
From Programs to Causal Models∗

Thomas F. Icard

Stanford University, Stanford, CA, USA
icard@stanford.edu

Abstract

The purpose of the present contribution is to explore the consequences of building
causal models out of programs, and to argue that doing so has advantages for the seman-
tics of subjunctive conditionals and of causal language. We establish basic results about
expressivity and give examples to show both the power of the framework and the ways in
which it differs from more familiar causal frameworks such as structural equation models.

1 Motivation

The idea that we represent causal relationships with internal “simulation” models has a long and
distinguished history, arguably going back to Hume. Perhaps the most prominent contemporary
formalization of this idea involves causal Bayesian networks, which define generative models over
some fixed set of random variables. While Bayes nets are useful for many purposes, some authors
have advocated for a more general formalism, known as structural equation models (SEMs),
which explicitly encode functional dependencies among variables and relegate all randomness
to so called exogenous variables [12]. Unencumbered by the demand for a non-circular account
of causal claims, a number of recent researchers in philosophy, linguistics, and psychology
have proposed analyzing the semantics of subjunctive conditionals and other ostensibly causal
language by appeal to such causal models [16, 9, 14, 17], in place of the once dominant but
more abstract “system-of-spheres” models founded on world-similarity-orderings [10].

SEMs come with a number of advantages. By making causal information explicit, they
support a precise notion of intervention, which grounds hypothetical and counterfactual claims.
They can also be applied to a wider array of phenomena than standard Bayes nets, e.g., by
allowing certain kinds of cyclic dependencies among variables, which is purportedly important
for semantics [5, 14]. Despite these and other attractions, there is a sense in which SEMs depart
from the original idea of a simulation model. A prediction in this framework, counterfactual or
otherwise, is determined by a solution to a (generally unordered) system of equations, in line
with the kinds of models found in physics, economics, and engineering disciplines. But in general
structural equations do not simulate; they describe. While this declarative emphasis may be
quite appropriate for many purposes, it is desirable to have a similarly expressive framework
that retains the procedural character of a simulation model.

A number of authors in artificial intelligence, and more recently in cognitive science, have
proposed an idea very much in this vein, to define simulation models using arbitrary programs
in some rich programming language [13, 11, 4, 3, 1]. Much of the emphasis in this literature is
on defining complex probability models with efficient inference procedures. But some authors
have also highlighted the fact that these simulation models, just like Bayes nets, may embody
causal structure. Despite this important work, a precise analysis of programs as causal models
has not been given. The purpose of the present contribution is to establish some of the basic
definitions and results, and to motivate the idea for semantics of natural language. Rather than

∗Thanks to Noah Goodman, Duligur Ibeling, Dan Lassiter, and Krzysztof Mierzewski for helpful discussions.

From Programs to Causal Models Thomas Icard

offer a specific compositional analysis of counterfactuals or causal claims, the aim is to establish
the framework with sufficient precision so that any semantic analysis that invokes a notion of
“intervention on a simulation model” can be seamlessly accommodated.

As programs themselves have a causal structure, we can use this very structure as a “semi-
iconic” causal representation and, as we shall see, as a representation of other non-causal
dependence relations as well. The resulting framework provides an attractive setting for a quite
general theory of subjunctive conditionals. Highlighted are two especially notable features.

The first is that the framework affords a simple and intelligible way of capturing quantifica-
tional and more generally “open-world” reasoning [13, 11], whereby counterfactual suppositions
alter which (and even how many) individuals (or other variables) are being considered. The
following example is inspired by one from Kaufmann [9, 1164]:

Example 1. Imagine a number of students have shown up to take an exam, and that students
typically forget to bring their own pencils. Suppose we say that a student is prepared for the
exam just in case either they brought their own pencil, or there are enough pencils for everyone
who needs one. (If there are too few, out of fairness no one will be given one.) Upon learning
that (1) is true of the situation, does it follows that the counterfactual in (2) is also true?

(1) All of the students are prepared for the exam.

(2) If there had been another five students, they would all be prepared.

This depends on further causal facts: either (1) is true because there is some mechanism in
place guaranteeing as many pencils as students, in which case (2) is definitely true; or (1) just
happens to be true, in which case (2) could well be false. We would like to model both of these
cases, and even the inference about which is more likely—and thus how likely (2) is overall—
without having to make specific upfront assumptions about how many students there could be.

A second notable feature is that the move from declarative to procedural emphasis has
important logical ramifications, already for propositional logic of counterfactuals.

Example 2. If Alf were ever in trouble, the neighbors Bea and Cam would both like to help.
But neither wants to help if the other is already helping. Imagine the following scenario: upon
finding out that Alf is in trouble, each looks to see if the other is already there to help. If not,
then each begins to prepare to help, eventually making their way to Alf but never stopping
again to see if the other is doing the same. If instead, e.g., Cam initially sees Bea already going
to help, Cam will not go. One might then argue that (3) and (4) are both intuitively true:

(3) If Alf were in trouble, Bea and Cam would both go to help.

(4) If Alf were in trouble and Bea were going to help, Cam would not go to help.

No existing semantic account of counterfactuals—including both world-ordering models and
SEMs—can accommodate this pair of judgments, as A � (B ∧ C) implies (A ∧ B) � C.
The only way to make (3) and (4) both true is to insist that the temporal information be
made explicit (evidently unlike typical examples modeled with SEMs [5, 12]). In contrast, by
suppressing temporal information in a way that mirrors the surface forms of (3) and (4), it will
be easy to find an intuitive simulation making A� (B ∧ C) true, but (A ∧B)� C false.

In what follows we first present the definition of intervention for deterministic programs
using Turing machines for concrete illustration, and establish some basic facts about expres-
sivity. We then expand the framework to probabilistic programs so as to handle probabilistic
counterfactuals. We consider a number of examples, including Examples 1 and 2, throughout.
We also discuss logical and other foundational issues along the way.

2

From Programs to Causal Models Thomas Icard

2 Intervening on Programs

In thinking of a program as defining a simulation model, we are imagining that there are some
variables that initially have some values (the “input”) and the program proceeds along, changing
these values until it halts, at which point the combination of variable values is construed as the
“output” of the simulation. Let us assume programs are Turing machines and that we have
a dedicated tape and a fixed interpretation of the tape as a representation of the joint state
of infinitely many natural-number-valued variables {Xn}n∈N.1 A state description is a set of
values x = {xn}n∈N for all the variables, only finitely many of which may be non-zero; and a
partial state description will be any set {xi}i∈I , for I ⊆ N. A program can thus be conceived as
a (partial) transformation of state descriptions. Let us write ϕx

T(Xi) for the value Xi takes on
when running machine T on input x, provided T halts (it is undefined otherwise). If we want
to consider programs with no (equivalently constantly-0) input, we simply write ϕT(Xi).

Of course, the interest in programs as simulation models is not just that they transform
inputs to outputs, but that there can be rich dynamics in the course of this transformation.
Indeed, a program embodies counterfactual information about what would happen were we to
hold fixed the values of some of the variables throughout the computation.

Definition 1 (Intervention). An intervention I is a computable function that takes (the code
of) a program T and produces (code for) a new program I(T) by selecting a partial state
description, {xi}i∈I with I ⊆ N computable, and holding fixed the values of {Xi}i∈I to {xi}i∈I
in the computation that T performs. Specifically, I does the following:

1. Add instructions to the beginning to set the finitely many non-0 variables to their values.

2. Before every instruction α add a routine that checks whether the current cell belongs to
a variable Xi with i ∈ I. If i /∈ I, keep α just as before. If i ∈ I, enter a new state for
which there is an instruction just like α, except that the value of the cell is not changed.

Intervening on SEMs involves setting a variable to a given value and then asking what
solutions to the equations exist. The intuition here is rather different: intervention on a program
involves setting a variable to a given value and letting that manipulation have an effect on the
dynamics of the program (i.e., the “simulation”). For a very simple illustration let us return to
Example 2. In this example we will help ourselves to “pseudo-code” using if...then statements
and setting variables to values (writing X := n for a number n, or X := Y for the current
value of variable Y), knowing that we can easily transform all of this into Turing machine code.

Example 3. Let us formalize relevant parts of Example 2 with five binary variables:

B: Bea goes to help

C: Cam goes to help

D: Bea intends to help

E: Cam intends to help

A: Alf is in trouble

Then consider the following simple program:

if A = 1 and C = 0 then D := 1

if A = 1 and B = 0 then E := 1

B := D

C := E
1Where π is a computable pairing function and V = 〈Vn〉n∈N is the infinite vector of values on the value

tape, let us assume Xi is represented in unary by the infinite sublist V (i) = 〈Vπ(i,1)Vπ(i,2)Vπ(i,3) . . . 〉. We
furthermore assume that programs are written in a normal form so that the value of each Xi is always encoded
as a contiguous sequence of 1’s followed by the infinite constantly-0 string.

3

From Programs to Causal Models Thomas Icard

Suppose that in our default initial state all variables are set to 0. It is easy to check that
intervening to set A = 1 would result in B = C = 1. However, if we intervene to set A = B = 1,
then the program would halt with C = 0.

2.1 The Logic of Counterfactual Simulation

One of the main principles in axiomatizations of SEMs is what Pearl calls composition [12, 5]
(also known as Cautious Monotonicity in the literature on non-monotonic logic):

(A� B ∧A� C)⇒ (A ∧B)� C

The declarative character of SEMs, whereby counterfactuals concern finding solutions of equa-
tions, establishes this principle as clearly valid: if any solution setting A to 1 would have both
B and C set to 1, then any solution that sets A and B to 1 would have C set to 1.

By contrast, on a straightforward construal of what ‘�’ means for programs—intervene
to make the antecedent true and see whether the program halts with the consequent true—
the composition axiom, while satisfiable, is not valid, as shown by Example 3. At the risk of
belaboring the point, the procedural interpretation invokes a very different intuition from the
declarative: even though setting A = 1 eventually leads to B = 1 and C = 1, holding B = 1
fixed throughout the computation may disrupt the sequence of steps that leads to C = 1.

It is possible to give a complete axiomatization of counterfactuals in this setting [6], show-
ing that the logic fails to include several of the validities shared by logics of SEMs and logics
interpreted over systems-of-spheres. In a sense, at least concerning the question of which com-
binations of counterfactual statements can be given a consistent interpretation, the procedural
simulation-based perspective can thus be thought of as more general than the declarative SEM
approach. For reasons of space, we leave a fuller treatment of these logical issues, and the
interpretive questions they raise, for another occasion [6].

2.2 Defining Causal Graphs

The program in Example 3 clearly reveals an underlying causal structure, which is what supports
specific patterns of counterfactuals. Which causal structures can arise from programs? We make
this question precise by borrowing a concept from the philosophical literature on causation [18].

Definition 2. Let program T be given. We say thatXi is a direct cause ofXj , writtenXi → Xj ,
just in case there are two interventions I1 and I2 that hold every variable fixed except for Xj ,
which differ only in the values assigned to Xi, and for which ϕI1(T)(Xj) 6= ϕI2(T)(Xj).

In other words, Xi → Xj if Xi directly influences Xj in at least some possible context.

Example 4. Returning to Example 3 it is easy to see that the causal graph defined by this
program is as follows:

A

B

CD

E

Note that A does not directly influence B and C, but only via D and E, respectively. Note
also that the graph is cyclic, viz. the path B → E → C → D → B.

While in many cases it will be easy to determine the causal graph of a program, the problem
in general is unsurprisingly undecidable.

4

From Programs to Causal Models Thomas Icard

Proposition 1. The problem of determining whether Xi → Xj is (merely) semi-decidable.

Proof Sketch. That it is semi-decidable is clear: simply dovetail search through all possible
pairs of interventions. If there is a pair that results in different values for Xj we will find it.

To see that the problem is not decidable, we reduce it to the problem of determining whether
a machine computes a constant function. For any number n consider the Turing machine T[n]
that runs the nth machine Tn on input X1 and then writes the result of the computation (if it
halts) to X2. We clearly have X1 → X2 if and only if Tn does not compute a constant function.
As the mapping n 7→ T[n] is computable, determining X1 → X2 cannot be in general.

Say that a graph ({Xn}n∈N,→) is computably enumerable (c.e.) if the set {〈i, j〉 : Xi → Xj}
is computably enumerable. It turns out that programs give us all possible c.e. graphs.

Proposition 2. Every c.e. graph is the causal graph for some program.

Proof Sketch. Suppose A is a c.e. set. We describe a program for which Xi → Xj exactly when
〈i, j〉 ∈ A. Our program begins by searching to find the first variables with non-zero values
(never halting if none is found). Suppose these variables are Xi and Xj with i < j.

If Xi = 1, then we begin enumerating A until we find the pair 〈j, i〉 (again, never halting if
we never find it). Once found, we write the contents of Xj to Xi and halt. If Xi > 1, then we
search for the pair 〈i, j〉 in A. Once found, we write the contents of Xi to Xj and halt.

Clearly, if 〈n,m〉 ∈ A, then we can find a configuration that witnesses the fact that Xn →
Xm. We simply set Xn to either 2 or 3, and Xm to 1 (keeping all others at 0); clearly Xm

will depend on Xn no matter whether n < m or m < n. If 〈n,m〉 /∈ A, then no configuration
holding everything but Xn fixed will allow the value of Xm to vary.

3 Probabilistic Computation and Counterfactuals

To handle causality and counterfactuals in a probabilistic setting we move to stochastic simula-
tions, which we formalize using probabilistic Turing machines. In addition to the variable tape
encoding {Xn}n∈N we add a random bit tape with values R = 〈Ri〉i∈N, each bit Ri intuitively
representing the result of a fair coin flip.2 This random source plays a similar role to exogenous
variables in SEMs, but in the present context it induces random behavior in our machine: differ-
ent sequences appearing on the random bit tape may lead to different computations performed
by the Turing machine. With T a probabilistic machine, r ∈ {0, 1}∗ a finite binary sequence,
and Y a sequence of variables from {Xn}n∈N, let us write ϕr

T(Y) for the sequence y of values
that variables Y take on provided T has halted after accessing exactly the random bits of r.3

Then, as each random bit has probability 2−1 and any sequence r has probability 2−|r|, we can
express the probability that machine T halts with values Y = y as follows:

PT(Y = y) =
∑

r:ϕr
T(Y)=y

2−|r|

Because machines may have positive probability of not halting at all, the sum over all outputs
y may be less than 1. In this sense PT will be a semi-measure. Some authors have suggested
limiting attention to machines that almost-surely (with probability 1) halt. It is argued in [7]
that this is unnecessarily restrictive, in part because of natural examples like the following.

2More formally, the distribution on infinite binary strings is given by the Borel probability space ({0, 1}ω ,P),
where P is the infinite product of Bernoulli(1/2) measures. See, e.g., [3].

3Thus, ϕrT(Y) is undefined if T either reads only an initial segment of r or moves beyond r on the random bit
tape. Note that given a particular random bit sequence R, the operation of the machine is fully deterministic.

5

From Programs to Causal Models Thomas Icard

Example 5. Imagine a race between a tortoise and a hare. We have variables T0, T1, T2, . . .
for the position of the tortoise at each time step, and variables H0, H1, H2, . . . similarly for
the hare. Where Flip(1/4) is a procedure that returns 1 with probability 1/4 and Unif(1,7)

returns a number between 1 and 7 uniformly, we might imagine a simulation like this:

T0 := 1; H0 := 0

while (Ht < Tt)

Tt+1 := Tt + 1; Ht+1 := Ht

if Flip(1/4) then Ht+1 := Ht + Unif(1,7)

Whereas this program would almost-surely halt, any small change to the program (e.g., incre-
menting the tortoise’s pace by ε) would lead to positive probability of the hare never catching
up, even though the two programs may be practically indistinguishable [7].

From a theoretical point of view, we can characterize exactly which semi-measures P (Y)
can be defined by a probabilistic Turing machine. We say P (Y) is enumerable if for each y the
probability P (Y = y) can be computably approximated by an increasing sequence of rationals.

Proposition 3 ([7]). For every probabilistic Turing machine T, PT(Y) is an enumerable semi-
measure; moreover, every enumerable semi-measure is PT(Y) for some T.

To capture the causal structure of a probabilistic program we can use the very same definition
of intervention (Def. 1). In Example 5, for instance, while PT(H2 ≥ T2) ≈ .36, under an
intervention I that sets H1 to 1 we would have PI(T)(H2 ≥ T2) ≈ .21. We can also carry over
our definition of direct cause (Def. 2) with only slight modification.

Definition 3. Given probabilistic program T, we say Xi → Xj just in case there are two
interventions I1 and I2 that hold every variable fixed except for Xj , which differ only in the
values assigned to Xi, and for which PI1(T)(Xj) 6= PI2(T)(Xj).

That is, holding everything but Xj fixed, changing Xi effects a change in probability of Xj .

Example 6. The causal structure of the program in Example 5 consists of two infinite chains:

T0 T1 T2 T3 . . .

H0 H1 H2 H3
. . .

As one would expect, the computability and universality results, Props. 1 and 2, apply
without change for these probabilistic analogues: we still obtain exactly the c.e. causal graphs.

3.1 Conditioning

Central to the probabilistic setting is the operation of conditioning a distribution, which in this
context amounts to restricting attention to those runs of the simulation model that eventuate in
a particular outcome. Specifically, we can define a (universal) machine COND that takes (codes
of) two machines T and F as arguments and (provided F almost-surely halts and returns 1
with positive probability) defines a new simulation model COND(T,F) that correctly represents
the conditioned semi-measure. For example, if F is a program that checks whether variables Z
would have values z, then PCOND(T,F)(Y) = PT(Y | Z = z), where the latter is defined by the
usual ratio formula. This shows that the enumerable semi-measures, or equivalently (by Prop.

6

From Programs to Causal Models Thomas Icard

3) the machine-definable distributions, are closed under computable conditioning. (See [3] for
details on COND and [7] for the general setting of enumerable semi-measures.)

As with other graphical models, conditioning on a “causally upstream” variable is the same
as intervening on that variable. For instance, we have PT(H2 ≥ T2 | H1 = 1) = PI(T)(H2 ≥ T2)
in Example 5. The interest comes in combining observations with interventions. Indeed, for
Pearl the essence of a counterfactual A� B is captured by a three-step procedure [12, 206]:

1. Abduction: Update the model with any relevant observations.

2. Action: Modify the model by intervening to make A true.

3. Prediction: Use the modified model to compute the probability of B.

Enabling this combination of operations is in fact a major consideration favoring SEMs over
Bayes nets, according to Pearl [12, §1.4]. If we like, we can perform the same combination of
operations over probabilistic programs.

Example 7. Continuing with Example 5, suppose we observed a run like this:

T0 = 1 H0 = 0 T1 = 2 H1 = 1 T2 = 3 H2 = 1 T3 = 4 H3 = 4

Given the actual trajectory, the hare caught up by time 3 and the simulation terminated.
But we could ask, given what happened, if (counter to the facts) the hare had not jumped
forward at time 1, would the hare still have caught up by time 3? Where F is a program that
verifies the observations above, we first condition T on F to obtain a new program COND(T,F).
This effectively fixes the first six random choices to ensure that the program (without any
interventions) would produce these very observations. However, when we then intervene to set
H1 to 0, running the manipulated program forward results in H2 = 0 and H3 = 3, which means
the hare has not caught up and the program would not have halted by time 3.

Given the same observations, and under the same counterfactual supposition, we can also
ask what would be the probability of the hare catching up by time 4. If I is the intervention
setting H1 = 0, this is given by PI(COND(T,F))(H4 ≥ T4), which happens to be 3/14.

3.2 A Note on D-separation and Conditional Independence

Much of the interest in graphical structures in the literature on probability stems from the
possibility of reading off (conditional) independence facts from simple graphical properties. For
Bayes nets and SEMs, the critical concept is that of d-separation. Roughly speaking, variables
Z d-separate X from Y if every possible path of information flow from Y to X is blocked by
some variable in Z.4 This guarantees that, conditional on Z, X is independent of Y; that is,
P (X | Z) = P (X | Y,Z) (see, e.g., [12]).

How does this look for causal graphs defined by programs? Fixing program T, let us say
that Xi depends on the nth random bit, written Rn → Xi, just in case there is an intervention
I and sequences r1 and r2 that differ only at the nth place, such that ϕr1

I(T)(Xi) 6= ϕr2
I(T)(Xi).

Evidently, if Rn → Xi and Rn → Xj this may induce a dependence between them even when
Xi and Xj are d-separated in the context of graph ({Xn}n∈N,→).

If we want d-separation to guarantee (conditional) independence, we have two obvious
choices. One is to include {Rn}n∈N as variables in the graph alongside {Xn}n∈N and expand

4Specifically, for every path from Y to X there must be three variables U, V,W along the path such that
either (1) U → V →W or U ← V →W , and V ∈ Z, or (2) U → V ←W and no descendent of V is in Z.

7

From Programs to Causal Models Thomas Icard

the edge relation → accordingly. The other is to insist that we only write programs in such
a way that no random bit is a direct cause of two different variables. A similar stipulation is
often made in the context of SEMs [12, §1.4]. It is clear that Prop. 2 would not be affected
by such a requirement (since that did not require use of the random source at all), but it is
perhaps an interesting question whether the universality result in Prop. 3 would still hold. At
any rate, either of these stipulations allows for essentially the same argument as for Bayes nets
or for SEMs to show conditional independence.

4 Open-World Reasoning

A hallmark of ordinary reasoning in natural language is our ability to deal with situations at a
level of abstraction that does not depend on knowing which, or how many, individuals pertain
to a given situation. There is no claim that this kind of reasoning is impossible to formalize in
other frameworks; the point to emphasize is rather that this kind of reasoning is very natural
for simulations built using familiar programming tools such as recursion [13, 11, 4]. In this
section we return to consider how one might model the situation described in Example 1.

Suppose we have the following variables, with their intended meanings:

N : number of students

M : a mechanism is in place to guarantee
the same number of pencils as students

C: number of extra pencils

S1, S2, . . . Si . . . : student i brought their
own pencil

A1, A2, . . . Ai . . . : student i is prepared

E: There are enough pencils

Let us assume M and E take on values 0 (false) and 1 (true), while variables Si and Ai

take on three values: 0 (“undefined”), 1 (false), and 2 (true). Intuitively Ai should be defined
exactly when Si is, and that should happen only when there actually is an ith student.

In the following program T we assume that four routines for generating numbers randomly
are given: DM , DN , DC , and DS . These can be thought of as defining the “prior” generating
procedures for the relevant variables; the precise details will not matter for this example.

M := DM; N := DN

C := if M then N else DC

for i from 1 to N: Si := DS

E := C ≥ |{i : Si = 1}|
for i from 1 to N: Ai := max(Si,E+1)

The causal graph for T would then look like this:

M N

C

E

S1

A1

S2

A2
. . .

. . . Si

Ai
. . .

. . .

8

From Programs to Causal Models Thomas Icard

What does it mean to say that all of the students are prepared (as in (1) from Example
1)? It simply means that none of the variables Ai have value 1, a statement that can be easily
checked. Suppose that we know M = 1—that there are definitely enough pencils for everyone—
and we learn that everyone is prepared. (In fact, the latter is already guaranteed by M = 1.)
Conditioning our model with a program F1 that represents these two observations, it is easily
seen that the counterfactual in (2), “If there had been another five students, they would all be
prepared,” has probability 1 according to the program COND(T,F1).

Suppose on the other hand that we knew M = 0. Suppose also that DC typically produces
small numbers relative to DN—meaning that there are normally many more students than extra
pencils—and that DS is such that students almost never bring their own pencils. In such a case
learning (1) would be quite surprising. We would moreover expect that there just happened to
be enough pencils, but had there been any more students there would not have been enough.
Thus, given the conditioned program COND(T,F2) and where I is the intervention setting N
to N + 5, the statement, “All of the students are prepared,” has low probability according to
I
(
COND(T,F2)

)
. That is, according to COND(T,F2), the counterfactual (2) has low probability.

What if we did not know anything about M at all, but merely learned (1). Let F3 represent
observation of (1). As (1) is fully expected when M is true, but quite surprising when M is false,
ordinary Bayesian reasoning shows that COND(T,F3) will now assign M higher probability: in
effect, M will now be drawn from a distribution D′M that puts more weight on 1 than DM . The
probability of (2) will be intermediate between 1 (the prediction if M = 1) and the prediction
when M = 0, with the precise weighting depending on D′M , as it intuitively should be.

Two features of this example should be highlighted. The first is, once again, reasoning
about this situation does not require making any fixed assumption about which individuals are
present. The second is that, though we depict all dependence relations with the same arrow
→, the program T embodies some rather different relationships among variables. For instance,
M does not “cause” C in any ordinary sense, but rather modulates whether C depends on N .
Similarly, N determines Si just in the sense that it determines whether there is a student i at
all; intuitively, N modulates whether the variable Si is a relevant part of the current simulation.
(Note that we could have made N depend on all of the Si’s.) Philosophers have recognized deep
similarities between causal and other kinds of dependence [15]. Because→ is defined simply by
reference to the causal structure of the program, we have blurred all such distinctions.

5 Conclusion

The objective of this paper has been to clarify some of what it might mean to use programs
to define causal models, and to ground causal and counterfactual language. In many cases—
evidently including most examples considered in recent work in semantics that invoke causal
models—the difference between the present framework and more familiar frameworks, such
as suitably general classes of SEMs, will not matter. Nonetheless, we have highlighted some
important differences, some of which surface already at the level of basic logical validities.

There is certainly no claim that the present framework captures causality better than other
frameworks. For understanding causal explanation in science, for example, SEMs may often be
more useful (see, e.g., [18]). At the same time, for understanding ordinary causal judgments—
which have their own distinctive character, cf. [2]—one might argue that the role of simulation
is fundamental [4, 3, 1]. Insofar as this is true, we would expect it to be reflected in how people
speak about causation as well. At least two points are worth mentioning on this theme.

First, as just mentioned, the framework blurs the distinction between causal and non-causal
counterfactuals. While the empirical literature clearly shows that people discriminate causation

9

From Programs to Causal Models Thomas Icard

from statistical association, it is less obvious that there is any fundamental cognitive distinction
between causal and, say, logical dependence (or, relatedly, explanation). Within the framework
explored here, causal counterfactuals (“If the vase had dropped, it would have broken”) can be
treated in the very same way as non-causal counterfactuals (“If the vase had been turquoise, then
it would have been blue”), which is especially convenient when we need to treat counterfactuals
that combine causal and other kinds of dependence (such as sentence (2) from Example 1).

Second, the general framework fits in nicely with a view according to which people select and
evaluate counterfactuals stochastically, over richly structured representations, in such a way that
the relevant simulation probabilities reflect psychological biases (availability, anchoring, etc.)
that can have little to do with “objective” statistics of a situation. This allows incorporating
well known psychological effects right into the analysis of conditionals and causal language.
As an example, it is often observed that moral considerations affect the way people construct
counterfactual scenarios, and, presumably associated with this, their judgments of actual cause
(“what caused what”). For instance, the very same act can be judged as more or less causal
depending on how people judge its moral status. Recently proposed explanations of these and
related phenomena fit very harmoniously with the framework explored here [8].

References

[1] Nick Chater and Mike Oaksford. Programs as causal models: Speculations on mental programs
and mental representation. Cognitive Science, 37(6):1171–1191, 2013.

[2] David Danks. Unifying the Mind: Cognitive Representations as Graphical Models. MIT, 2014.

[3] Cameron E. Freer, Daniel M. Roy, and Joshua B. Tenenbaum. Towards common-sense reasoning
via conditional simulation: Legacies of Turing in artificial intelligence. In R. Downey, editor,
Turing’s Legacy. ASL Lecture Notes in Logic, 2012.

[4] Noah D. Goodman, Joshua B. Tenenbaum, and Tobias Gerstenberg. Concepts in a probabilistic
language of thought. In Eric Margolis and Stephan Laurence, editors, The Conceptual Mind: New
Directions in the Study of Concepts. MIT Press, 2015.

[5] Joseph Y. Halpern. Axiomatizing causal reasoning. Journal of AI Research, 12:317–337, 2000.

[6] Duligur Ibeling and Thomas Icard. On the conditional logic of simulation models. In Proc. 27th
IJCAI, 2018.

[7] Thomas Icard. Beyond almost-sure termination. In Proc. 39th CogSci, 2017.

[8] Thomas Icard, Jonathan Kominsky, and Joshua Knobe. Normality and actual causal strength.
Cognition, 161:80–93, 2017.

[9] Stefan Kaufmann. Causal premise semantics. Cognitive Science, 37(6):1136–1170, 2013.

[10] David Lewis. Counterfactuals. Harvard University Press, 1973.

[11] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov.
BLOG: Probabilistic models with unknown objects. In Proc. 19th IJCAI, pages 1352–1359, 2005.

[12] Judea Pearl. Causality. Cambridge University Press, 2009.

[13] Avi Pfeffer and Daphne Koller. Semantics and inference for recursive probability models. In Proc.
7th National Conference on Artificial Intelligence (AAAI-00), pages 538–544, 2000.

[14] Paolo Santorio. Interventions in premise semantics. Philosophers’ Imprint, 2018.

[15] Jonathan Schaffer. Grounding in the image of causation. Phil. Studies, 173(1):49–100, 2016.

[16] Katrin Schulz. “If you’d wiggled A, then B would’ve changed”: Causality and counterfactual
conditionals. Synthese, 179(2):239–251, 2011.

[17] Steven Sloman, Aron K. Barbey, and Jared M. Hotaling. A causal model theory of the meaning
of cause, enable, and prevent. Cognitive Science, 33(1):21–50, 2009.

[18] James Woodward. Making Things Happen: A Theory of Causal Explanation. OUP, 2003.

10

	Motivation
	Intervening on Programs
	The Logic of Counterfactual Simulation
	Defining Causal Graphs

	Probabilistic Computation and Counterfactuals
	Conditioning
	A Note on D-separation and Conditional Independence

	Open-World Reasoning
	Conclusion

