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Abstract

We study optimal mechanisms for selling multiple products to a buyer who learns her values

for those products sequentially. A mechanism may use static prices or adjust them over time,

and may sell the products separately or as bundles. We study mechanisms that provide the

buyer a non-negative ex post utility. We show that there exists an optimal mechanism that

determines the allocation of each product as soon as the buyer learns her value for that product.

This observation allows us to solve for optimal mechanisms recursively. We use this recursive

characterization to show that static mechanisms are sub-optimal if the buyer first learns her

values for products that are ex ante less valuable. Under this condition, the ability to bundle

products is less profitable than the ability to adjust prices dynamically.
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1 Introduction

Online multi-product sellers increasingly use interactive websites to customize their offers to indi-

vidual buyers. For example, a user who clicks on the first Harry Potter movie on Amazon is shown

a “Bundle and save” offer to buy all eight Harry Potter movies at a discounted price. And insur-

ance providers make personalized offers to a user, involving discounts to buy bundles of insurance

products, after she fills out an online form that solicits the buyer’s preferences and characteristics.

What selling strategy should a multi-product seller use to maximize profit? Should he offer prod-

ucts as bundles or sell them individually? Should he use static prices or adjust them dynamically

based on user interaction? Should he combine these two instruments and use both bundling and

dynamically adjusted prices?

We study these questions in a setting with a rich class of selling strategies. There is a number

of products, and the buyer learns her values for products sequentially, one product in each period.

These values are drawn independently from known distributions. The selling strategy is a mecha-

nism that specifies a set of possible decisions for the buyer in each period, as well as the eventual

allocation of products and the payment as a function of all these decisions. A special case is the

class of static mechanisms in which prices do not change over time but products may be sold as

bundles. Another special case is when the products are sold separately but at dynamically adjusted

prices. A general mechanism may combine these two instruments and sell products as bundles and

at dynamically adjusted prices.

We restrict attention to mechanisms in which the buyer has an ex post non-negative utility.

That is, after the buyer learns all of her values, her utility for the allocation and prices specified

by the mechanism must be non-negative. This restriction excludes mechanisms in which the seller

“sells the store in advance” to the buyer. In such a mechanism, before the buyer learns her values,

the seller offers her the grand bundle of products at a price equal the the buyer’s expected value.

The constraint that ex post utility must be non-negative allows us to compare dynamic and static

mechanisms on an equal footing by isolating the ability to adjust prices over time from the ability

to charge the buyer advance payments before she learns her values. For a static mechanism, our ex

post non-negative utility constraint is equivalent to the standard notion of individual rationality.

Thus, our class of mechanisms includes well-studied static multi-product screening mechanisms
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(going back to Stigler, 1963; Adams and Yellen, 1976; McAfee et al., 1989).

Our first result is that, in order to maximize profit, it is without loss of generality to restrict

attention to a class of separable mechanisms. A separable mechanism has two features. First, it

sells the products separately. That is, the allocation of each product is specified immediately once

the value for that product is revealed to the buyer. Second, in each period, the buyer simply reports

the value learned in that period. A special case is when the buyer is offered a deterministic price

based on previous interactions, but in general a separable mechanism may be randomized.

A separable mechanism is handicapped because it sells the products separately. It does not

have the ability to “bundle” the products by arbitrarily tying the allocation of one product to the

value for another. To see this, consider selling two products, and suppose that the value for each

product is either 1 or 2. A static mechanism can bundle the products. For example, it can offer the

two products only as a bundle at a take it or leave it price of 3. If the buyer’s value for either one of

the products is 2, she buys the bundle, and otherwise she buys nothing. In this static mechanism,

the allocation of the first product depends on the buyer’s value for the second product. So no

separable mechanism can implement this allocation.

Bundling is a strong instrument to screen types in static settings (McAfee et al., 1989). Since a

separable mechanism cannot use such an instrument, and given that the ex post utility constraint

restricts the use of advance payments, it is a priori not clear that a separable mechanism can be

optimal. Indeed, as we discuss later, static mechanisms may be sub-optimal with correlated values.

Nevertheless, in our setting with independent values, we show that any mechanism can be converted

to a separable one with the same profit. The main insight is that dynamic screening is a weakly

more powerful instrument than bundling.

The fact that separable mechanisms are optimal significantly simplifies the problem since opti-

mal separable mechanisms can be characterized via standard recursive methods (Green, 1987; Spear

and Srivastava, 1987; Thomas and Worrall, 1990). In particular, an optimal mechanism maintains

a state variable, the promised utility, which is the buyer’s expected utility. The promised utility

affects the allocation and is updated in each period. For any given period and any promised utility,

the optimal allocation can be characterized via backward induction. In particular, in each period,

the optimal allocation maximizes the seller’s expected revenue, given how much revenue the seller

can extract in future periods for any updated promised utility.
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Figure 1: The dark-shaded region is the set of (q1, q2) for which static mechanisms are sub-optimal.
The right and the bottom boundaries are not in the set.

We use our recursive characterization to identify conditions under which static mechanisms are

(strictly) sub-optimal. With two types and two values, we provide a complete characterization.

To describe this characterization, suppose that the value for each product is either 1 or 2. Let q1

be the probability that that the first product’s value equals 2, and q2 be the probability that the

second product’s value equals 2. The set of possible pairs (q1, q2) for which static mechanisms are

sub-optimal is specified in Figure 1. Roughly speaking, static mechanisms are sub-optimal if and

only if q1 is low and q2 is high, that is, the first product is ex ante less valuable than the second

product.

We generalize this insight to any number of products and values. In particular, we show that

static mechanisms are sub-optimal if the first product is ex ante less valuable than the last product

in the sense that it has lower monopoly prices.1 To see the connection between the two results,

consider again two products with values 1 and 2. If q1 < 0.5 < q2, the optimal monopoly price for

the first product is 1, and the optimal monopoly price for the second product is 2. In this case, as

shown in Figure 1, static mechanisms are sub-optimal. Thus the result for any number of products

and values partially generalizes the result for the case of two values and two products. Under this

condition, the ability to bundle products is strictly less profitable than the ability to screen types

dynamically.

We study the robustness of our results to the case of correlated values via numerical calculations

with two products and two values. These calculations suggest that our main results extend if

1An optimal monopoly price for a product is an optimal take it or leave it price for selling that product.
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values are positively correlated, but fail if they are negatively correlated. In particular, if values

are positively correlated, separable mechanisms remain optimal, and static mechanisms are sub-

optimal if the first product has a lower monopoly price than the second product. Both of these

two conclusions fail if values are negatively correlated. We leave a thorough analysis of correlated

values to future work.

Related Work. Closest to our work are the papers that consider selling multiple products with

ex post participation constraints. These papers assume that the allocation of each product must

be specified when the product arrives (because the product would perish otherwise). As a result,

unlike ours, these papers are not concerned with the performance of static bundling mechanisms.

Papadimitriou et al. (2016) show that when the buyer’s values are correlated, finding optimal

mechanisms is computationally hard. Mirrokni et al. (2016) characterize approximately optimal

mechanisms with multiple buyers recursively. Mirrokni et al. (2020) consider the design of ap-

proximately optimal mechanisms when buyers have different expectations of future distributions.

Balseiro et al. (2017) imposes a martingale constraint on the buyer’s utility, and show that the

seller’s profit approaches first best (full surplus extraction) as the number of products grow.

The ex post utility constraint is related to limited liability constraints in dynamic principal

agent models. Krishna et al. (2013), Krähmer and Strausz (2017), and Grillo and Ortner (2018)

study contracts in which the agent’s stage utility is non-negative. In our setting, a mechanism with

non-negative stage utilities also has non-negative ex post utilities. Nonetheless, the two constraints

are equivalent when solving for optimal mechanisms, since a separable mechanism satisfies the non-

negative stage utility constraint. Relatedly, Sappington (1983); Clementi and Hopenhayn (2006);

DeMarzo and Sannikov (2006) assume that the agent cannot make monetary transfers to the

principal.

Ex post participation constraints have also been studied for selling a single product. Krähmer

and Strausz (2015) consider a problem where the seller has a single item to sell and the buyer

sequentially receives signals about her valuation. They show that assuming a monotone hazard

rate condition, static mechanisms are optimal. Bergemann et al. (2017) consider the same setting

and provide necessary and sufficient conditions for optimality of static mechanisms. Krähmer and

Strausz (2016) consider a multi-unit extension of the problem. When the buyer’s utility is linear
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in quantity but seller’s costs are nonlinear, static mechanisms are sub-optimal. The main question

studied in these papers, namely optimality of static mechanisms, is similar to ours. Nevertheless,

the settings and results are different.

More broadly, our work relates to two well-studied branches of literature on mechanism design,

namely multi-product bundling and dynamic mechanism design.

The literature on multi-product bundling goes back to Stigler (1963) and Adams and Yellen

(1976). This literature considers static mechanisms. That is, the buyer walks into the store knowing

her values (alternatively, the buyer learns no new information about her values) McAfee et al. (1989)

and Manelli and Vincent (2007) show that optimal screening mechanisms typically involve mixed

bundling, i.e., offering a menu of bundles and prices. More generally, the literature shows that

optimal mechanisms are complex. The optimal menu may include unboundedly many randomized

bundles (Manelli and Vincent, 2007). As such, characterizations of optimal mechanisms are rare.

Exceptions exist, such as Rochet and Chone (1998) and Daskalakis et al. (2017). Rochet and

Chone (1998) characterize optimal mechanisms via a sweeping procedure that generalizes ironing.

Daskalakis et al. (2017) characterize optimal mechanisms via a dual measure that satisfies certain

stochastic dominance conditions. To apply either characterization, one must be able to identify

sweeping procedure or the dual measure, for which no general construction is known. In contrast,

optimal mechanisms can be characterized recursively in our dynamic setting.

The literature on dynamic mechanism design is similarly broad. The main thrusts in this

literature study dynamic arrivals and departures of agents such as in Pai and Vohra (2008) and

Gershkov and Moldovanu (2009, 2010), and agents whose private information evolves such as in

Courty and Li (2000); Eső and Szentes (2007); Kakade et al. (2013); Pavan et al. (2014); Bergemann

and Välimäki (2010); Boleslavsky and Said (2012). Garrett (2016) combines these two branches by

considering a setting with dynamic arrival and evolving values. A main difference with our paper

lies in the ex post non-negative utility constraint. Prior literature, with exceptions we discussed

before, considers weaker notions of individual rationality requiring that, in the beginning of each

period, the expected utility from all future periods must be non-negative.
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2 The Model

A seller has k products to sell to a single buyer. The cost of production is normalized to zero. The

buyer’s value for product i ∈ {1, . . . , k} is vi ∈ Vi ⊆ R+. Assume that Vi is finite. Each value vi

is drawn independently from all other values with probability fi(vi) > 0. The distributions f1 to

fk are commonly known to the seller and the buyer. We refer to v = (v1, . . . , vk) as the ex post

type of the buyer. The utility of an ex post type v for receiving a set of products S ⊆ {1, . . . , k}

and transferring t ∈ R units of money to the seller is (
∑

i∈S vi)− t. The buyer is risk neutral, that

is, the utility of receiving each product i with probability ai and a random monetary transfer with

expectation t to the seller is v · a− t = (
∑

i viai)− t.

The buyer privately learns her values over time. In particular, in each period i from 1 to k,

vi is privately revealed to the buyer. Thus, in period i, the buyer knows values v1 to vi. Define

Θi =
∏i

j=1 Vj . For a given v, let vi = (v1, . . . , vi) ∈ Θi be the first i components of v. If the buyer’s

ex post type is v, her interim type in period i is vi.

We focus on direct incentive compatible mechanisms. A (direct) mechanism (a, t) consists of

an allocation rule ai : Θ1 × . . . × Θk → [0, 1] for each i ∈ {1, . . . , k} and a transfer rule t :

Θ1 × . . . × Θk → R. The interpretation is that in each period i, upon realizing each value vi, the

buyer reports an interim type θi ∈ Θi to the mechanism. At the end of the last period k the buyer

receives each product i with probability ai(θ
1, . . . , θk) and transfers t(θ1, . . . , θk) units of money to

the mechanism. Notice that our mechanisms allow the buyer to “re-report” all the values she has

observed so far. The reason is that we would like to define the class of all mechanisms generally

so that it contains several interesting classes as special cases. For instance, as we see shortly, two

special cases are static mechanisms and ones in which the agent only reports her value vi in each

period i.

A mechanism is periodic incentive compatible (PIC) if the agent maximizes her expected utility

in each period by reporting her type truthfully, regardless of past reports. Formally, a mechanism

(a, t) is PIC if for each period i, interim type (v1, . . . , vi), history of reports θ1, . . . , θi−1, and possible
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report θi in period i, we have

E
vi+1,...,vk

[
v · a

(
θ1, . . . , θi−1, vi, vi+1, . . . , vk

)
− t
(
θ1, . . . , θi−1, vi, vi+1 . . . , vk

)]

≥ E
vi+1,...,vk

[
v · a

(
θ1, . . . , θi−1, θi, vi+1, . . . , vk

)
− t
(
θ1, . . . , θi−1, θi, vi+1, . . . , vk

)]
.

(Recall that for a given v, vj = (v1, . . . , vj).) The left hand side is the agent’s expected utility

from reporting her type truthfully in periods i to k, following the history of reports θ1, . . . , θi−1.

The right hand side is the expected utility from reporting θi in period i and reporting truthfully

in periods i+ 1 to k, following the history of reports θ1, . . . , θi−1. Notice that backward induction

implies that, regardless of what the agent reports in period i, reporting truthfully in periods i+1 to

k is indeed the optimal strategy in those periods. Therefore PIC implies that the agent maximizes

her expected utility by reporting her types truthfully over all possible strategies that may involve

misreporting her types in the future periods.

A mechanism is ex post individually rational (ex post IR) if it guarantees non-negative utility

for the buyer. Let us abuse notation and denote by a(v) and t(v) the outcome of the mechanism

if the buyer reports all of her interim types consistent with an ex post type v, that is, a(v) =

a(v1, v2, . . . , vk), and similarly for t. A mechanism (a, t) is ex post IR if at the end of period

k, given the buyer’s optimal strategy (reporting truthfully), the expected utility of the buyer is

non-negative,

v · a(v)− t(v) ≥ 0

for all ex post types v. Note that ai denotes the probability of allocation. Thus the ex post

individual rationality states that the utility of the buyer is non-negative for all ex post types v, but

in expectation over the random choices of the mechanism. Even though the ex post IR constraint

is written in expectation, it is possible to guarantee non-negative utility for all random choices

of the mechanism by appropriately correlating transfers with allocation. We defer the argument

to Appendix A. Following that argument, we abuse terminology and refer to the constraint as

the ex post IR constraint even though it is written in expectation over the randomization of the

mechanism. In addition, we refer to a(v), t(v), and v · a(v) − t(v) as buyer’s ex post allocation,
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transfer, and utility.

The problem is to find a mechanism (a, t) that maximizes the (expected) revenue

Ev1,...,vk

[
t(v)

]
,

subject to the PIC and ex post IR constraints.

A special class of mechanisms is the class of static mechanisms. A static mechanism is a

mechanism where the outcome depends only on the report in the last period k. Formally, a

mechanism (a, t) is static if (a, t)(θ1, . . . , θk) = (a, t)(θ̂1, . . . , θ̂k) whenever θk = θ̂k. We can therefore

represent such a mechanism more succinctly by its allocation rule aST : Θk → X and transfer rule

tST : Θk → R in the last period. The interpretation is that in the last period k, having learned all

her values, the buyer makes a report v to the mechanism. The buyer then receives each product i

with probability aSTi (v) and transfers tST (v) to the mechanism. Since the reports in periods before

k are irrelevant, a static mechanism trivially satisfies all periodic incentive compatibility constraints

before the last period k. Therefore a static mechanism is PIC if it satisfies the last period incentive

compatibility condition,

v · aST (v)− tST (v) ≥ v · aST (v̂)− tST (v̂),

for all v, v̂ ∈ Θk. Similarly, a static mechanism (aST , tST ) is ex post IR if

v · aST (v)− tST (v) ≥ 0.

This formulation is used in the multi-product mechanism design literature, e.g., in Manelli and

Vincent (2007); Daskalakis et al. (2014). Thus our model nests the optimal mechanism design

problem for selling k products with static mechanisms as a special case.

Another special case is when the agent only reports vi in period i. This is captured by requiring

the allocation and the transfer to depend on the report θi in period i only through θii. That is,

(a, t)(θ1, . . . , θk) = (a, t)(θ̂1, . . . , θ̂k) if θii = θ̂ii for all i. Even though this is a very natural class

of mechanisms, it does not contain the class of all static mechanisms because the extensive form

games they represent are different. By defining the class of mechanisms generally so that the agent
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reports her interim type in every period, we ensure that both static mechanisms and ones where

the agent only reports her value are included as special cases.

The optimal revenue among all mechanisms is at least as high as the revenue from any static

mechanism. This observation immediately follows from the fact that static mechanisms are a sub-

class of all mechanisms. A question we ask is whether the optimal revenue is strictly higher than

that from static mechanisms. To this end, we first identify optimal revenue, and then ask whether

it can be achieved by a static mechanism.

3 Recursion, Separability, and Promised Utility

The periodic incentive compatibility constraints are complex. In each period, the buyer may mis-

report different dimensions of her interim type. Even for the special case of static mechanisms

where all incentive constraints before the last period are trivially satisfied, the incentive constraints

are complex. Nevertheless, we show that the optimization problem can be solved by making two

observations. First, to maximize revenue, it is sufficient to focus on a simple class of separable

mechanisms. Second, it is possible to optimize over separable mechanisms recursively.

A separable mechanism satisfies two properties. First, no re-reporting is required. That is,

in each period i, the buyer only reports her value vi for product i (instead of her interim type).

Second, the allocation of product i is based on the reports made up to (and including) period i,

but does not depend on reports made in periods i+ 1 to k. Formally,

Definition 1. A mechanism (a, t) is separable if for all θ1, . . . , θk and θ̂1, . . . , θ̂k,

1. t(θ1, . . . , θk) = t(θ̂1, . . . , θ̂k) if θii = θ̂ii for all i, and

2. for all i, ai(θ
1, . . . , θk) = ai(θ̂

1, . . . , θ̂k) if θjj = θ̂jj for all j ≤ i.

The first property states that the payment rule depends on the report θi in each period i only

through the value learned in that period θii. The second property states that the allocation of

product i depends on the report θj in period j ≤ i only through the value learned in that period θjj ,

and does not depends on the report θj
′

in period j′ > i. We will henceforth represent a separable

mechanism more succinctly with functions aSPi : Θi → [0, 1] and tSP : Θk → R (as opposed to

ai : Θ1 × . . .×Θk → [0, 1] and t : Θ1 × . . .×Θk → R for a general mechanism). The interpretation
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is that the buyer reports vi in each period i. Given reports (v1, . . . , vk), product i is allocated with

probability aSPi (v1, . . . , vi), and the transfer is tSP (v1, . . . , vk).

We now show that to maximize revenue, it is without loss of generality to restrict attention

to separable mechanisms. Notice that a separable mechanism is handicapped. It does not have

the ability to bundle the products together since it cannot tie the allocation of a product to

the allocation of future products (and the buyer’s reports about those values). In contrast, a

static mechanism does have the ability to bundle (we later return to this comparison and provide

examples). As a result, it is a priori not clear that the optimal separable mechanism obtains at

least as much revenue as all static mechanisms, let alone all mechanisms (that include separable

and static mechanisms as special cases).

Example 1. There are two products, and the value for each product is either 1 or 2. Consider

a static mechanism that only offers the bundle of both products for a price of 3. The allocation

probabilities and transfers are shown in the table below for all types.

v1 v2 a1 a2 t

1 1 0 0 0

1 2 1 1 3

2 1 1 1 3

2 2 1 1 3

Notice that the allocation of product 1 depends on the value for product 2, a1(1, 2) 6= a1(1, 1), and

vice versa for product 2. Thus, no separable mechanism can implement this allocation.

To argue that restricting to separable mechanisms is without loss of generality for maximizing

revenue, we convert any mechanism to a separable mechanism with the same revenue (but with a

different allocation rule). In particular, given a mechanism (a, t), define its induced separable mech-

anism (aISP , tISP ) as follows. The allocation probability aISPi is the expectation of the allocation

probability ai assuming truthful reporting in all future periods. That is, for any v1, . . . , vi,

aISPi (v1, . . . , vi) := Evi+1,...,vk

[
ai(v)

]
. (1)
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(Recall that ai(v) is the shorthand for the allocation when the buyer reports (v1, . . . , vj) in each

period j.) For v = (v1, . . . , vk), define the transfer as follows

tISP (v) := t(v)− v · a(v) + v · aISP (v). (2)

(Recall similarly that t(v) is the shorthand for the transfer when the buyer reports (v1, . . . , vj) in

each period j.)

Let us verify properties of the above construction. First, if a mechanism is ex post IR, then so is

its induced separable mechanism. This is because the transfer rule of the induced separable mech-

anism is defined such that the two mechanisms have the same ex post utility. That is, rearranging

Equation (2) we have

v · aISP (v)− tISP (v) = v · a(v)− t(v) (3)

for all v. Second, the two mechanisms have the same revenue. The reason is that the two mech-

anisms have the same ex post utility and also create the same surplus. More precisely, take the

expectation of Equation (2),

Ev

[
tISP (v)

]
= Ev

[
t(v)

]
+ Ev

[
v · aISP (v)− v · a(v)

]
= Ev

[
t(v)

]
+
∑
i

Ev

[
via

ISP
i (v1, . . . , vi)− viai(v)

]
= Ev

[
t(v)

]
+
∑
i

Ev1,...,vi

[
vi

(
aISPi (v1, . . . , vi)−Evi+1,...,vk

[
ai(v)

] )]
= Ev

[
t(v)

]
, (4)

where the last equality follows from Equation (1). It only remains to verify that these adjustments

do not violate the PIC constraints.

To see that the construction above preserves incentive compatibility, let us first verify incentive

compatibility on path, that is, following a history of truthful reports. More precisely, the PIC

constraint for a separable mechanism requires that for each period i, interim type (v1, . . . , vi),
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history (v̂1, . . . v̂i−1), and report v̂i in period i, we have

E
vi+1,...,vk

[
v · aSP (v̂1, . . . , v̂i−1, vi, vi+1, . . . , vk)− tSP (v̂1, . . . , v̂i−1, vi, vi+1, . . . , vk)

]

≥ E
vi+1,...,vk

[
v · aSP (v̂1, . . . , v̂i−1, v̂i, vi+1, . . . , vk)− tSP (v̂1, . . . , v̂i−1, v̂i, vi+1, . . . , vk)

]
.

We say that PIC holds on holds on path if the above inequality for all i, (v1, . . . , vi), (v̂1, . . . v̂i−1) =

(v1, . . . , vi−1), and v̂i. Consider the utility of a buyer with value vi from reporting v̂i. By Equa-

tion (3), the expected utility of the buyer in the induced separable mechanism is equivalent to the

utility she would get in mechanism (a, t) if she reports v̂i instead of vi in every period i to k (recall

that the buyer reports her full interim type in each period, and a(v) and t(v) stand for the outcome

if the buyer reports v1, . . . , vi in each period i). However, by incentive compatibility of (a, t), the

buyer is better off if she reports vi instead of v̂i in every period. Thus the incentive constraint is

satisfied on path.

The equivalence discussed above no longer holds off path, i.e., following a history of non-truthful

reports (v̂1, . . . v̂i−1) 6= (v1, . . . , vi−1). To establish incentive compatibility off path, we notice that

a separable mechanism is PIC if it is PIC on path. Indeed, in a separable mechanism, the report

in period i does not affect the allocation of products 1 to i − 1. Thus, because future values are

independent of the interim type, the incentive constraint at period i for an interim type (v1, . . . , vi)

following a history of reports v̂1, . . . , v̂i−1 is identical, up to a constant, to the incentive constraint

for an interim type (v̂1, . . . , v̂i−1, vi) following a history of truthful reports (v̂1, . . . , v̂i−1). Thus, if a

separable mechanism is incentive compatible for all histories of truthful reports, then it is incentive

compatible for all histories. Formally, we have the following lemma.

Lemma 1. A separable mechanism (aSP , tSP ) is PIC if it is PIC on path.

Proof. The PIC constraint in period i is that for an interim type v1, . . . , vi−1, and following a

history of reports v̂1, . . . , v̂i−1, the expected utility of the buyer

E
[
v · aSP (v̂1, . . . , v̂i−1, v̂i, vi+1, . . . , vk)− tSP (v̂1, . . . , v̂i−1, v̂i, vi+1, . . . , vk)

]

is maximized over all reports v̂i by setting v̂i = vi. Separability implies that the utility of the
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buyer from the allocation of products 1 to i − 1,
∑

j<i vja
SP
j (v̂1, . . . , v̂j), does not depend on the

report in period i. Therefore, the report that maximizes the expected utility does not change if∑
j<i vja

SP
j (v̂1, . . . , v̂j) is replaced by

∑
j<i v̂ja

SP
j (v̂1, . . . , v̂j), which also does not depend on v̂i. As

a result, the incentive constraint holds if

E
[
(v̂1, . . . , v̂i−1, vi, . . . , vk) · aSP (v̂1, . . . , v̂i−1, v̂i, vi+1, . . . , vk)− tSP (v̂1, . . . , v̂i−1, v̂i, vi+1, . . . , vk)

]

is maximized over all v̂i by setting v̂i = vi. This constraint is the PIC constraint of interim type

(v̂1, . . . , v̂i−1, vi) following a truthful history of reports v̂1, . . . , v̂i−1. Notice that this proof uses

the assumption that values are independent. Without it, the above two expectations should be

conditioned on the interim type (v1, . . . , vi), and so the last expectation does not represent the PIC

constraint of interim type (v̂1, . . . , v̂i−1, vi), which needs to be conditioned on (v̂1, . . . , v̂i−1, vi).

The following proposition summarizes the arguments made so far.

Proposition 1. The revenue of any mechanism is equal to the revenue of its induced separable

mechanisms. If a mechanism is PIC and ex post IR, then so is its induced separable mechanism.

The PIC constraint for a separable mechanism is simpler than the PIC constraint for a general

mechanism. Consider the incentive compatibility constraint at a period i. By Lemma 1, we need

to only consider the PIC constraints on path. In a separable mechanism, the allocation of products

1 to i − 1 does not depend on the report at period i. Therefore, to choose her report in period i,

the buyer only takes into account the allocations of products i to k and the transfer. For reports

(v1, . . . , vi), define the continuation utility CUi of the buyer to be the expected utility from the

allocation of products i+ 1 to k and the transfer, assuming truthful reporting in future periods,

CUi(v1, . . . , vi) = Evi+1,...,vk

[(∑
j>i

vjaj(v
j)
)
− t(v)

]
.

Note also that the continuation utility does not depend on the buyer’s interim type in period i,

and instead is only a function of the reports that the buyer makes. The PIC constraint on path at

every period i is that for all v1, . . . , vi and v̂i, the buyer maximizes the sum of her stage utility in
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period i plus her continuation utility from the future periods by reporting her value truthfully,

viai(v1, . . . , vi−1, vi) + CUi(v1, . . . , vi−1, vi)

≥ viai(v1, . . . , vi−1, v̂i) + CUi(v1, . . . , vi−1, v̂i). (5)

This simplification allows us to recursively optimize over separable mechanisms, as discussed next.

3.1 Recursive Optimization: Separability and Promised Utility

We now present a recursive characterization of optimal separable mechanisms. In particular, we

define a class of promised utility mechanisms and show that they are optimal. These promised

utility mechanisms are separable mechanisms that maintain a scalar state variable, the promised

utility to the agent. This state variable affects the allocation in each period, and is updated in each

period based on the report of the agent. Promised utility mechanisms are defined given solutions to a

certain one-product mechanism design problem. We start by defining these one-product mechanism

design problems recursively.

Definition 2 (The Continuation Revenue Problem). Define the seller’s continuation revenue func-

tions CRk+1, . . . , CR1 recursively as follows. Let CRk+1(EU) = −EU for EU ∈ R+. For all i ≤ k

and EU ∈ R+,

CRi(EU) := max
a:Vi→[0,1],t:Vi→R

Evi

[
via(vi) + CRi+1

(
via(vi)− t(vi)

)]
, (6)

s.t. via(vi)− t(vi) ≥ via(v̂i)− t(v̂i);∀vi, v̂i ∈ Vi, (7)

via(vi)− t(vi) ≥ 0; ∀vi ∈ Vi, (8)

Evi

[
via(vi)− t(vi)

]
= EU. (9)

Define (AEU
i , T EU

i ) to be the set of optimal solutions to the above problem.

The continuation revenue problem in each period i is the problem of optimizing over one-

product mechanisms (a, t) that map the report in period i to an allocation for that product and a

transfer. Constraints (7) and (8) are the standard incentive compatibility and individual rationality

constraints for a one-product mechanism. But this problem has two non-standard features. First,
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there is an expected utility constraint (9). It requires that the expected utility of the agent is equal

to a given constant EU. Second, the objective is to maximize the expected surplus from allocation

in period i plus the continuation revenue from period i + 1 (instead of the standard objective of

maximizing revenue). We next use the solutions to the continuation revenue problem to define

promised utility mechanisms. Because there may be multiple optimal solutions to the continuation

revenue problem, there may be multiple promised utility mechanisms.

Definition 3 (The Promised Utility Mechanism). A promised utility mechanism is parameterized

by any profile of optimal solutions (aEUi , tEUi ) ∈ (AEU
i , T EU

i ) to the continuation revenue problem

(Definition 2) for all i and EU ∈ R+. Set the initial promised utility PU1 equal to any maximizer of

CR1(EU) and set the agent’s transfer T = 0. At each period i, given the current promised utility

PUi and report vi,

• the buyer gets product i with probability aPUi
i (vi),

• the transfer is updated by setting T := T + via
PUi
i (vi),

• the promised utility is updated by setting PUi+1 := via
PUi
i (vi)− tPUi

i (vi).

At the end of the last period, the buyer pays T− PUk+1.

A promised utility mechanism maintains a scalar state variable PUi which is the agent’s promised

(expected) utility in period i. When the agent reports vi in period i, she gets product i with

probability aPUi
i (vi) and her final transfer T increases by a certain amount. An important feature is

that this extra transfer is the surplus of allocation via
PUi
i (vi), and is not tPUi

i (vi). This means that

the agent’s stage utility from being truthful is zero. To incentivize truthfulness, the agent’s promised

utility is adjusted to via
PUi
i (vi)−tiaPUi

i (vi). This feature of the promised utility mechanism explains

the objective (6) of the continuation revenue problem. The objective is the extra transfer from the

current period, which is equal to the surplus of allocation in that period, plus the continuation

revenue given the promised utility in the future periods.

To see that promised utility mechanisms satisfy PIC, consider any report v̂i. The agent gets the

product with probability aPUi
i (v̂i), her payment increases by v̂ia

PUi
i (v̂i), and her promised utility
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becomes v̂ia
PUi
i (v̂i)− tPUi

i (v̂i). So she maximizes

via
PUi
i (v̂i)− v̂iaPUi

i (v̂i) + v̂ia
PUi
i (v̂i)− tiaPUi

i (v̂i) = via
PUi
i (v̂i)− tiaPUi

i (v̂i),

which is achieved by reporting truthfully, v̂i = vi, by the incentive constraint of the continuation

revenue problem (7). After the last period, the mechanism gives the agent a discount of PUk+1 on

her final transfer. That is, the mechanism fulfills the final promised utility to the agent by paying

her cash.

Giving the agent zero stage utility in all periods (except last) is useful because it means that

a non-negative promised utility is sufficient to ensure that the agent’s ex post IR constraint is

satisfied. This is because the agent’s ex post utility is the cash she is offered PUk+1 at the end of

the last period. So ex post IR is satisfied if and only if the promised utility at the end of the last

period is non-negative.

The proposition below shows that promised utility mechanisms are optimal.

Proposition 2. A mechanism is optimal if and only if its induced separable mechanism is a

promised utility mechanism.

The main observation in the proof of Proposition 2 is that in an optimal separable mechanism,

following any history, the “continuation mechanism” must be optimal over all possible continuation

mechanisms with the same continuation utility. In particular, fix a history (v1, . . . , vi). Consider the

continuation mechanism, that is, a mechanism that maps reports in periods after i, (vi+1, . . . , vk), to

allocations for those products and a transfer. Notice that if we replace this continuation mechanism

with another one that has the same continuation utility, then the PIC constraint (5) in period i will

remain satisfied. Thus, in an optimal mechanism, the continuation mechanism following the history

must be optimal over all continuation mechanisms with the same continuation utility. Otherwise

the continuation mechanism can be replaced with one with higher revenue. We can thus maintain

the “promised utility” PUi = CUi(v1, . . . , vi) as a scalar state variable that summarizes the history.

We can use this observation to recursively characterize the optimal continuation revenue for a given

promised utility.
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4 Optimality of Static Mechanisms

The fact that separable mechanisms are optimal does not necessarily mean that static mechanisms

are sub-optimal, because there may be multiple optimal mechanisms. We now study whether static

mechanisms can be optimal. To answer this question, we use Proposition 2 to identify optimal

revenue, and then verify whether a static mechanism exists that achieves that optimal revenue.

The interpretation of these results is that, under the specified conditions for sub-optimality of

static mechanisms, the ability to screen types dynamically is strictly more profitable for the seller

than the ability to bundle products, even if we take away the seller’s ability to charge advance

payments (because of the ex post IR constraint). We start by providing necessary and sufficient

conditions for optimality of static mechanisms with two products and two values. We then provide

sufficient conditions for sub-optimality of static mechanisms with any number of products and

values.

4.1 Tight Conditions for Two Products and Two Values

Suppose that there are two products and two values, V1 = V2 = {v, v}, where v < v. The proposition

below specifies two conditions that are together necessary and sufficient for sub-optimality of static

mechanisms. For this result, let q1 = f1(v) and q2 = f2(v) denote the probability of high value in

each period.

Proposition 3. Assume that k = 2 and V1 = V2 = {v, v} where v < v. Any static mechanism is

sub-optimal if and only if q1 < v/v and q2 > v(1− q1)/(v − q1v).

The set of parameters q1 and q2 for which static mechanisms are sub-optimal is drawn in

Figure 2. Notice that the condition q1 < v/v, or equivalently vq1 < v, states that the unique

optimal monopoly price for the first product is v. That is, for selling only the first product, the

seller obtains a strictly higher revenue by choosing a low price compared to a high price. The

condition q2 > v(1− q1)/(v − q1v) is more complex. Nevertheless, since v(1− q1)/(v − q1v) is

decreasing in q1, it is sufficient that q2 > v/v, or equivalently vq2 > v. That is, the unique optimal

monopoly price for the second product is v. To summarize, static mechanisms are sub-optimal if

(but not only if) the optimal monopoly price for product 1 is strictly less than the optimal monopoly

17



1

1

q1

q2

v/v

v/v
q2 > v(1−q1)

v−q1v

q1 < v/v

static
<

optimal

Figure 2: The region shaded dark is the set of (q1, q2) for which static mechanisms are sub-optimal.

price for product 2. In the next section, we show that this statement generalizes to any number of

products and values.

To prove Proposition 3, we provide a characterization of optimal mechanisms, stated below.

There are five cases. In four cases, a static mechanism is optimal. The four static mechanisms

are simple. Three of them sell the products separately. That is, each product has a price, and

the buyer can buy each product by paying its price. The fourth static mechanism is a bundling

mechanism that only offers the two products as a bundle. The fifth mechanism is separable. This

mechanism sells the second product via a take it or leave it price that depends on the reported

value in the first period. The conditions of Proposition 3 for sub-optimality of static mechanisms

is precisely those under which this separable mechanisms outperforms all four static mechanisms.

To state the proposition, recall that q1 = f1(v) and q2 = f2(v). Define the price p∗ = v − (1−

q2)(v−v). The price p∗ is constructed such that the expected utility of the buyer from being offered

a take it or leave it price p∗ for the second product is equal to v − v. This price is low enough

(below v) to be accepted by both possible values.

Proposition 4. Assume that k = 2 and V1 = V2 = {v, v} where v < v. At least one of the following

five mechanisms is optimal.

1. Sell each product separately at price v.

2. Sell each product separately at price v.

3. Sell each product separately, at price v for the first product and v for the second product.
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4. Sell only the grand bundle at price v + v.

5. In the first period, the buyer reports v1 and receives the first product with probability one. In

the second period, the buyer pays v1, and in addition she is offered the second product at price

v if v1 = v, and at price p∗ if v1 = v.

If q1 < v/v and q2 > v(1− q1)/(v − q1v), then the fifth mechanism is the unique optimal separable

mechanism. Otherwise, that is if q1 ≥ v/v or q2 ≤ v(1− q1)/(v − q1v), then at least one of the first

four mechanisms is optimal.

Given Proposition 4, to identify an optimal mechanism, one needs only to compare the revenue

of the above five mechanisms. The revenue of each mechanism can be written in closed form.

For the first four mechanisms, revenue is simply the prices times the probability of purchase. To

calculate the revenue of the fifth mechanism, notice that the buyer pays her expected value of the

first product, and she is in addition offered the second product at price v with probability 1 − q1

(if v1 = v), and at price p∗ with probability q1 (if v1 = v). Thus revenue is

E [v1] + (1− q1)q2v + q1p
∗.

The comparisons between the revenues of these mechanisms are provided in the proof of Propo-

sition 4 in the Electronic Companion. The conditions of Proposition 3 are precisely those under

which this dynamic mechanism outperforms all four static mechanisms identified in Proposition 4.

Proposition 4 is independently useful because it can be used to identify optimal static screening

mechanisms. In particular, if q1 ≥ v/v or q2 ≤ v(1− q1)/(v − q1v), then one of the four static

mechanisms identified in Proposition 4 is optimal among all static mechanisms. This is simply

because under these conditions, one of these mechanisms is optimal in the larger class of all mech-

anisms (static or not). This suggests that our approach may be more generally useful for solving,

either exactly or approximately, the notoriously difficult problem of selling multiple products using

static mechanisms. In general even verifying the optimality of a given static mechanism is not

straightforward because it requires the construction of appropriate dual certificates (Daskalakis

et al., 2017; Carroll, 2017; Cai et al., 2019). And even though the case of two products and two

values can be solved in a static setting via case analysis, such analyses are typically tedious. For
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utility

Revenue

p ·Pr[vk ≥ p]

E[max(vk − p, 0)]

CUk(EU)

EU

Figure 3: The continuation revenue function in the last period CUk is the concavification of a
function that maps the expected utility E[max(vk − p, 0)] from posting any price p ∈ Vk to the
revenue of that price p ·Pr[vk ≥ p].

instance, Armstrong and Rochet (1999) solve a screening problem with four types. They consider

all possible ways to relax subsets of the incentive constraints, and identify conditions under which

the solution to each relaxation satisfies all the constraints, and therefore is optimal. In comparison,

our recursive formulation allows the incentive constraints in the two periods to be separated and

solved using standard tools.

The proof of Proposition 4 relies on a characterization of the continuation revenue problem (in

Definition 2) in the last period k. We provide this characterization generally with any number

of values in the Electronic Companion and use it also in the next section. The characterization

shows that is optimal to choose one of at most two prices at random, and sell the product at that

price as a take it or leave it offer. These prices are obtained from “concavifying” an appropriately

constructed revenue function shown in Figure 3. The revenue function plots the expected utility

to the buyer from posting any price p ∈ Vk, E[max(vk − p, 0)], against the revenue that the seller

obtains from that price, p ·Pr[vk ≥ p].

4.2 Sufficient Conditions for any Number of Products and Values

In this section we identify sufficient conditions for sub-optimality of static mechanisms with any

number of products and values. We show that static mechanisms are sub-optimal if the first

product has lower monopoly prices than the second product, partially generalizing Proposition 3
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to any number of values. To do so we use the recursive characterization of optimal mechanisms in

Proposition 2. To simplify exposition we assume that V1 = . . . = Vk.

We start with defining the main condition of the result. For each i, let Pi be the set of optimal

monopoly prices for selling product i. That is, Pi = arg maxp p · Pr[vk ≥ p]. Let pi and p
i

be the

largest and smallest such prices. We say that product 1 has lower monopoly prices than product k if

p1 < p
k
. If the optimal monopoly prices are unique, the condition simply means that the monopoly

price for product 1 is lower than the monopoly price for product k. Notice that if there are two

products and V1 = V2 = {v, v}, then product 1 has lower monopoly prices than product j if and

only if P1 = {v} and P2 = {v}. Thus, the condition is weaker than the conditions of Proposition 3,

but allows for a generalization to any number of products and values.

Proposition 5. Assume that V1 = . . . = Vk. Any static mechanism is sub-optimal if product 1 has

lower monopoly prices than product k.

To outline the proof, suppose for simplicity that there are only two products and the optimal

monopoly prices p1 and p2 are unique. Assume that p1 < p2. Assume for contradiction that a

static mechanism (a, t) is optimal. By Proposition 1, its induced separable mechanism (aISP , tISP )

must also be optimal. We show that this observation implies that a(p1, v2) = (1, 1) for all v2. The

intuition is that the optimal allocation in the continuation revenue problem is more efficient than

in the standard problem of maximizing revenue for selling only product 1. This is because in the

continuation revenue problem, the seller obtains some profit from giving information rents to the

agent. So any type with value v1 ≥ p1 must receive product one with probability one, and we show

that this implies that such a type must also receive product two with probability one. The fact that

a(p1, v2) = (1, 1) for all v2 means that the grand bundle is offered at a relatively low price. This

implies that in the optimal separable mechanism, the promised utility to even the lowest interim

type in the first period is relatively high. But then we show that we can lower then promised utility

to all types by the same amount and increase revenue, contradicting the optimality of the static

mechanism.
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5 Correlated Values

Extending our formal analysis to allow for correlated values requires a significantly different set

of tools from those developed in this paper. Instead, we here use numerical calculations to study

the robustness of our two main insights, namely, the optimality of separable mechanisms and the

conditions for sub-optimality of static mechanisms. Our main finding is that these two insights

extend with positively correlated values, but fail with negatively correlated values. Throughout

this section we focus on two products and binary values where V1 = V2 = {1, 2}.

Our parametrization. We start by discussing how we parameterize distributions. In order to

facilitate comparison with the results in Section 4, we use q1 = Pr[v1 = 2] and q2 = Pr[v2 = 2] to

denote the probabilities of high values. A third parameter λ ∈ [−1, 1] pins down Pr[v1 = 2, v2 = 2]

and thus the whole distribution. This parameter λ measures the degree of correlation. For λ ≥ 0,

Pr[v1 = 2, v2 = 2] is a convex combination of this probability if values were independent, q1q2,

and the highest possible value it can take, min(q1, q2) (otherwise either Pr[v1 = 2, v2 = 1] or

Pr[v1 = 1, v2 = 2] becomes negative),

Pr[v1 = 2, v2 = 2] = (1− λ)q1q2 + λmin(q1, q2).

Thus λ = 0 represents the independent distribution and λ = 1 represents highest positive correlation

(perfect positive correlation if λ = 1 and q1 = q2). For λ ≤ 0, Pr[v1 = 2, v2 = 2] is a convex

combination of this probability if values were independent, q1q2, and the lowest possible value it

can take, max(0, q1 + q2 − 1) (otherwise either Pr[v1 = 2, v2 = 2] or Pr[v1 = 1, v2 = 1] becomes

negative),

Pr[v1 = 2, v2 = 2] = (1 + λ)q1q2 − λmax(0, q1 + q2 − 1).

Thus λ = 0 represents the independent distribution and λ = −1 represents highest negative corre-

lation (perfect negative correlation if λ = −1 and q1 + q2 = 1).

To interpret λ, notice that λ ≥ 0 means that values are positively correlated, E[v1v2] ≥

E[v1] E[v2] (equivalently, the Pearson correlation coefficient is non-negative), and a λ ≤ 0 means
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that values are negatively correlated, E[v1v2] ≤ E[v1] E[v2]. Further, the probability Pr[v1 = v2]

that the two values are equal is increasing in λ. We thus interpret λ as a measure of correlation

and use (q1, q2, λ) ∈ [0, 1]× [0, 1]× [−1, 1] to parameterize distributions. We use λ to measure corre-

lation because it is orthogonal to q1, q2. That is, for any given λ ∈ [−1, 1], any q1, q2 ∈ [0, 1]× [0, 1]

specifies a distribution. For other measures of correlation we are aware of, including the Pearson

correlation coefficient, the possible values of q1, q2 depends on the value of the correlation measure.

We now separately discuss positive and negative correlation.

Positive correlation λ ≥ 0. Our first observation is that, perhaps surprisingly, separable mech-

anisms seem to remain optimal with positive correlation. The intuition is that the PIC constraints

for separable mechanisms become easier to satisfy with positive correlation. Indeed, an interim type

v1 = 2 assigns a higher conditional probability to v2 = 2 than does v1 = 1, and so the interim type

v1 = 2 assigns a higher benefit to being offer a discounted price in the second period. Our second

observation is that static mechanisms seem to remain sub-optimal if product 1 has lower monopoly

prices than product 2, q1 ≤ 0.5 and q2 ≥ 0.5. This is shown in Figure 4 for three non-negative

values of λ. A black circle corresponds to a distribution where separable mechanisms outperform

static ones. The intuition is that with positive correlation, the value to the seller of being able

to bundle the products decreases, hence reducing the value of the bundling instrument relative to

the dynamic screening instrument. As we see next, this second observation no longer holds with

negative correlation.

Negative correlation λ ≤ 0. With negative correlation, both of our main results fail, sur-

prisingly quickly in the degree of correlation. In particular, first, separable mechanisms may be

sub-optimal. And second, static mechanisms may outperform separable mechanisms even if q1 ≤ 0.5

and q2 ≥ 0.5. These findings are shown in Figure 5 for three non-positive values of λ. A black circle

corresponds to a distribution where separable mechanisms outperform static ones, and a white

circle corresponds to a distribution where static mechanisms outperform separable ones. These

findings suggest that the value of the bundling instrument increases relative to the dynamic screen-

ing instrument with negatively correlated values. The following example explores this intuition

further.
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Figure 4: Positively correlated values. Values of q1 are on the horizontal axis and values of q2 are
on vertical axis. Black circle: separable mechanisms outperform static ones.
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Figure 5: Negatively correlated values. Values of q1 are on the horizontal axis and values of q2 are
on vertical axis. Black circle: separable mechanisms outperform static ones. White circle: static
mechanisms outperform separable ones.
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Example 2. There are two products, and the value for product is either 1 or 2. The probabilities

of profiles (1, 2) and (2, 1) are 0.5 each, and the probabilities of profiles (1, 1) and (2, 2) are 0 each.

Similar examples can be constructed wherein the probabilities of profiles (1, 1) and (2, 2) are non-

zero but small, so that all four type profiles are in the support of the distribution.

The optimal mechanism is static. It extracts the full surplus by offering the bundle for a price

of 3, thus obtaining a revenue of 3. However, we show that no separable mechanism has revenue 3

as we show below.

First consider a naive generalization of the construction in Section 3 where the expected allo-

cation probabilities and the ex post utilities of the separable mechanism are equal to those of the

static mechanism. Conditioned on v1 = 1, v2 is equal to 2 with probability one. Thus, a1(1) = 1.

Similarly we have a1(2) = 1. By definition, the allocation probabilities of product 2 are equal to

those of the static mechanism. The separable mechanism is shown below.

v1 v2 a1 a2 t

1 1 1 0 1

1 2 1 1 3

2 1 1 1 3

2 2 1 1 3

Notice that the revenue of the separable mechanism is indeed 3. However, the separable mechanism

is not PIC. Indeed, the expected utility of an interim type v1 = 2 from truthfulness is zero since

conditioned on v1 = 2, v2 = 1 with probability one. On the other hand, the expected utility from

reporting v̂1 = 1 is 1 since by doing so, the buyer receives product 1 and pays 1.

We now argue that indeed no separable mechanism can obtain a revenue of 3. By ex post IR,

for the revenue to be 3, both types (1, 2) and (2, 1) must receive both products and pay 3. Thus

in a separable mechanism, a1(v1) = 1 for all v1. Further, the incentive compatibility constraint in

the second period requires that the probability of allocation of product 2 for type (2, 2) must be no

lower than that for type (2, 1). Thus, a2(2, 2) ≥ a2(2, 1) = 1 and so a2(2, 2) = 1. Because in the

second period, the allocations of the types (2, 2) and (2, 1) are the same, their payments must be

the same by incentive compatibility, and so t(2, 2) = t(2, 1) = 3. We summarize our discussion in

the table below, in which the only free parameters are a2(1, 1) and t(1, 1).
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v1 v2 a1 a2 t

1 1 1 a2(1, 1) t(1, 1)

1 2 1 1 3

2 1 1 1 3

2 2 1 1 3

The ex post IR constraint for type (1, 1) is

1 + a2(1, 1)− t(1, 1) ≥ 0.

Now consider the PIC constraint in period 2 for ex post type (1, 2) following a history of truthful

report v1 = 1. The constraint is

0 ≥ 1 + 2a2(1, 1)− t(1, 1).

Given the two constraints above, we must have a2(1, 1) = 0 and t(1, 1) = 1. Thus the mechanism

is equal to the induced separable mechanism of the static mechanism that sells the bundle at price

3. As we argued above, the separable mechanism is not incentive compatible.

6 Concluding Remarks

We study the problem of designing optimal ex post IR mechanisms for selling multiple products to

a single buyer who learns her values sequentially. The ex post IR constraint takes away the seller’s

ability to charge advance payments, and thus allows us to compare static and dynamic mechanisms

on an equal footing. We find that separable mechanisms are optimal, and characterize optimal

mechanisms via a recursive formulation. We find conditions under which static mechanisms are

sub-optimal. Interestingly, with two products and two values, static mechanisms are optimal for a

relatively large set of distributions, even though the seller may use dynamic mechanisms. Obtaining

sufficient conditions for optimality of static mechanisms beyond the case of two products and two

values may help rationalize their widespread use.

Our analysis takes the arrival of information as given. In particular, the buyer learns her values

in a fixed order. In many settings, sellers may be able to affect how information arrives to the
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buyer. For example, the seller may be able to choose the order with which the buyer learns the

values of products. Even though this is not the focus of our paper, our results partially speak to

this problem. In particular, consider two products A and B with possible values VA = VB = {1, 2}

such that Pr[vA = 2] < 0.5 and Pr[vB = 2] > 0.5. If the seller could choose the order with which

the buyer learns the values, what should he do? Proposition 3 implies that if the buyer learns the

value of A first, then static mechanisms are sub-optimal, but if the buyer learns the value of B

first, then static mechanisms are optimal. Since the set of static mechanisms is the same in either

case, we conclude that the seller strictly prefers to reveal the value of product A, the one that is

ex ante less valuable, to the buyer first.

Our analysis mostly assumes that the values are independent. This assumption is made for

tractability, and is in line with much of the literature on multi-product mechanisms. Extending our

analysis to allow for correlated values requires significantly different tools from those developed in

this paper, and is left for future work. Our numerical analysis suggest that our main results may

hold with positively correlated values, but fail with negatively correlated values.
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Electronic Companion

A An Equivalence of Ex post IR Notions

We describe a mechanism in Section 2 by identifying the marginal probability ai of allocation of

products and the expected transfer t, without discussing how the mechanism possibly correlates

these decisions. Since the buyer maximizes her expected utility, the correlation is irrelevant for

incentive constraints. However, to make sure that the ex post utility of the buyer is non-negative

even after the random choices of the mechanism, we here explicitly discuss a way to correlate the

allocation of the products and the transfer, assuming that the mechanism satisfies the ex post IR

constraint. Since the correlation does not affect incentive constraints, we here fix an ex post type

v.
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Thus fix v and let u = v · a − t ≥ 0 be the expected utility (over the random choices of the

mechanism). Let n ≤ k be the number of products i with positive probability of allocation ai > 0.

Assume n ≥ 1, since otherwise if n = 0 the allocation is zero and no randomization is required.

Allocate each product i independently with probability ai. For each product i with ai > 0, the

buyer transfers vi−u/(ain) if she receives the product, and zero otherwise. Note that the expected

total transfer is indeed t, since
∑

i:ai>0(vi − u/(ain))ai = v · a− u = t. Note also that the ex post

utility (after the randomization of the mechanism) is non-negative, since for each product i that

the buyer receives, she pays vi − u/(ain) which is lower than the value of the product.

B Proofs from Section 3

B.1 Proof of Proposition 2

Proof. By Proposition 1 a mechanism is optimal if and only if its induced separable mechanism is

optimal among all separable mechanisms. To establish the result, we show that a separable mech-

anism is optimal among all separable mechanisms if and only if it is a promised utility mechanism.

We will therefore restrict to separable mechanisms for the rest of the proof.

We start by defining an alternative representation of a mechanism via a change of variables.

Consider a mechanism (a, t) with utility function u(v) =
(∑

i≤k viai(v1, . . . , vk)
)
− t(v). For each

i and v1, . . . , vi, define

t̃i(v1, . . . , vi) = viai(v1, . . . , vi)−Evi+1,...,vn

[
u(v)

]
, (10)

(where we set Evn+1,...,vn [u(v)] := u(v)). Notice that (a, t̃) must satisfy a martingale property, which

is that for all i < k,

viai(v1, . . . , vi)− t̃i(v1, . . . , vi) = Evi+1,...,vn

[
u(v)

]
= Evi+1

[
Evi+2,...,vn

[
u(v)

]]
= Evi+1

[
vi+1ai+1(v1, . . . , vi+1)− t̃i+1(v1, . . . , vi+1)

]
. (11)

Conversely, for any (a, t̃) satisfying the martingale property, we can construct a mechanism (a, t)
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satisfying (10). In particular, let

t(v) =

∑
i<k

viai(v1, . . . , vi)

+ t̃n(v). (12)

This definition implies that

u(v) =

∑
i

viai(v1, . . . , vi)

− t(v)

=

∑
i

viai(v1, . . . , vi)

−
∑

i<k

viai(v1, . . . , vi)

− t̃n(v)

= vnan(v)− t̃n(v).

Then for each i and v1, . . . , vi, iterative application of the martingale property (11) implies that

Evi+1,...,vn

[
u(v)

]
= Evi+1,...,vn

[
vnan(v)− t̃n(v)

]
= viai(v1, . . . , vi)− t̃i(v1, . . . , vi), (13)

and therefore the mechanism (a, t) satisfies (10). As a result, we can use (10) to uniquely represent

a mechanism (a, t) with (a, t̃) satisfying the martingale property (11). We will henceforth refer to

(a, t̃) satisfying the martingale property (11) as a mechanism.

We next reformulate the problem with the new notation. Using (12), the revenue of a mechanism

(a, t̃) is

Ev1,...,vn

[
t(v)

]
= Ev1,...,vn


∑

i<k

viai(v1, . . . , vi)

+ t̃n(v)

 . (14)

Recall that the PIC constraint (5) requires that for each i and v1, . . . , vi, v̂i = vi maximizes the
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following expression over all v̂i,

viai(v1, . . . , v̂i) + CUi(v1, . . . , v̂i)

=v̂iai(v1, . . . , v̂i) + CUi(v1, . . . , v̂i) +
∑
j<i

vjaj(v1, . . . , vj) +
(

(vi − v̂i)ai(v1, . . . , v̂i)−
∑
j<i

vjaj(v1, . . . , vj)
)

= Evi+1,...,vn

[
u(v−i, v̂i)

]
+
(

(vi − v̂i)ai(v1, . . . , v̂i)−
∑
j<i

vjaj(v1, . . . , vj)
)
,

(where v−i denotes a vector of values for products other than i). Using the definition of t̃ in (10),

this expression becomes

=v̂iai(v1, . . . , v̂i)− t̃i(v1, . . . , v̂i) +
(

(vi − v̂i)ai(v1, . . . , v̂i)−
∑
j<i

vjaj(v1, . . . , vj)
)

=viai(v1, . . . , v̂i)− t̃i(v1, . . . , v̂i)−
∑
j<i

vjaj(v1, . . . , vj).

Notice that the last term does not depend on v̂i. Therefore, the PIC constraint holds if and only

if for all v̂i,

viai(v1, . . . , vi)− t̃i(v1, . . . , vi) ≥ viai(v1, . . . , v̂i)− t̃i(v1, . . . , v̂i). (15)

The ex post IR constraint is,

u(v) = vnan(v1, . . . , vn)− t̃n(v1, . . . , vn) ≥ 0.

Notice that the ex post IR constraint together with (13) implies that for all i and v1, . . . , vi,

viai(v1, . . . , vi)− t̃i(v1, . . . , vi) ≥ 0. (16)

Therefore without loss of generality we can replace the ex post IR constraint with its generalized

form (16). To summarize, the problem is to maximize revenue (14) over all mechanisms (a, t̃)

subject to the martingale property (11), PIC (15), and (generalized) ex post IR (16).

We now characterize optimal solutions to this problem recursively. Consider the sub-problem

of designing a mechanism (a, t̃) for only selling products i to n. Such a mechanism maps vi, . . . , vj
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in each period j ≥ i to an allocation and a transfer for that period. Let CRi(EU) be the optimal

revenue of this problem subject to an extra constraint that

EU = Evi

[
viai(vi)− t̃i(vi)

]
.

Now consider the optimal solution (a, t̃) to the problem for selling product 1 to n. Consider any

history v1, . . . , vi, and let

PUi+1 = viai(v1, . . . , vi)− t̃i(vi).

The continuation revenue of the optimal mechanism following this history,

Evi+1,...,vn


 ∑

i<j<k

vjaj(v1, . . . , vj)

+ t̃n(v)


must be CRi+1(PUi+1). To see this, notice that this continuation revenue cannot be higher than

CRi+1(PUi+1) because the martingale constraint (11) requires that this continuation mechanism

must satisfy the constraint that

PUi+1 = Evi+1

[
viai(v1, . . . , vi)− t̃i(v1, . . . , vi)

]
.

And if this continuation revenue is lower than CRi+1(PUi+1), then we improve revenue by replac-

ing the continuation mechanism with one that obtains continuation revenue CRi+1(PUi+1). This

property implies the recursive characterization of the continuation revenue function as specified in

Definition 2. Further, the initial promised utility PU1 must satisfy

CR1(PU1) = max
PU′1

CR1(PU′1).

This is because by definition we must have CR1(PU1) ≤ maxPU′1
CR1(PU′1), and if this inequality

holds strictly, then we can replace the mechanism with another one that obtains a higher revenue.

To summarize, any optimal mechanism (a, t̃) is parameterized by solutions (a1, t1), . . . , (ak, tk)

to the continuation revenue problem as follows. Set the initial promised utility PU1 equal to any
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maximizer of CR1(PU′1). At each period i, given the current promised utility PUi and report vi,

• the buyer gets product i with probability aPUi
i (vi),

• the buyer pays via
PUi
i (vi),

• the promised utility is updated by setting PUi+1 := via
PUi
i (vi)− tPUi

i (vi).

At the end of the last period, the buyer additionally pays −PUk+1. This ensures that the payment

in the last period is tPUk
k (vk), as specified in the objective (14).

To complete the proof, we transform the mechanism (a, t̃) discussed above to a mechanism

(a, t) via the conversion (12). The allocation remains the same. Notice that the transfer in the last

period t̃n(v) is the surplus vnan(v) minus the promised utility at the end of the last period PUk+1.

Therefore, (12) implies that

t(v) =

∑
i<k

viai(v1, . . . , vi)

+ t̃n(v) =

∑
i≤k

viai(v1, . . . , vi)

− PUk+1,

which is exactly the transfer T in the promised utility mechanism.

C Proofs from Section 4

C.1 Proof of Proposition 3

Proof. Suppose first that the two conditions of the proposition hold. We show that any static

mechanism is sub-optimal.

Assume for contradiction that a static mechanism is optimal. We first show that there must exist

an optimal static mechanism (aST , tST ) that further satisfies the following property: If changing v1

does not affect the allocation of product 1, then it also does not affect the allocation of product 2.

That is,

if aST1 (v1, v2) = aST1 (v′1, v2) then aST2 (v1, v2) = aST2 (v′1, v2). (17)

To see this, assume that a1(v1, v2) = a1(v′1, v2) and consider the incentive constraint of type v =
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(v1, v2) for reporting (v′1, v2),

v · a(v)− t(v) ≥ v · a(v′1, v2)− t(v′1, v2).

Since a1(v1, v2) = a1(v′1, v2), the above inequality simplifies to

v2a2(v)− t(v) ≥ v2a2(v′1, v2)− t(v′1, v2).

Similarly, the incentive constraint of type (v′1, v2) for reporting v is

v2a2(v′1, v2)− t(v′1, v2) ≥ v2a2(v)− t(v).

Thus, both incentive constraints must hold with equality. That is, each type is indifferent between

her own allocation and the allocation of the other type. Therefore, we can assign both types the

allocation and transfer of the type that pays more without violating incentive compatibility or

decreasing revenue.

By Proposition 1, the induced separable mechanism of the static mechanism (aST , tST ) is op-

timal. By Proposition 4, the induced separable mechanism (aISP , tISP ) must be equal to the fifth

mechanism identified in Proposition 4, that is, aISP1 (v1) = 1 for all v1, aISP2 (v) = 1 if v 6= (v, v),

and aISP2 (v, v) = 0. Therefore, the allocation rule of the static mechanism must be as shown below.

v1 v2 a1 a2

v v 1 0

v v 1 1

v v 1 1

v v 1 1

Thus the property in (17) is violated since aST1 (v, v) = aST1 (v, v) but aST2 (v, v) 6= aST2 (v, v).

Now assume that all static mechanisms are sub-optimal. Sub-optimality of all static mechanisms

imply that in particular, the four static mechanisms of Proposition 4 must be sub-optimal. By

Proposition 4, the two conditions of the proposition must hold.
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C.2 Proof of Proposition 4

Before proving Proposition 4, we first prove three auxiliary results. The first result is a characteri-

zation of incentive compatibility for the continuation revenue problem (Definition 2). The second

result is a characterization of the solution to the continuation revenue problem in the last period.

The third result is a partial characterization of the the solution to the continuation revenue problem

in the first period. We state these results in full generality (for any number of values) and use them

also in the proof of Proposition 5.

C.2.1 A Characterization of Incentive Compatibility

We use a characterization of incentive compatible mechanisms that consists of two parts, formalized

in the lemma below. The first part is standard. Namely, for the incentive constraint (7) to be

satisfied, the allocation rule a must be monotone non-decreasing. Second, in an optimal mechanism,

the transfer rule minimizes the utility to the buyer, which is the area under a. Even though

this part parallels the standard characterization, it involves a subtlety. Without the promise-

keeping constraint, and if the goal were to maximize the expected transfer t for a given allocation

rule, it is clearly optimal to minimize the utility to the buyer. However, in the continuation

revenue problem, simply lowering the buyer’s utility may cause two complications. First, the

promise-keeping constraint may be violated. Second, the continuation revenue may decrease (the

continuation revenue function CR is not necessarily monotone). Nevertheless, we show that if the

transfer rule t does not minimize the utility of the buyer given an allocation rule a, there exists

another mechanism that is also feasible and obtains higher revenue than (a, t).

The lemma requires some notation. Throughout this section we drop the index i. For v ∈ V ,

let ∆a(v) = a(v)− a(maxv′<v v
′) denote the change in a at v, where ∆a(v) = a(v) for the smallest

value v in V .

Lemma 2. There exists t such that the mechanism (a, t) satisfies incentive constraints (7) if and

only if a is monotone non-decreasing. If a mechanism (a, t) is an optimal solution to the continu-

ation revenue problem (Definition 2), then t(v) = va(v)−
(∑

v′≤v(v − v′)∆a(v′)
)
− u(v).

Proof. Necessity of monotonicity of a and the fact that (a, t) for t defined in the lemma satisfies all

incentive constraints is standard. We only verify the optimality of t.
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value

allocation

a(v) = a′(v)
a′

v′ v

Figure 6: The construction of a′ in the proof of Lemma 2.

In our model with a finite set of values, the allocation probabilities of types in V does not pin

down the transfers. That is, for a given allocation rule a, there may be multiple transfer rules t

such that the mechanism (a, t) is incentive compatible. Nevertheless, the transfer rule is pinned

down (up to a constant which is the utility of the lowest type) once the mechanism is extended to

specify the allocation and transfer of all values in [v, v], where v and v are the lowest and highest

values in V . For instance, if V = {v, v}, then the allocation rule a where a(v) = 0 and a(v) = 1 can

be implemented by offering the product at any price p between v and v. The extended allocation

rule is a(v) = 0 if v < p and a(v) = 1 if v ≥ p. The transfer rule that makes the extended allocation

rule incentive compatible is t(v) = 0 if v < p and t(v) = p if v ≥ p.

Thus assume without loss of generality that (a, t) is defined over [v, v]. For such a mechanism,

the transfer rule is defined from the allocation rule as follows,

t(v) = va(v)− (

∫ v

v
a(z)dz)− u(v).

We show that for (a, t) to be optimal, a must be constant on [v′, v) for any adjacent pair of values

v′ < v ∈ V . Assume for contradiction that this is not the case. See Figure 6.

Construct a′ so that (1) it is constant [v′, v), (2) a′(v) = a(v), and (3) the areas between v and

v′ is the same under a and a′. See Figure 6. Define t′ as follows

t′(v) = va′(v)− (

∫ v

v
a′(z)dz)− u(v).

Note that the mechanism (a′, t′) satisfies the incentive constraints, and gives all types v ∈ V the

same utility as in (a, t). Thus, (a′, t′) also satisfies the promise-keeping constraint. Finally, because
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a is not constant on [v′, v) but a′ is, and because the areas under the two are equal, we have

a′(v′) > a(v′). So because a′(v) = a(v), a′ is point-wise higher than a on the set of all possible

values V , and strictly so for some value v′. Therefore, a′ has higher expected surplus than a, and

the mechanism (a, t) cannot be optimal.

C.2.2 The Last Period

We now characterize the structure of optimal mechanisms in the last period. We show that it is

optimal to choose one of at most two prices at random, and sell the product at that price as a

take it or leave it offer. At a high level, the set of all monotone allocations is a polytope, and its

extreme points correspond to take it or leave it price offers. The set of feasible mechanisms in the

last period is the intersection of this polytope and an additional hyperplane that represents the

promise keeping constraint. As a result, an optimal mechanism is obtained by randomizing over at

most two prices.

We here provide a geometric argument that pins down these prices. To do so, we construct

a revenue function that maps the expected utility of any price to the revenue of that price. We

then show that the optimal revenue can be found by “concavifying” that revenue function. To be

formal, we define some notation.

Recall that CRk+1(EU) = −EU for EU ≥ 0, that is, any promised utility must be paid back to

the buyer immediately in cash. Dropping the index k from the rest of the analysis, the problem

becomes to maximize revenue

Ev

[
va(v) + CRk+1(va(v)− t(v))

]
= Ev

[
t(v)

]
,

subject to the incentive compatibility constraint (7), the expected utility constraint (9), and non-

negative utility constraint,

va(v)− t(v) ≥ 0.

Thus the problem is the standard problem of maximizing revenue of selling a single product, but

with an additional expected utility constraint.
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Define a revenue function RU that for each p ∈ V , maps the expected utility (to the buyer) of

posting a price p for the product to its revenue. In particular, let U = {E[max(v−p, 0)] | p ∈ V } be

the set of possible expected utilities from posting prices in V , and for each u ∈ U , let p(u) ∈ V be

the price that induces that expected utility (note that such a price is unique since different prices

induce different utilities). Notice that the smallest utility in U is zero, and let ū denote the largest

utility. Now define the revenue function RU : U → R, where RU(u) is the revenue from posing a

price that gives the buyer expected utility u,

RU(u) = p(u)
∑

v≥p(u)

f(v). (18)

Define R̂U : R+ → R as follows. On the interval [0, ū], R̂U is the concavification of RU , that is,

the smallest concave function that is pointwise at least as large as RU . Above ū, the function R̂U

continues linearly with slope −1. The lemma below shows that R̂U is the continuation revenue.

To identify the prices in an optimal mechanism, define `(u) to be the largest u′ ≤ u at which

the two functions are equal RU(u′) = R̂U(u′), and similarly h(u) to be the smallest u′ ≥ u at which

RU(u′) = R̂U(u′).

We now define two mechanisms that are optimal depending on the value of EU. The first

mechanism is optimal when EU is large. The mechanism gives the product to all types and pays

them EU− ū,

a(v) = 1, t(v) = ū− EU, ∀v. (19)

The second mechanism is optimal when EU is small. The mechanism randomizes over two prices

that induce expected utilities `(EU) and h(EU) with probabilities set such that the expected util-

ity constraint is satisfied. That is, the probabilities of p(`(EU)) and p(h(EU)) are 1 − α and α,

respectively, where

α =
EU− `(EU)

h(EU)− `(EU)
.

Formally, the allocation and transfer rules are defined as follows (notice that p(h(EU)) is weakly
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lower than p(`(EU))).

(a, t)(v) =


(0, 0) if v < p(h(EU)),

(α, αp(h(EU))) if p(h(EU)) ≤v < p(`(EU)),

(1, (1− α)p(`(EU)) + αp(h(EU))) if p(`(EU)) ≤ v.
(20)

Lemma 3. The solution to the continuation revenue problem (Definition 2) in the last period is

as follows. If EU ≥ ū, then the mechanism defined in Equation (19) is optimal. Otherwise, the

mechanism defined in Equation (20) is optimal. In addition, CUk = R̂U and CUk is concave.

Proof. First note for future reference that for each u ∈ U ,

u+RU(u) =
∑

v≥p(u)

(v − p(u))f(v) +
∑

v≥p(u)

p(u)f(v)

=
∑

v≥p(u)

vf(v). (21)

By Lemma 2, the transfer of a type v in an optimal mechanism is

− u(v) + va(v)−
∑
v′≤v

(v − v′)∆a(v′) = −u(v) +
∑
v′≤v

v′∆a(v′).

Thus revenue is

− u(v) +
∑
v

f(v)
(∑

v′≤v
v′∆a(v′)

)
=− u(v) +

∑
v

∆a(v)
(
v
∑
v′≥v

f(v′)
)
. (22)

And the expected utility is

u(v) +
∑
v

f(v)
∑
v′≤v

(v − v′)∆a(v′) = u(v) +
∑
v

∆a(v)
∑
v′≥v

(v′ − v)f(v′).
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Thus the expected utility constraint is

∑
v

∆a(v)
∑
v′≥v

(v′ − v)f(v′) = EU− u(v). (23)

As a result, the problem is to maximize (22), subject to (23), the individual rationality constraint

u(v) ≥ 0, the monotonicity constraint ∆a(v) ≥ 0, and
∑

v ∆a(v) ≤ 1.

Now consider the following change of variables. Let u = p−1(v) and µ(u) = ∆a(v). By definition

we have RU(u) = v
∑

v′≥v f(v′) and u =
∑

v′≥v(v′ − v)f(v′) =
∑

v′>v(v′ − v)f(v′). The problem

becomes to maximize

−u(v) +
∑
u

µ(u)RU(u), (24)

subject to the expected utility constraint

∑
u

µ(u)u = EU− u(v), (25)

and the additional constraints that u(v) ≥ 0, µ(u) ≥ 0, and
∑

u µ(u) ≤ 1. We next show that the

optimal solution must satisfy
∑

u µ(u) = 1, and u(v) = 0 unless µ(ū) = 1.

We first argue that
∑

u µ(u) = 1. Otherwise, it is possible to increase µ(0) without violating

feasibility, since such a change does not affect the left hand side of the expected utility constraint

(25). Since RU(0) > 0 (posting the highest value in V as a take it or leave it price gives a strictly

positive revenue), this change improves the objective and thus µ is not optimal.

We now argue that u(v) = 0 unless µ(ū) = 1. Assume for contradiction that u(v) > 0 and

µ(ū) < 1. Since
∑

u µ(u) = 1 as argued above, there must exists u 6= ū such that µ(u) > 0. We

show that for δ small enough, it is feasible to decrease µ(u) by δ and increase µ(ū) by δ. Notice

that this change respects the two constraints µ(u) ≥ 0 and
∑

u µ(u) ≤ 1. The change in expected

utility is −δu + δū. Since u(v) > 0, for small enough δ it is possible to add δu − δū < 0 to u(v)

such that the expected utility constraint (25) stays satisfied as well. Now consider the change in
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objective. It is

δ(ū− u) + δ(RU(ū)−RU(u)) = δ(
∑

v≥p(ū)

vf(v)−
∑

v≥p(u)

vf(v)) > 0.

where the equality followed from (21), and the inequality followed since p(ū) < p(u).

We now complete the proof. First, consider EU ≥ ū. If µ(ū) < 1, then
∑

u µ(u)u < EU and so

we must have u(v) > 0, which cannot happen as argued above. Therefore, µ(ū) = 1.

Second, consider EU < ū. For the expected utility constraint to be satisfied, we must have

µ(ū) < 1, and therefore u(v) = 0 as argued above. Thus, the problem is to maximize

∑
u

µ(u)RU(u), (26)

subject to

∑
u

µ(u)u = EU, (27)

µ(u) ≥ 0, and
∑

u µ(u) = 1. In words, the objective is to maximize the expectation of RU over all

distributions µ with expectation EU. The optimal value is equal to the concavification of RU at

EU. Finally, the concavity of CR follows directly from its definition as concavification of RU .

We state the following corollary of Lemma 3 for future reference. Increasing the expected utility

changes the optimal allocation rule, unless the allocation probability of all types is 1. In particular,

as long as EU ≤ ū, increasing the expected utility either changes the prices `(EU) and h(EU) or

their probabilities. If the allocation rule does not change in EU, then any additional expected utility

must be fulfilled with monetary transfers to the buyer. Thus the interpretation of the corollary is

that it is never optimal to fulfill promises by paying money, if it is possible to do so by increasing

the allocation.

Corollary 1. Consider the solution to the continuation revenue problem (Definition 2) in the last

period. If AEU = AEU′ for EU 6= EU′, then AEU(v) = AEU′(v) = 1 for all v.

Proof. Consider two expected utility EU,EU′ ≤ E[vk]. If the two expected utilities are in different

concavified regions, that p(`(EU)) 6= p(`(EU′)) or p(h(EU′)) 6= p(h(EU′)), then the allocation rules

43



are different since they are the results of randomization over different prices. If p(`(EU)) = p(`(EU′))

and p(h(EU)) = p(h(EU′)), the the allocation rules are different since the probability of p(`(EU))

is strictly decreasing in EU, and the probability of p(`(EU)) is strictly increasing in EU′. Also if

EU < E[vk] ≤ EU′, then AEU 6= AEU′ . So it must be that E[vk] ≤ EU,EU′, which implies that

AEU(v) = AEU′(v) = 1 for all v.

C.2.3 The First Period

We first establish a property of the continuation revenue problem. Namely, increasing the utility

promise by δ may decrease the continuation revenue by at most δ. The is because the mechanism

has the option to pay the extra promised utility back to the buyer with money.

Lemma 4. For any i, and EU < EU′, the continuation revenue function satisfies CRi(EU
′) −

CRi(EU) ≥ EU− EU′.

Proof. We prove the lemma inductively. Consider the last period and an optimal mechanism

(AEU
k , T EU

k ). Consider an alternative mechanism (AEU
k , T EU

k − (EU′ − EU)). Notice that the alter-

native mechanism is feasible for the utility promise EU′, and obtains a revenue that is equal to the

revenue of mechanism (AEU
k , T EU

k ) minus EU′ − EU. Thus we must have CRk(EU′) − CRk(EU) ≥

EU− EU′.

Now consider a period i < k, and assume that CRi+1(EU′)−CRi+1(EU) ≥ EU−EU′. We show

that the same holds for CRi. The proof is similar to above. For a given mechanism that satisfies

the expected utility constraint for EU, reducing the transfer of all types by EU′ − EU results in a

mechanism that satisfies the expected utility constraint for EU′ and a change in objective value

that is equal to

CRi(EU
′)− CRi(EU) = E

[
CRi+1(vAEU

i − T EU
i (v) + EU′ − EU)− CRi+1(vAEU

i − T EU
i (v))

]
≥ EU− EU′,

by the induction hypothesis.

The following lemma shows that the optimal allocation probabilities are at least as high as what

they would be if the goal were to maximize only the stage revenue and to ignore the continuation rev-
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enue. In particular, let P be the set of optimal monopoly prices. That is, P = arg maxp p
∑

v≥p f(v)

is the set of prices that maximize revenue of selling only the one product with value distribution

f . Let p and p be the lowest and highest such price. A mechanism is optimal for selling only one

product with distribution f if and only if it posts a price that is randomly chosen from P . This

observation has two implications. First, in every optimal mechanism, any v ≥ p must receive the

product with probability one. Second, there exists an optimal mechanism (namely the mechanism

that posts a price p) in which any v ≥ p receives the product with probability one. The lemma

below shows that the same must be true for the continuation revenue problem.

Lemma 5. Consider the solutions to the continuation revenue problem (Definition 2) in the first

period. There exists an optimal mechanism (a, t) where a(v) = 1 for all v ≥ p, where p is the lowest

optimal monopoly price. Additionally, in every optimal mechanism, a(v) = 1 for all v ≥ p, where

p is the highest optimal monopoly price.

Proof. Consider any two mechanisms (a, t) and (a′, t′), each satisfying the payment equation of

Lemma 2 with the same utility for the lowest type v. Assume further that a′(v)− a(v) ≥ 0 for all

v, which in turn implies that u′(v) − u(v) ≥ 0, where u(v) = va(v) − t(v) is the utility of v. The

difference between the objective values of the two mechanisms are

∑
v

(
f(v)(va′(v) + CR(u′(v)))

)
−
∑
v

(
f(v)(va(v) + CR(u(v)))

)
≥
∑
v

f(v)
(
v(a′(v)− a(v))− (u′(v)− u(v))

)
=
∑
v

f(v)(t′(v)− t(v)),

=
∑
v

f(v)
(∑

v′≤v
(∆a(v′)−∆a′(v′))v′

)
,

=
∑
v

(
∆a′(v)−∆a(v)

)(
v
∑
v′≥v

f(v′)
)

(28)

where the inequality followed from Lemma 4, the second equality followed from substituting t using

the payment equation of Lemma 2, and the last equality followed from re-arranging summations.

The interpretation of (28) is that we can think of a mechanism (a, t) as a distribution over posted

prices, where the probability of price v is ∆a(v). Revenue-maximizing mechanisms are distributions
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over the set of optimal monopoly prices. Therefore, there exists a revenue-maximizing mechanism

where a(p) = 1, and in every revenue-maximizing mechanism we must have a(p) = 1. The challenge

is that (28) is valid only if a and a′ are ranked. Our formal proof ensures this ranking.

To prove the first statement of the lemma, consider an optimal mechanism (a, t). Consider an

alternative mechanism (a′, t′) where a′ is identical to a except that a′(v) = 1 for all v ≥ p. Let

R = maxp p
∑

v≥p f(v) and notice that R = p
∑

v≥p f(v) because p is an optimal monopoly price.

We have

∑
v≥p

∆a(v)
(
v
∑
v′≥v

f(v′)
)
≤
∑
v≥p

∆a(v)R

≤
∑
v≥p

∆a′(v)R

=
∑
v≥p

∆a′(v)
(
v
∑
v′≥v

f(v′)
)
, (29)

where the second inequality followed because
∑

v≥p ∆a(v) = a(v̄)−a(maxv′<p v
′) ≤ 1−a′(maxv′<p v

′) =∑
v≥p ∆a′(v). Now notice that a′(v) − a(v) ≥ 0 for all v. Thus, by (28) and (29), the objective

value of mechanism (a′, t′) minus the objective value of the mechanism (a, t) is at least

∑
v

(
∆a′(v)−∆a(v)

)(
v
∑
v′≥v

f(v′)
)

=
∑
v≥p

(
∆a′(v)−∆a(v)

)(
v
∑
v′≥v

f(v′)
)
≥ 0.

Therefore, the mechanism (a′, t′) must also be optimal.

To prove the second statement, consider an optimal mechanism (a, t). Assume for contradiction

that a(v) < 1 for some v ≥ p, i.e., a(p) < 1. Consider an alternative mechanism (a′, t′) where

a′ is identical to a except that a′(v) = 1 for all v ≥ p. Notice that a(p) < 1 implies that either

a(v̄) < 1 and therefore
∑

v≥p ∆a(v) <
∑

v≥p ∆a′(v), or ∆a(v) > 0 for some v > p and therefore

v
∑

v′≥v f(v′) < R because p is the largest optimal monopoly price. In either case, a sequence of

inequalities similar to (29) implies that

∑
v≥p

∆a(v)
(
v
∑
v′≥v

f(v′)
)
<
∑
v≥p

∆a(v)
(
v
∑
v′≥v

f(v′)
)
. (30)

Now notice that a′(v)−a(v) ≥ 0 for all v. Thus, by (28) and (30), the objective value of mechanism

46



(a′, t′) minus the objective value of the mechanism (a, t) is at least

∑
v

(
∆a′(v)−∆a(v)

)(
v
∑
v′≥v

f(v′)
)

=
∑
v≥p

(
∆a′(v)−∆a(v)

)(
v
∑
v′≥v

f(v′)
)
> 0.

Therefore, the mechanism (a, t) cannot be optimal.

C.2.4 Proof of Proposition 4

Proof. Consider any optimal separable mechanism (a, t). Let P1 ∈ arg maxp∈V1 p · Pr[v1 ≥ p] be

the set of optimal monopoly prices that maximize the stage revenue for selling the first product.

There are three possibilities, P1 = {v}, P1 = {v}, or P1 = {v, v}. In any case, v ≥ p
1
, where p

1
is

the lowest monopoly price. Thus, by Lemma 5, the allocation probability of v in the first period is

equal to one, a1(v) = 1. Thus, to specify the mechanism in the first period, we need to only specify

the allocation probability of the low value, a1(v), and transfers. By Lemma 2, the transfers satisfy

t1(v) = v − a1(v)(v − v) − u1(v). Substituting a = a1(v) and u = u1(v) to simplify notation, the

problem is

max
a,u

(1− q1)
(
av + CR2(u)

)
+ q1

(
v + CR2(u+ a(v − v))

)
(31)

subject to 0 ≤ a ≤ 1 and u ≥ 0.

The solution to (31) identifies the optimal separable mechanism, which by Proposition 1 is

optimal among all mechanisms. However, it is possible that there exist other mechanisms, and in

particular static mechanisms, that are optimal as well. To study this possibility, once the solution to

(31) is obtained, we verify whether there exists a static mechanism that obtains the same revenue.

If so, the static mechanism is optimal as well.

We solve (31) by considering how the objective value changes in a and u. By Lemma 3, the

continuation revenue CR2 is obtained by concavifying the function RU that maps the expected

utility of different prices to their revenue. In particular, in the second period, RU(0) = vq2 and

RU((v − v)q2) = v, as shown in Figure 7.
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Figure 7: The continuation revenue function CR2.

Thus let

R′ :=
RU((v − v)q2)−RU(0)

(v − v)q2

be the slope of the first linear piece of the continuation revenue function. Note that

R′ =
v − vq2

(v − v)q2
≥ vq2 − vq2

(v − v)q2
= −1.

The subderivatives of CR2 are either R′ or −1. Let CR′2 be the derivative of CR2 whenever

the derivative exists, and the subderivatives of CR2 otherwise.

We now calculate the derivative (or subderivatives) of the objective with respect to a and u.

The subderivative with respect to a is

(1− q1)v + q1(v − v)CR′2(u+ a(v1 − v1)). (32)

and the subderivative with respect to u is

(1− q1)CR′2(u) + q1CR
′
2(u+ a(v1 − v1)). (33)

The right derivative of CR2 at any value at or above q2(v − v) is −1. Thus, if u ≥ q2(v − v), the

right derivative of the objective with respect to u is negative. Therefore, any optimal solution must

satisfy u ≤ q2(v − v).

Since R′ ≥ −1, the two possible subderivatives of the objective with respect to a satisfy (1 −
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q1)v − q1(v − v) ≤ (1− q1)v + q1(v − v)R′. Consider the three possible cases for the signs of these

two subderivatives.

1. (1− q1)v + q1(v − v)R′ ≤ 0. Both subderivatives of the objective with respect to a are non-

positive. As a result, it is optimal to set a as small as possible, a = 0. Notice also that

in this case, R′ ≤ 0 and thus the subdrivatives of the objective with respect to u are also

non-positive. Thus it is optimal to set u = 0. The optimal revenue is

(1− q1)(CR2(0)) + q1(v + CR2(0)) = q1v + q2v.

The optimal revenue is equal to the revenue of selling each product separately at price v.

2. (1 − q1)v − q1(v − v) ≤ 0 and (1 − q1)v + q1(v − v)R′ ≥ 0. In this case, it is optimal to set

u+ a(v − v) = q2(v − v). Otherwise, if u+ a(v − v) > q2(v − v), a can be decreased without

decreasing the objective. Similarly, if u + a(v − v) < q2(v − v), a can be increased without

decreasing the objective. Now consider increasing u by ε, and decreasing a by ε/(v− v). The

change in the objective value is

ε(1− q1)(
−v
v − v

+R′).

If the expression above is positive, it is optimal to set a = 0 and u = q2(v− v). Otherwise, it

is optimal to set a = q2 and u = 0. In the first case, the optimal revenue is

(1− q1)(0 + CR2(q2(v − v))) + q1(v + CR2(q2(v − v))) = q1v + v.

Thus, the optimal revenue is equal to the revenue of selling the first product at price v and

the second product at price v. In the second case, the optimal revenue is

(1− q1)(q2v + CR2(0)) + q1(v + CR2(q2(v − v))) = (1− q1)(q2v + q2v) + q1(v + v)

= (v + v)(q1 + q2 − q1q2).

The optimal revenue is equal to the revenue of selling only the bundle of products at price
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v + v.

3. (1 − q1)v − q1(v − v) ≥ 0. Both subderivatives of the objective with respect to a are non-

negative. Thus it is optimal to set a as large as possible, a = 1. To identify u, consider two

cases. This corresponds to the fifth mechanism in the proposition. If (1 − q1)R′ − q1 ≤ 0,

then it is optimal to set u as small as possible, u = 0. If (1− q1)R′ − q1 ≥ 0, it is optimal to

set u as large as possible, u = q2(v − v). In the second case, the optimal revenue is

(1− q1)(v + CR2(q2(v − v))) + q1(v + CR2((v − v)(1 + q2)))

= (1− q1)(v + v) + q1(v + v − (v − v))

= 2v.

The optimal revenue is equal to the revenue of selling each product separately at price v.

To prove the second and third statements, notice that q1 < v/v is equivalent to (1−q1)v−q1(v−

v) > 0 and q2 > v(1− q1)/(v − q1v) is equivalent to (1− q1)R′− q1 < 0. If (1− q1)v− q1(v− v) > 0

and (1− q1)R′− q1 < 0, then following the analysis of the third case, the unique optimal separable

mechanism satisfies a = 1 and u = 0. Conversely, if either (1−q1)v−q1(v−v) ≤ 0 or (1−q1)R′−q1 ≥

0, then the analysis above shows that at least one of the four static mechanisms discussed above

are optimal.

C.3 Proof of Proposition 5

Proof. Assume for contradiction that there exists a static IC mechanism (a, t) that is optimal.

For this proof let v−i, a−i denote values and allocations of products other than i, and similarly

v−i,−j , a−i,−j denote values and allocations of products other than i, j. Also v−i denote a vector

where values of all products other than i are v.

We can assume without loss of generality that if changing v1 does not affect the allocation of

product 1, then it also does not affect the allocation of other products. That is, if a1(v1, v−1) =

a1(v′1, v−1) for some v1, v
′
1, v−1, then a(v1, v−1) = a(v′1, v−1). To see this, consider the incentive
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constraint of type v = (v1, v−1) for reporting (v′1, v−1),

v · a(v)− t(v) ≥ v · a(v′1, v−1)− t(v′1, v−1).

Since a1(v1, v−1) = a1(v′1, v−1), the above inequality is equivalent to

v−1 · a−1(v)− t(v) ≥ v−1 · a−1(v′1, v−1)− t(v′1, v−1).

Similarly, the incentive constraint of type (v′1, v−1) for reporting v is

v−1 · a−1(v′1, v−1)− t(v′1, v−1) ≥ v−1 · a−1(v)− t(v).

Thus, both incentive constraints must hold with equality. That is, each type is indifferent between

her own allocation and the allocation of the other type. Therefore, we can assign both types

the allocation and the transfer of the type that pays more (or either allocation and transfer, if

the transfers are the same) without decreasing revenue or violating incentive compatibility. Thus,

without loss of generality we assume that both types have the same allocation (and transfer).

We show in the following two paragraphs that optimality of static mechanism (a, t) leads to two

contradictory conclusions.

First, for any, we must have u(v−k, pk) > 0. By Proposition 1, the induced separable mechanism

(aISP , tISP ) of (a, p) must be optimal. By definition,

aISPi (v1, . . . , vi) := Evi+1,...,vk

[
ai(v)

]
By Lemma 5, we must have aISP1 (v1) = 1 for all v1 ≥ p1. Since aISP1 (v1) is the expectation of

a1(v1, v−1) over v−1, we have

a1(v1, v−1) = 1,∀v1 ≥ p1, v−1. (34)

Now consider any pair of values v1 < v′1 that are at least as large as p1. Such a pair exists since

p1 < p
k

implies that p1 < v and therefore there exists two distinct values in V1 that are at least as
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large as p1.

The fact that a1(v1, v−1) = a1(v′1, v−1) = 1 for all v−1 implies that the ex post utility of the

first type is strictly lower than the ex post utility of the second type. To see this, first note that by

our discussion above, the allocations and payments must be identical following v1 and v′1, that is,

a(v1, v−1) = a(v′1, v−1), t(v1, v−1) = t(v′1, v−1) for all v−1. So the ex post utility of type v is strictly

smaller than the ex post utility of type (v′1, v−1) because these types have the same allocation

and price and the probability of allocation of product one is strictly positive. Therefore, in the

separable mechanism, for any v−1,−k (the vector of values of products other than 1 and k), the

expected utility of the interim type (v1, v−1,−k) is strictly smaller than the expected utility to type

(v′1, v−1,−k). Corollary 1 implies that for the allocations in the last period to be equal following two

different promised utilities, the allocation probability in the last period must be 1. That is,

ak(v1, v−1) = aISPk (v1, v−1) = 1,∀v1 ≥ p1, v−1.

Together with (34), the above equality implies that in particular, a1(p1, v−1) = ak(p1, v−1) = 1. By

individual rationality, t(p1, v−1) ≤ p1 + v + v−1,−k · a−1,−k(p1, v−1). Incentive compatibility of the

static mechanism requires that the utility of type (v−k, pk) must be at least the utility that this

type would get from reporting (p1, v−1). Therefore, we have

u(v−k, pk) ≥ v + p
k

+ v−1,−k · a−1,−k(p1, v−1)− t(p1, v−1)

≥ v + p
k
− (p1 + v)

= p
k
− p1

> 0.

We now show u(v−k, pk) ≤ 0, arriving at a contradiction. Notice because u(v−k, vk) ≤ u(v−k, vk)

for all v−k and vk, the continuation utility to interim type v−k is smaller than any other type.

Therefore, the promised utility to type v−k in the induced separable mechanism cannot be larger

than the level that maximizes CRk, as otherwise, since CRk is concave by Lemma 3, we can decrease

the utility of all types and increase the continuation revenue. As a result, by Lemma 3, following

a history of report v−k, product k is sold by randomizing over at most two prices that are both at
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least as large as p
k
. Therefore, the ex post utility of type (v−k, pk) in the separable mechanism is

zero. Since ex post utilities are equal in mechanisms (a, t) and its induced separable mechanism,

we conclude that u(v−k, pk) ≤ 0.
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