, for some normalizing constant C ′′,

Rβ′

j = C ′′[(1− β′j′)c1E + β′j′c2F ],
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and so

Rβ′

j = λ2E + (1− λ2)F (34)

where

λ2 =
(1− β′j′)c1

(1− β′j′)c1 + β′j′c2

.

Since β′j′ ≥ βj′ we then have that λ1 ≥ λ2. Finally, from (33) and (34) we get that for any

k ∈ [n],

k∑
p=1

Rβ
j (p)−

k∑
p=1

Rβ′

j (p) = (λ1 − λ2)
m∑
p=1

E(p) + (λ2 − λ1)
m∑
p=1

F (p)

= (λ1 − λ2)[
m∑
p=1

E(p)−
m∑
p=1

F (p)]

≤ 0,

where the inequality follows from λ1 ≥ λ2 and E � F . Thus, Rβ
j � Rβ′

j as desired, which

concludes the proof of Lemma 5.

A.3 Proof of Theorem 2

Consider a matching market C = (m, q,N). Fix a preference order P = (r1, ..., rn) ∈ Πn

such that m(P ) > 0, and fix a rank k ∈ [n]. If j = rp, we write P−1(j) = p. Index the

resources such that for all resources j and j′, if αj = αj′ and P−1(j) < P−1(j′), then j > j′.

Let

RSTB
P,k =

k∑
p=1

RSTB
P (p)

and

RMTB
P,k =

k∑
p=1

RMTB
P (p).

We need to show that

RMTB
P,k ≤ RSTB

P,k

for any sufficiently large N . First, we show an upper bound for RMTB
P,k (P,N). Let Q =∑n

j=1 qj. Observe that

RMTB
P,n = RSTB

P,n =
Q

N
,
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so we assume that k < n. Let βN = (βN1 , ..., β
N
n ) be the MTB cutoffs for C. Since

∏n
j=1 β

N
j =

1− Q
N

, it must be that for all j ∈ [n],

lim
N→∞

βNj = 1.

Now, for a fixed agent i, we say that resource j is available to i if i has priority for j at least

as large as the cutoff for j. Then i will be assigned to a resource iff at least one resource

is available for her. For each resource j, let BN
j be the event that j is the only resource

available to i, as a function of N . Let AN be the event that no resource is available to i, as

a function of N . Then

P (AN) = 1− Q

N

and for all j ∈ [n],

P (BN
j ) ≥ (1− βNj )P (AN). (35)

During the DA algorithm at most a mass of N agents will apply to any given resource. For

N sufficiently large, every resource will be filled to capacity. This implies that for all j ∈ [n]

1− βNj ≥
qj
N
. (36)

Then by (35) and (36) we get

P (BN
j ) ≥ qj

N
P (AN). (37)

Note that if the event BN
j occurs, then i will be assigned to j regardless of her preferences.

Let

E = ĀN\(
k⋃
j=1

BN
j ),

that is, E is the event that at least two resources are available to i. Because the events

BN
1 , ..., B

N
n are all disjoint and contained in AN ,

P (E) = P (ĀN)−
n∑
j=1

P (BN
j )

≤ Q

N
−

n∑
j=1

qi
N
P (AN) =

Q

N
(1− P (AN)) =

Q2

N2
,
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where the inequality follows from (37). Since a mass of N −Q agents is unassigned, at least

N −Q agents apply to every resource. So for all j ∈ [n]

(N −Q)(1− βNj ) ≤ qj

and thus

1− βNj ≤
qi

N −Q
. (38)

For all j ∈ [n],

P (BN
j ) ≤ 1− βNj . (39)

Then (38) and (39) give that

P (BN
j ) ≤ qj

N −Q
.

Letting Qk =
∑k

j=1 qrj , we have

RMTB
P,k ≤

k∑
j=1

P (BN
rj

) + P (E)

≤ Qk

N −Q
+
Q2

N2
.

Let rNk = Qk

N
. Then we obtain the upper bound

RMTB
P,k ≤ rNk ·

N

N −Q
+
Q2

N2
. (40)

Therefore

RMTB
P,k ≤ rNk +O(

1

N2
).

Next we need to show a lower bound for RSTB
P,k . If an agent is picked at random, she will

be assigned to a resource in {r1, ..., rk} with probability rNk . For any P ′ ∈ Πn, let gNk (P, P ′)

be the probability that an agent with preferences P ′ is assigned to a resource in {r1, ..., rk}.
Because in the DA algorithm it is a dominant strategy for the agents to submit their true

preferences,

gNk (P, P ) ≥ gNk (P, P ′) ∀P ′ ∈ Πn. (41)
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See that

rNk =
∑
P ′∈Πn

m(P ′, [0, 1]n)gNk (P, P ′) ≤ gk(P, P ) = RSTB
P,k . (42)

Let mk = max{r1, ..., rk}. We know

RSTB
P,n = 1− αn =

Q

N
,

which for sufficiently large N is smaller than the upper bound for RMTB
P,k given by (40),

since Qk < Q. Now assume mk < n. Because agents’ preferences are non-ordered, there

is some P ∗ ∈ Πn and resource some p > mk such that m(P ∗, [0, 1]n) > 0 and (P ∗)−1(p) <

(P ∗)−1(mk). Note that by the definition of mk, P
−1(mk) < P−1(p) and s /∈ {r1, ..., rk}.

Furthermore, by our indexing of the resources, for all resources j such that αj = αmk
,

P−1(mk) < P−1(j). Thus, an agent with preferences P has a nonzero probability of being

assigned to mk under STB. That is,

RSTB
P (P−1(mk)) > 0.

Assume that N ≥ Q. Then under STB, only agents with a lottery number of at least Q
N

are

assigned to a resource. For a given agent i, conditional on i having a lottery number of at

least Q
N

, the probability that i is assigned to any given resource is independent of N . Thus,

for some positive constant c,

RSTB
P (P−1(mk)) =

cQ

N
.

Now, consider two agents i and i′, where i has preferences P and i′ has preferences P ∗, and

both agents receive the same lottery number. Suppose their lottery number is such that i

will be assigned to mk, which happens with probability cQ
N

. Then i′ will not be assigned to

mk or any other resource in {r1, ..., rk}, since i′ prefers p to mk and αp ≤ αmk
. If the agents

receive a lottery number such that i is not assigned to mk, i is still at least as likely as i′ to

be assigned to a resource in {r1, ..., rk}. Thus,

gNk (P, P ∗) ≤ gNk (P, P )− cQ

N
. (43)

Combining (41), (42) and (43) we get the desired lower bound

RSTB
P,k ≥ rNk +

cQ

N
(P−1(mk)) ·m(P ∗, [0, 1]n). (44)
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The two bounds (40) and (44) give that RMTB
P,k ≤ RSTB

P,k for N sufficiently large, which

concludes the proof.

A.4 Proof of Corollary 2.1

Consider a matching market C = (m, q,N). Fix a preference order P = (r1, ..., rn) ∈ Πn

such that m(P ) > 0, and fix a rank k ∈ [n]. Let

RSTB
P,k =

k∑
j=1

RSTB
P (k)

and

DP,k =
k∑
j=1

DP (k).

Then to prove the theorem it needs to be shown that

DP,k ≤ RSTB
P,k (45)

for all N . Let Q =
∑n

j=1 qj, and Qk =
∑k

j=1 qrj . From the proof of Theorem 2, inequality

(44) gives that

RSTB
P,k ≥

Qk

N
.

On the other hand, (40) gives that

DP,k ≤
1

N
lim
N ′→∞

N ′(
Qk

N ′
· N ′

N ′ −Q
+

Q2

(N ′)2
) =

Qk

N
.

So DP,k ≤ RSTB
P,k , which completes the proof.

B Tightness of Results

The examples presented here demonstrate the necessity of the conditions in our theorems.

Example 1 shows the necessity of each resource being popular for Theorem 1. In this example

resource 1 and 2 are popular, while resource 3 is competitive but not popular.

Example 1 (Necessity of Popularity Condition). Consider the following matching market

with n = 3 and satisfying MNL preferences. Let N = 4, µ = (3, 2, 1), and q = (1/3, 1/3, 1/3).
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Claim 7. In Example 1, STB does not dominate MTB at resource 3.

Proof. Observe that resources 1 and 2 are popular, but resource 3 is non-popular. Because

N >
∑n

j=1 qj, resource 3 is competitive. We compute the rank distributions at the resources

to be (rounded to the nearest tenth)

RSTB
1 = (1, 0, 0), RSTB

2 = (0.8, 0.2, 0), RSTB
1 = (0.5, 0.2, 0.3),

RMTB
1 = (0.9, 0.1, 0), RMTB

2 = (0.7, 0.3, 0), RMTB
1 = (0.5, 0.3, 0.2).

So, STB dominates MTB at resources 1 and 2, but not at resource 3.

The next example shows why the non-ordered condition is necessary for Theorem 2.

Example 2 (Necessity of Non-Ordered Condition). Consider the following matching market

C = (m, q,N) with n = 3. Let N ≥
∑n

j=1 qj, and let m be given by

m((1, 2, 3)) = p, m((2, 3, 1)) = 1− p,

where p and q are any values such that α1 > α2 > α3.

Claim 8. In Example 2, STB does not dominate MTB for agents with preferences (1, 2, 3).

Proof. Let (RSTB
P )≤k be the probability that an agent with preferences P is assigned to a

resource in her top k choices under STB. Let (RMTB
P )≤k be the same under MTB, and let

P ∗ = (1, 2, 3). We will show that

(RSTB
P ∗ )≤2 < (RMTB

P ∗ )≤2, (46)

which gives that RSTB
P ∗ � RMTB

P ∗ . Under both STB and MTB, a randomly chosen agent will

be assigned to resource 1 or 2 with probability

r =
q1 + q2

N
.

Under STB, an agent will be assigned to resource 1 or 2 iff she has a lottery number of at

least α2, regardless of her preferences. So, (RSTB
P ∗ )≤2 = r. Now, fix a randomly chosen agent

i. Under MTB, there is a nonzero probability that i has high enough lottery numbers to be

accepted to both resource 1 and 3, but not 2, in which case, i will be assigned to resource

1 or 2 iff she has preferences P ∗. Thus, an agent with preferences P ∗ is strictly more likely
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to be assigned to resource 1 or 2 than an agent with preferences (2, 3, 1). Therefore agents

with preferences P ∗ are assigned to one of their top two resources with probability strictly

greater than r, which shows (46) as desired.

The next example shows that dominance of STB over MTB at every resource does not

hold for arbitrary distributions of agent preferences, even in the limit as the mass of agents

grows.

Example 3 (No Dominance at Resource in the Limit). Consider the following matching

market C = (m, q,N) with n = 4. Let N > 1 and q = (1
4
, 1

4
, 1

4
, 1

4
). Let m be given by

m((1, 2, 3, 4)) = p, m((4, 3, 2, 1)) = 1− p,

where p < 1 is a constant sufficiently close to one so that α1 ≥ α2 ≥ α3 ≥ α4.

Claim 9. In Example 3,

RSTB
3 (N) � RMTB

3 (N).

Proof. Because α1 ≥ α2 ≥ α3 ≥ α4, an agent can only be assigned to resource 3 under STB

if the agent has preferences (1, 2, 3, 4). So,

RSTB
3 (N) = (0, 0, 1, 0)

Since all agents rank resource 3 as their second or third choice, only agents of rank two or

three are assigned to resource 3 under MTB. Because N > 1, under MTB a nonzero mass of

agents will be rejected from all resources, so every MTB cutoff is strictly greater than zero.

Thus, a nonzero mass of agents with a rank of 2 will be assigned to resource 3 under MTB,

and so

RMTB
3 = (0, c, 1− c, 0)

for some constant c > 0. Thus RSTB
3 � RMTB

3 .

The final example shows that a different version of the hybrid tie-breaking rule that uses

the same lottery number for an agent at all popular resource types does not always dominate

MTB. We will denote such a hybrid tie-breaking rule by HBT′. To be more precise, HTB′

assigns the same (independently drawn) lottery number to an agent at every resource that

belongs to a popular resource type, and assigns her independently drawn lottery numbers at

every other resource.

47



Example 4 (Non-Dominance of Common Lottery for Popular Resources). Consider the

following matching market with n = 3 and satisfying MNL preferences. Let N = 1, µ =

(1, 1, 1) and q = (1/4, 1/4, 1/2).

Claim 10. In Example 4,

RHTB′

(1,2,3) � RMTB
(1,2,3).

Proof. We will show

(RHTB′

(1,2,3))≤2 < (RMTB
(1,2,3))≤2 (47)

which implies the claim. Under both MTB and HTB′, resource 3 will have a cutoff of zero.

Since resource 1 and 2 are symmetric, let α be the cutoff of these resources under HTB′

and β the cutoff under MTB. Let type 1 agents be the agents with preferences (1, 2, 3) or

(2, 1, 3), and type 2 agents be the agents with preferences (1, 3, 2) or (2, 3, 1). See that only

type 1 and type 2 agents will be assigned to resource 1 or 2, and that under HTB′, both

type 1 and type 2 agents will be assigned to resource 1 or 2 with probability (1−α). On the

other hand, under MTB, type 1 agents will be assigned to resource 1 or 2 with probability

(1− β) + β(1− β) = (1 + β)(1− β)

and type 2 agents will be assigned to resource 1 or 2 with probability (1−β). Let m1 be the

mass of type 1 agents, and m2 the mass of type 2 agents. Then the capacity constraints of

the resources give that

(m1 +m2)(1− α) =
1

2

and

m1(1 + β)(1− β) +m2(1− β) =
1

2
.

Since (1 + β)(1− β) > (1− β), we get that (1 + β)(1− β) > (1− α) which proves (47).
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