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Abstract

In the context of pre-Bayesian games we analyze resource selection games with unknown

number of players. We prove the existence and uniqueness of a symmetric safety-level equilib-

rium in such games and show that in a game with strictly increasing linear cost functions every

player benefits from the common ignorance about the number of players. In order to perform

the analysis we define safety-level equilibrium for pre-Bayesian games, and prove that it exists

in a compact-continuous-concave setup; in particular it exists in a finite setup.

1 Introduction

In a resource selection system, Γ, there is a set of m resources, j ∈ {1, · · · ,m}. Each resource j is

associated with a cost function wj : {1, 2, · · · , · · · } → <, where wj(k) is the cost for every user of

resource j if there are k users. Together with a set of n players a resource selection system defines

a game in strategic form– a resource selection game, Γ(n). The action set1 of every player i in

Γ(n) is the set of resources M , and the cost of i depends, via the resource-cost functions, on the

resource she chooses and on the number of other players who choose this resource. Thus, resource

selection games are special types of congestion games [23, 18]. A resource selection game is also

referred to as a simple congestion game.2 In many situations the assumption that every player

knows the number of players is not reasonable. The goal of the current paper is to analyze resource

selection games with unknown number of players. One approach for analyzing such situations is

the Bayesian approach, where it is assumed that the distribution of the random set of players is
1When dealing with games in strategic form the choice set of a player is referred to as an action set or as a strategy

set. We use ”actions” rather than ”strategies” because we keep the notion of strategy to describe the choice set of a

player in ”bigger” games.
2Simple congestion games and their generalization to player-specific games were discussed in [22, 16, 8, 27, 11].

Simple congestion games were also discussed in the price of anarchy literature, e.g., [12, 2]
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commonly known. In this approach one is interested in Bayesian equilibrium. 3 The goal of this

paper is to analyze resource selection games in the non-Bayesian setup in which the players do not

have probabilistic information about the number of the other players in the game. We will use

what we call pre-Bayesian games. A pre-Bayesian game is defined to be a Bayesian game without

the state probability.4

In a classical pre-Bayesian game there is a fixed set of players I = {1, 2, · · · , n}, each of them

is endowed with a set of actions, xi ∈ Xi. There is a set of states ω ∈ Ω. The payoff of player i,

ui(ω, x1, x2, · · · , xn) depends on the realized state, on her choice of action, xi, and on the choices of

all other players. However, the realized state is not known to the players. Every player receives a

state-correlated signal, ti = t̃i(ω) on which she conditions her action. A pre-Bayesian game becomes

a Bayesian game when a commonly known probability measure on the set of states is added to the

system. The above description is not general enough for our purpose because the set of players is

fixed. We generalize the model by allowing the set of active players as well as the action sets to

depend on the state.

In pre-Bayesian games one can deal with ex-post equilibrium, which generalize the notion of

dominant strategy equilibrium. Such equilibria rarely exist, and consequently only very special type

of pre-Bayesian games have been discussed in Game Theory or in Computer Science. Hyafil04 and

Boutilier (2004)[10] suggested minimax regret equilibrium as a solution to general pre-Bayesian

games. In such equilibrium, every agent, after receiving her informational signal is using the

minimax regret criterion in the decision making problem obtained by fixing the behavior of all

other agents. They proved that such an equilibrium exists in every finite pre-Bayesian game.

In this paper we define another type of equilibrium concept, safety level equilibrium. In such

an equilibrium, every player, after receiving her informational signal use the maximin payoff (or

minimax cost) criteria in the decision making problem obtained by fixing the behavior of all other

agents. We use a more general definition of pre-Bayesian games and prove that a safety level

equilibrium always exists. Independently, [1] also define safety level equilibrium. However, they

restricted attention to a very particular information structure in which all players receive the same

signal. All of the above mentioned existence results rely on Kakutani fixed point theorem, which

is a standard tool in game theory for proving equilibria existence results.5

3See [15, 14, 6] for such analysis in the context of auctions, and [19, 20, 21] for such analysis in the context of

elections.
4Surprisingly, until recently such games did not have a name in the literature. Pre-Bayesian games have been

also called games in informational form and games without probabilistic information [9, 7], games with incomplete

information with strict type uncertainty [10], and distribution-free games with incomplete information [1].
5We note that an equilibrium concept for specific types of pre-Bayesian games were already defined in [26, 25, 24]
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As we said, our main goal in this paper is to analyze resource selection games with unknown

players, and we do it by analyzing safety-level equilibria in such games. However, for the sack of

completeness we also define and prove existence of a third type of equilibrium, which is consistent

with a large part of single agent setups of incomplete information in CS. We define competitive

ratio equilibrium and prove that it exists.6

Once we have the right tool we proceed to analyze resource selection games with unknown

number of players. We focus on a model with increasing resource cost functions. In order to derive

results for the case in which the number of players is unknown we prove several results, some of

them are interesting for themselves, about classical resource selection games with known number of

players. In particular we prove that every resource selection game possesses a unique mixed-action

symmetric equilibrium. When the number of players is k, the unique symmetric equilibrium mixed-

action of every player is denoted by pk. That is, pk = (pk
1, p

k
2, · · · , pk

m), where pk
j is the probability

that a player chooses resource j.

In our pre-Bayesian model all active players know a common bound, n, on the number of active

players, but the players do not know the true number of players, say k, k ≤ n. Hence, the only

signal a player receives is an ”activity” signal. A state in this pre-Bayesian game is the set of active

players. We prove that a resource selection game with unknown number of players has a unique

symmetric safety level equilibrium. In this equilibrium, every active player is using the unique

symmetric-equilibrium mixed-action, pn in the game in which the number of players is commonly

known and equals n.

Hence, when the number of players is k, every player uses pk when the number of players is

commonly known, and every player is using pn when the number of players is unknown. Surprisingly,

the lack of knowledge makes each of the players better off in the linear system, in which the resource

cost functions are linear! That is, we show that in the linear model, when there are k players, and

each of them is using pn, the cost of each player is at most the cost he obtains in the unique

symmetric equilibrium, pk. Under very modest assumptions every player is strictly better off.

The above results are applicable to a mechanism design setup in which the organizer knows the

number of active players, and the players do not know this number. If the goal of the organizer is to

maximize revenue then he is better off revealing his private information.7 If his goal is to maximize

in the context of work on artificial social systems, and in [13], where another equilibrium concept is defined for

particular pre-Bayesian auctions. Both groups of authors used versions of safety-level equilibrium.
6The competitive ratio approach is relatively common in computer science in the context of single agent decision

problems (see e.g., [3]. A recent paper of [5] applies the notion of competitive equilibrium to a particular problem of

online algorithms.
7This is indirectly related to the Linkage Principle, in auction theory [17].
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social surplus then he should not reveal the information. In order to estimate the gain of the players

resulting from their ignorance we investigate in the last section the function ck(pn) for n ≥ k, where

ck(pn) is the cost for a player in a k-player setup when all players play the mixed-action associated

with the symmetric equilibrium of the corresponding n-player setup.

2 Background

We remark that games can be analyzed with either payoff functions or cost functions. Most of the

general theory has been developed with payoff functions. However, congestion games have been

mainly analyzed using cost functions. Translating results proved in one of the setups to the other

setup is obvious in most cases.8 We follow the tradition of previous literature in the sense that the

general theory is discussed with payoff functions, while resource selection games are discussed with

cost functions.

A game in strategic form is a tuple, Γ = (I, (Xi)i∈I , (ui)i∈I). I is a nonempty set of players,

Xi is a nonempty set of actions for player i, and ui : X → < is the payoff function of i, where

X = ×i∈IXi is the set of action profiles. Hence ui(x) is the payoff of player i when the profile of

actions x ∈ X is played. Γ is a finite game if I and X are finite sets.

Let x ∈ X denote a profile of actions. For each i ∈ I we let x−i = (xj)j∈I\{i} denote the

actions played by everyone but i. Thus x = (xi, x−i). An action profile x ∈ X is in equilibrium if

ui(xi, x−i) ≥ ui(yi, x−i) for every player i ∈ I and for every yi ∈ Xi.

A permutation of the set of players is a one-to-one function from I onto I. For every permutation

π and for every action profile x ∈ X we denote by πx the permutation of x by π. That is,

(πx)i = xπ(i) for every player i. Γ is a symmetric game if Xi = Xs for all i, s ∈ I, and

ui(πx) = uπ(i)(x)

for every player i, for every action profile x, and for every permutation π. A symmetric action

profile is an action profile x such that xi = xs for every i, s ∈ I. x is a symmetric equilibrium if it

is both an equilibrium profile and a symmetric action profile .

For any finite set C, ∆(C) denotes the set of probability distributions over C. Let Γ =

(I, (Xi)i∈I , (ui)i∈I) be a finite game in strategic form. Every pi ∈ ∆(Xi) is called a mixed ac-

tion for i. pi(xi) is the probability that player i plays action xi. Every vector p ∈ ∆ = ×i∈I∆(Xi)

defines a probability distribution over X; The probability, p(x) of x ∈ X is
∏

i∈I pi(xi).

Let um
i be the expected payoff function defined on ∆ by ui. That is, um

i (p) = Ep(ui).

8An exception is the price of anarchy theory.
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The game Γm = (I, (∆(Xi))i∈I , (um
i )i∈I) is called the mixed extension of Γ. A mixed action for

player i in the game Γ is an action for player i in the game Γm.

A mixed action equilibrium in a finite game Γ is defined to be an equilibrium in Γm. It is

well-known (see e.g, [4]) that every finite symmetric game in strategic form possesses a symmetric

mixed action equilibrium.

3 Resource Selection Games with Known Number of Players

In a resource selection system, Γ = (M, (wj)m
j=1) there is a set of resources, M = {1, · · · ,m},

m ≥ 1. Every resource j is associated with a cost function wj : {1, 2, · · · } → <. wj(k) is the cost

for every user of resource j if there are k users. Together with the set of players In = {1, · · · , n}
a resource selection system defines a game in strategic form– a resource selection game Γ(I). In

this paper only the number of players will be relevant (and not the ”names” of the players) and

therefore we will denote a resource selection game by Γ(n). The action set of every player i in Γ(n)

is the set of resources M , and the cost of i depends on the resource she chooses and on the number

of other players that choose this resource via the resource-cost functions. That is, Xn
i = M for

every 1 ≤ i ≤ n, and cn
i (x) = wxi(σxi(x)), where for every resource j and for every action profile

x ∈ ×n
i=1X

n
i = Mn, σj(x) is the number of all players s for which xs = j. Obviously every resource

selection game is a finite symmetric game.

Let p ∈ ∆(M) be a mixed action of an arbitrary player. That is, p = (p1, · · · , pm), where pj

is the probability that a player who uses the mixed action p will select resource j. We denote the

support of p by supp(p). That is supp(p) = {j ∈ M |pj > 0}. Denote by cn(p, j) the expected cost

of a player that chooses resource j when each of the other n − 1 players in Γ(n) is using p. Let

cn(p) be the expected cost of every player when each of the n players in Γ(n) is choosing p.

For every n ≥ 1, and for every 0 ≤ α ≤ 1. Let Y n
α ∼ Bin(n, α) be a binomial random variable.

That is, fn
α (k) = P (Y n

α = k) =
(
n
k

)
αk(1 − α)n−k for every 0 ≤ k ≤ n. Let Fn

α (k) = P (Y n
α ≤ k) be

the distribution function of Y n
α . Obviously

cn(p, j) = E(wj(1 + Y n−1
pj

)), (1)

where E stands for the expectation operator. That is,

cn(p, j) =
n−1∑

s=0

wj(s + 1)fn−1
pj

(s). (2)

Let (q, · · · , q) ∈ ∆(M)n be a symmetric mixed-action equilibrium profile in Γ(n). We will refer

to q as a symmetric-equilibrium action.
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Theorem 1 Every resource selection game with at least two players (n ≥ 2) with increasing 9

resource cost functions possesses a unique symmetric mixed-action equilibrium.

In order to prove Theorem 1 we need some preparations.

Lemma 1 Let n ≥ 1. Fn
α (k) is a strictly decreasing function of α for every 0 ≤ k ≤ n− 1.

Proof: We show that the derivative of Fn
α (k) by α is negative for every 0 ≤ k ≤ n− 1.

∂Fn
α (k)
∂α

=
k∑

i=0

(
n

i

)
[iαi−1(1− α)n−i + (n− i)αi(1− α)n−i−1] =

k∑

i=0

(
n

i

)
[iαi−1(1− α)n−i − (n− i)αi(1− α)n−i−1].

Let f(k) , ∂F n
α (k)
∂α α(1− α). Therefore

f(k) =
k∑

i=0

(
n

i

)
[(1− α)iαi(1− α)n−i − α(n− i)αi(1− α)n−i] =

k∑

i=0

(
n

i

)
[αi(1− α)n−i(i− nα)].

Observe that
∑k

i=0

(
n
i

)
αi(1− α)n−ii =

∑k
i=1 p(Y n

α ≥ i)− k(1− p(Y n
α ≤ k)). Therefore

f(k) =
k∑

i=0

(
n

i

)
αi(1− α)n−i(i− nα) =

k∑

i=1

p(Y n
α ≥ i)− k + (k − nα)p(Y n

α ≤ k).

Obviously
∑k

i=1 p(Y n
α ≥ i)− k < 0. We distinguish between two cases:

1. k − nα ≤ 0: This case will yield immediately that f(k) is negative.

2. k − nα > 0: Observe that f(n) = 0. We look at the difference between f(k + 1) and f(k).

f(k + 1) − f(k) = (k + 1 − nα)p(Y n
α = k + 1) > 0. Since the differences are positive and

f(n) = 0 then f(k) < 0.

¤

Lemma 2 Let Γ(n), n ≥ 2 be a resource selection game. Let q, p ∈ ∆(M) be mixed actions, and let

j ∈ M be a resource such that wj is increasing in {1, 2, · · · , n}. If pj > qj then cn(p, j) > cn(q, j).

9That is, wj(k) < wj(k + 1) for all j and k.
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Proof: We have to show that cn(p, j) is increasing in pj .

By manipulating (2)

cn(p, j) =
n−1∑

k=1

(
(wj(k)− wj(k + 1))

k−1∑

l=0

fn−1
pj

(l)

)
+ wj(n)

n−1∑

l=0

fn−1
pj

(l) =

wj(n)− [
n−1∑

k=1

(wj(k + 1)− wj(k))Fn−1
pj

(k − 1)],

where the last equality follows from the fact that
∑n−1

k=0 fn−1
pj

(k) = 1.

By lemma 1, Fn−1
pj

(k) is strictly decreasing in pj for every k = 0, ..., n − 2.In addition, wj is

strictly increasing, and therefore cn(p, j) is strictly increasing in pj . ¤
Proof of Theorem 1

Suppose in negation that there is more than one mixed-action symmetric equilibrium in Γ(n).

Let q and p be two symmetric equilibrium actions with p 6= q. Since p 6= q there exists j ∈ M with

qj 6= pj . W.l.o.g qj > pj . Therefore there exist a resource r ∈ M such that r 6= j and qr < pr.

We get a contradiction from the following sequence of inequalities: cn(q, j) > cn(p, j) ≥ cn(p, r) >

cn(q, r) ≥ cn(q, j), where the strict inequalities hold hold by Lemma 2 and the other inequalities

hold because q and p are equilibrium actions. ¤
For every n ≥ 1 we will denote the unique symmetric equilibrium in Γ(n) by pn, and we denote

by cn = cn(pn) the equilibrium cost of a player in Γ(n).

We say that a resource cost function wj is convex if it can be extended to a convex function on

[1,∞).

The following lemma will be useful later.

Lemma 3 Let Γ = (m, (wj)m
j=1) be a resource selection system, with increasing and convex cost

functions. There exists an integer N ≥ 2, N = N(Γ) such that for every n ≥ N , the unique

symmetric-equilibrium action in the game Γ(n), pn ∈ ∆(M) has a full support. That is, pn
r > 0 for

every 1 ≤ r ≤ m.

Proof: Recall that pn is the unique symmetric-equilibrium action in Γ(n), and that cn = cn(pn)

is the symmetric-equilibrium cost of every player. As pn is in equilibrium, cn(pn, j) = cn for every

j ∈ supp(pn) . For every resource j we denote by wj the convex extension of wj to [0,∞). As wj

is convex,

cn(pn, j) = E(wj(1 + Y n−1
pn

j
)) ≥ wj(1 + E(Y n−1

pn
j

)) =

wj(1 + pn
j (n− 1)),
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where the first equality follows from (1), the inequality follows from the convexity of wj , and the

last equality follows from the well-known fact that

E(Y n
α ) = αn. (3)

Obviously, there exists j ∈ supp(p) for which pn
j ≥ 1

m . For this resource j

cn = cn(pn, j) ≥ wj(1 +
1
m

(n− 1)) ≥

m
min
r=1

wr(1 +
1
m

(n− 1)).

Since wj is increasing and convex, limn→∞wj(n) = ∞ for every resource j. Therefore limn→∞ cn =

∞. Hence, there exists N such that for every n ≥ N cn > maxm
j=1 wj(1). We claim that for every

n ≥ N , pn
r > 0 for every 1 ≤ r ≤ m. Indeed, if pn

r = 0 for some r then because cn > wr(1), a player

will decreases her cost by deviating from pn to r (assuming every other player is using pn). This

contradicts pn being a symmetric-equilibrium action.

4 Equilibrium in Pre-Bayesian Games

In this section we define a general model of pre-Bayesian games, and present and prove existence

results for safety-level, and competitive-ratio equilibria in such games. We also give the definition

of minimax-regret equilibrium (existence proved by Hyafil and Boutilier [10]).

A pre-Bayesian game is a tuple H = (Ω, I, (Zi)i∈I , J, (Xi)i∈I , (ui(ω, ∗)ω∈Ω,i∈I , (Ti)i∈I), where,

• Ω is a set of states.

• I is a finite set whose elements are called potential players.

• J : Ω → 2I \ {∅} is the function determining the set of active players. That is, i is active at

ω if i ∈ J(w).

Let Ωi be the subset of states at which i is active. That is, Ωi = {ω ∈ Ω|i ∈ J(w)}.

• Zi is the set of potential actions of i.

Only a subset of Zi will be available to i at a given state.

• For every potential player i, Xi : Ωi → 2Zi \ {∅} is the variable determining the set of actions

that are available for i at ω.

Let X(ω) = ×i∈J(ω)Xi(w) be the set of action profiles that can be generated at ω.
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• For every potential player i, and for every ω ∈ Ωi, ui(ω, ∗) : X(ω) → < is the payoff function

of i at the state ω.

• Ti is the set of possible signals that i may receive.

We will sometimes follow the traditional approach in economics and refer to ti ∈ Ti as a type

of i.

• t̃i : Ωi → Ti is the signaling function of i.

That is, whenever i is active at ω she receives the signal t̃i(ω).

Without loss of generality we assume that every type is possible. That is, t̃i(Ωi) = Ti.

Let Ωi(ti) be the set of all states ω that generate the type ti. That is, Ωi(ti) = {ω ∈ Ωi|t̃i(ω) =

ti}.

• t̃i(ω) = t̃i(ω′) implies Xi(ω) = Xi(ω′).

That is, players know their set of actions; In other words, Xi is a constant function over Ωi(ti)

for every ti ∈ Ti.

This assumption allows us to define the set of available actions for i when his type is ti.

Indeed we define Xi(ti) = Xi(ω) for any arbitrary ω ∈ Ωi(ti).

The pre-Bayesian game proceeds as follows. Nature chooses ω ∈ Ω, and the game in strategic

form Γ(ω) = (J(w), (Xi(ω))i∈J(ω), (ui(ω, ∗))i∈J(ω) is played. Every active player in the game,

i ∈ J(ω) receives the signal t̃i(ω), which reveals part of the information about the game. The

minimal information is the set of available actions at ω. Thus, every i ∈ J(ω) chooses xi ∈ Xi(ω)

and his payoff is ui(ω, x), where x = (xi)i∈J(ω).

A strategy for a potential player i in the pre-Bayesian game H is a function si : Ti → Zi that

satisfies: si(ti) ∈ Xi(ti) for every ti ∈ Ti. Hence, i follows the strategy si if whenever he is active

and receives the signal ti he chooses the action si(ti). The set of strategies of i is denoted by

Σi = Σi(H), and the set of strategy profiles is denoted by Σ = Σ(H), that is Σ = ×i∈IΣi.

Let H be a pre-Bayesian game. We say that H is finite if the set of states, and the sets of

potential actions are finite.

We say that H is a compact-continuous pre-Bayesian game if the set of states are finite, Zi is a

compact subset of some Euclidean space10, Xi(ti) is a compact subset of Zi for every type ti, and

ui(ω, ∗) is continuous on X(ω) for every ω ∈ Ωi.
10Or of some linear topological space.
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A compact continuous pre-Bayesian game is (quasi) concave if Zi is a convex set, Xi(ti) is a

convex subset of Zi for every type ti, and ui(ω, ∗, x−i) is (quasi) concave on Xi(ω) for every ω ∈ Ωi

and every x−i ∈ X−i(ω).

Let H = (Ω, I, (Zi)i∈I , J, (Xi)i∈I , (ui(ω, ∗)ω∈Ω,i∈I ,

(Ti)i∈I) be a finite pre-Bayesian game. We are about to define the mixed extension, Hm of H by

allowing every active player at ω ∈ Ω to choose a mixed action µi ∈ ∆(Xi(ω)). However we need

the following definition.

For every ω ∈ Ωi let ∆i(ω) be the set of all probability distributions µi ∈ ∆(Zi) that vanishes

outside Xi(ω). Obviously, ∆i(ω) can be identified with ∆(Xi(ω)).

The pre-Bayesian game Hm = (Ω, I, (∆(Zi))i∈I , J, (∆i)i∈I , (um
i (ω, ∗)ω∈Ω,i∈I , (Ti)i∈I) is called

the mixed extension of H, where um
i (ω, ∗) is the expected-payoff function defined by ui. Obviously,

Hm is a concave pre-Bayesian game. Every strategy of i in Hm is called a mixed-strategy for i in

H.

4.1 Safety-level equilibrium

Let H be a compact-continuous pre-Bayesian game. For every profile, s ∈ Σ of strategies in H, and

for every state ω we denote by s[ω] the profile of actions chosen in X(w) when every player i uses

si. That is, s[ω] = (sj(t̃j(ω))j∈J(ω). As usual, s−i[ω] is obtained from s[ω] by removing the action

chosen by i.

Let i ∈ I, ti ∈ Ti, xi ∈ Xi(ti), and let s−i = (sj)j∈I\i be a profile of strategies of all players but

i. The worst case cost of i is

Wi(ti, s−i, xi) = min
ω∈Ωi(ti)

ui(ω, xi, s−i[ω]).

Obviously Wi(ti, s−i, ∗) is continuous on Xi(ti). We say that x∗i ∈ Xi(ti) is optimal for type ti

given s−i if the maximal value of Wi(ti, s−i, xi) over xi ∈ Xi(ti) is attained at x∗i . A strategy of

player i, si, is a safety-level best-response to s−i if for every type ti, si(ti) is optimal for ti given s−i.

A strategy profile s = (si)i∈I is called a safety-level equilibrium if for every i, si is a safety-level

best-response to s−i.

Hence, s is a safety-level equilibrium if and only if for every ω, and for every player i, which is

active at ω, si(t̃i(ω)) is optimal for t̃i(ω) given s−i.

A safety-level equilibrium in a pre-Bayesian game with exactly one state is simply a Nash

equilibrium in this game. We next show that safety-level equilibria exist in every quasi concave

game.
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Theorem 2 Every quasi concave pre-Bayesian game possesses a safety-level equilibrium.

Proof: Note that for every i Σi is a closed convex and compact subset of ZTi
i . Therefore Σ is

a closed convex and compact set because it is a cartesian products of such sets. For every s ∈ Σ

and for every i ∈ I let Bi(s) ⊆ Σi be the set of all di ∈ Σi, which are best response to s−i. Let

B(s) = ×i∈IBi(s) ⊆ Σ. It is standard to check that the correspondence s → B(s) satisfies the

conditions of Kakutani’s fixed point theorem. That is, it is upper hemicontinuous, and B(s) is a

nonempty compact convex subset of Σ for every s ∈ Σ. Therefore there exists a fixed point s∗, that

is, s∗i ∈ Bi(s∗) for every i ∈ I. Obviously such a fixed point is a safety-level equilibrium.

Hence, if H is a finite game, Hm possesses a safety-level equilibrium. Every such an equilibrium

is called a mixed- strategy safety-level equilibrium in H.

4.2 Minimax-regret equilibrium

Minimax-regret equilibria were defined by Hyafil and Boutilier in [10]. We use their definition for

our general model of pre-Bayesian games.

Let H be a compact-continuous pre-Bayesian game. Let i ∈ I, ti ∈ Ti and let s−i = (sj)j∈I\i be

a profile of strategies of all players but i. Let ω ∈ Ωi(ti). The regret of xi ∈ Xi(ti) at w is defined

as:

R(xi, w, ti, s−i) =

max
zi∈Xi(ti)

[ui(w, zi, s−i[ω])− ui(w, xi, s−i[ω]].

The maximal regret of xi ∈ Xi(ti) over all ω ∈ Ωi(ti) is denoted by MR(xi, ti, s−i). That is:

MR(xi, ti, s−i) = max
ω∈Ωi(ti)

R(xi, w, ti, s−i).

We say that yi ∈ Xi(ti) is a minimax regret strategy at ti given s−i if the minimal value of

MR(xi, ti, s−i) over xi ∈ Xi(ti) is attained at yi. A strategy si is a minimax regret best response

to s−i if for every type ti, si(ti) is a minimax regret strategy at ti given s−i. s is a minimax regret

equilibrium if for every player i si is a minimax regret best response to s−i. In [10] the authors

show:

Theorem 3 (Hyafil and Boutilier) Every quasi concave pre-Bayesian game possesses a minimax-

regret equilibrium.
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4.3 Competitive ratio equilibrium

Competitive ratio equilibrium resembles the minimax-regret equilibrium. They differ only in the

definition of regret.

Let H be a compact-continuous pre-Bayesian game, where all payoff functions are positive. Let

s−i = (sj)j∈I\i be a profile of strategies of all players but i, let ti be an active type of i, and let

ω ∈ Ω(ti). Replace the definition of R(xi, w, ti, s−i) in the previous section with the following:

R̂(xi, w, ti, b−i) = max
zi∈Xi(ti)

ui(w, zi, s−i[ω])
ui(w, xi, s−i[ω])

.

Note that R̂ is well defined since all payoff functions are positive. A strategy profile s is a

competitive-ratio equilibrium if for every player i si is a minimax-regret best response to s−i with

respect to the regret function R̂.

Theorem 4 Every quasi concave game in pre-Bayesian game with positive payoffs functions pos-

sesses a competitive ratio equilibrium.

The proof follows from Theorem 3 by applying the logarithmic function to the payoff functions.

5 Resource Selection Games with Unknown Number of Players

Consider a fixed resource selection system, Γ with the set of resources M = {1, · · · ,m}, m ≥ 1,

and resource cost functions (wj)m
j=1.

We proceed to describe our model of resource selection games with unknown number of players.

Let I = {1, 2, · · · , n}, n ≥ 1. be the set of potential players. The set of states, Ω is the set 2I \ {∅}
of all nonempty subsets of I. The set of active players at state K is K itself. That is J(K) = K

for every K ∈ Ω. The set of actions of player i is the set of resources. That is, Zi = M for every

player i. The set of types of i ∈ I is a singleton, Ti = {active}. That is, an active player knows

that he is active. The non-active players do not receive any signal. For every player i ∈ I and

every ω ∈ Ωi Xi(ω) = M . For every i ∈ I and for every K ∈ Ω such that i ∈ K the cost function

of i ci(K, ∗) : Z → < is defined by ci(K, z) = wzi(σ
K
zi

(z)), where σK
zi

(z) is the number of all players

l ∈ K for which zl = zi. The above pre-Bayesian game is finite. We denote its mixed extension

by HΓ(n), and we referred to HΓ(n) as a resource selection game with unknown number of players.

A strategy of player i in HΓ(n) can be described by a mixed action q[i] ∈ ∆(M). That is, when

receiving the signal {active}, i uses q[i]. Since we deal with costs and not with payoffs we use

minimax rather than maximin in the definition of safety-level equilibrium. let µ = (q[1], · · · , q[n])
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be a strategy profile in HΓ(n), and let i be a player. Let µ[−i] = (q[l])l∈I\{i} be the profile of

strategies of the other players. Observe that Ωi is the set of all nonempty subsets of I that contain

i. If all cost functions are non-decreasing, and if i believes that all other players are using the

profile q[−i], then it is obvious that the worst case scenario for i is obtained in the state I. Thus

we have:

Lemma 4 Let Γ be a resource selection system in which the resource cost functions are non-

decreasing. Let µ ∈ ∆(M)n. µ is a safety-level equilibrium in HΓ(n) if and only if µ is a mixed-

action equilibrium in Γ(n).

Proof: Assume µ is a mixed-action equilibrium in Γ(n). Let i be an active player. By the

comment we made before the statement of the lemma,

min
p[i]∈∆(M)

max
K∈Ωi

ci(K, p[i], µ[−i]) =

min
p[i]∈∆(M)

ci(I, p[i], µ[−i]).

Because µ is a mixed-action equilibrium in Γ(n), the min in the right hand-side of the above formula

is attained at q[i]. Therefore µ is a safety-level equilibrium in HΓ(n). An analogous argument proves

the if part of the lemma.

Theorem 5 Let Γ be a resource selection system in which the resource cost functions are non-

decreasing. HΓ(n) has a unique symmetric safety-level equilibrium. In this symmetric safety-level

equilibrium every player is using the strategy pn, where pn is the unique symmetric-equilibrium

action in Γ(n).

Proof: The proof follows directly from Theorem 1 and Lemma 4.

By Theorem 5, each of the players in HΓ(n) is using the strategy pn, where pn is the unique

symmetric-equilibrium mixed action in Γ(n). However, the cost of each active player in HΓ(n) is

not cn = cn(pn), it depends on the true state. If the true state is K, that is K is the set of active

players, and |K| = k, the cost of each active player i is ck(pn). It is worthy to compare this cost

with the cost ck = ck(pk) that every player in K would have paid had the players in K known

the state. We make these comparison in linear models. We say that a resource selection system

is linear if for every resource j there exists a constant dj such that wj(k) = wj(1) + (k − 1)dj for

every k ≥ 1. For every number of players, n, the associated resource selection game, Γ(n), as well

as the associated resource selection game with unknown player set, HΓ(n) will be called linear too.

Note that in a linear system, wj is increasing if and only if dj > 0, and wj is non-decreasing if and

only if dj ≥ 0.
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Theorem 6 Let Γ be a linear resource selection system with increasing resource cost functions. For

every k ≥ 2 let pk be the unique symmetric equilibrium in Γ(k). There exist an integer N = N(Γ),

N ≥ 2 such that for all n > k ≥ N :

1. ck(pk) ≥ ck(pn).

2. All inequalities above are strict if and only if there exists j1, j2 ∈ M such that wj2(1) 6= wj1(1)

Proof of Theorem 6

1. Let j ∈ M . By lemma 3 there exist an integer N such that for every n ≥ N the unique

symmetric equilibrium of Γ(n) has full support. By (1) and (3),

ck = ck(pk) = wj(1)+ (k−1)djp
k
j for every k ≥ N . Let n, k be integers such that n > k ≥ N .

We begin by showing that ck(pk) ≥ ck(pn). Let ck = ck(p).

ck(pn) =
m∑

j=1

pn
j ck(pn, j) =

m∑

j=1

pn
j [cn − (n− k)djp

n
j ] = cn − (n− k)

m∑

j=1

dj(pn
j )2. (1)

It remains to show that

cn − ck ≤ (n− k)
m∑

j=1

dj(pn
j )2 (2)

We have

pn
j =

cn − wj(1)
dj(n− 1)

, pk
j =

ck − wj(1)
dj(k − 1)

.

Let A =
∑m

j=1
1
dj

and B =
∑m

j=1
wj(1)

dj
. Since

∑m
j=1 pk

j =
∑m

j=1 pn
j = 1 we have that cn =

(n−1)+B
A and ck = (k−1)+B

A . Hence

cn − ck =
n− k

A
.

Together with (2) it remains to show that A
∑m

j=1 dj(pn
j )2 ≥ 1. Let L =

∑m
j=1

(wj(1))2

dj
. We

have

A

m∑

j=1

dj(pn
j )2 = A

m∑

j=1

(cn − wj(1))2

dj(n− 1)2
=

A

(n− 1)2
[(cn)2A− 2cnB + L] =

1
(n− 1)2

[((n− 1) + B)2 − 2((n− 1) + B)B + LA] =

1
(n− 1)2

[(n− 1)2 −B2 + LA] = 1− B2 − LA

(n− 1)2
. (3)

It remains to show that LA− B2 ≥ 0. This is immediate since for every couple of resources

j, r ∈ M such that j 6= r, (wj(1))2 + (wr(1))2 ≥ 2wj(1)wr(1).
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2. Observe that equality holds if and only if wj(1) = wr(1) for every j, r ∈ M .

¤
Theorem 6 is applicable to a mechanism design setup in which the organizer knows the number

of active players, and the players do not know this number. If the goal of the organizer is to

maximize revenue then he is better off revealing his private information. If his goal is to maximize

social surplus, then he should not reveal that information. In order to estimate the gain of the

players resulting from their ignorance we analyze the function ck(pn).

Theorem 7 Let Γ be a linear resource selection system with increasing resource cost functions.There

exist N such that for every n ≥ N the following assertions hold:

1. pn
j = n−1+B−wj(1)A

Adj(n−1) , where A =
∑m

j=1
1
dj

, and B =
∑m

j=1
wj(1)

dj
.

2. The minimal social cost in Γ(k) attained with symmetric mixed-action profiles is attained at

p2k−1. Consequently, ck(pn) is minimized at n = 2k − 1.

Proof:

1. Let qn
j = 1

Adj
+ B−wj(1)A

Adj(n−1) for every j ∈ M . Let N be the smallest n such that qn
j > 0 for every

j ∈ M . Observe that for every n ≥ N qn
j > 0 for every j ∈ M . Notice that for every n,

∑m
j=1 qn

j = 1. Let n ≥ N . Let pn = qn. It is enough to show that if all players but i play the

mixed-action pn then player i is indifferent between all resources. That is cn(pn, j) = cn(pn, r)

for every j, r ∈ M . cn(pn, j) = wj(1) + (n− 1)djp
n
j = n−1

A + B
A which doesn’t depend on j.

2. Let k ≥ N . We need to show that
∑m

j=1 pjc
k(p, j) is minimized at p = p2k−1 (subject to p

being a probability distribution).

m∑

j=1

pjc
k(p, j) =

m∑

j=1

p2
jdj(k − 1) + pjwj(1).

This is a convex program. Therefore it is enough to find a p that satisfies the Kuhn Tucker

conditions: there exist a (Lagrange multiplier) λ such that for every j:

2pjdj(k − 1) + wj(1) = λ.

With the condition that
∑m

j=1 pj = 1 we have λ = 2(k−1)+B
A . Therefore pj = 2(k−1)+B−wj(1)A

2(k−1)Adj
.

Observe that pj has the same form of pn where n = 2(k − 1) + 1 = 2k − 1 which completes

the proof.

¤
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6 Conclusions

This paper tackles two fundamental issues in the study of multi-agent systems:

1. Providing solution concepts for multi-agent interactions with incomplete information, where

exact probabilistic information is unavailable.

2. Incorporating uncertainty about the number of participants into the context of resource se-

lection systems, one of the most fundamental settings in multi-agent systems.

Our results turned out to be both general and illuminating. On one hand, we provided general

existence results for safety-level/competitive ratio equilibria. On the other hand, we were able to

apply them to the context of resource selection games. Most importantly, our study led to highly

surprising results, showing the positive effect of ignorance about the number of participants on the

agents’ costs and the system surplus.

Together, our work provides a foundational rigorous study of congestion games with incomplete

information, while presenting general tools for the analysis of multi-agent systems where exact

probabilistic information is not available.
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