Logic and Probability Overview / Probability Logic

Thomas Icard & Krzysztof Mierzewski

August 8, 2022

Overview

Logic as a theory of:

- truth-preserving inference
- consistency
- definability

- proof / deduction
- rationality
 - . .

Probability as a theory of:

- ampliative inference
- learning
- information

- induction
- rationality
 - . .

Some questions and points of contact:

- In what ways might probability be said to extend logic?
- How do probability and various logical systems differ on what they say about rational inference?
- What are sensible ways of discretizing continuous probabilistic models? What do we lose in the process?
- How might probability be a useful tool in elucidating logical phenomena of interest?
- What happens to probability when we impose logical—e.g., computability-theoretic—constraints?

Course Outline

- Day 1: "Probability as Logic" and Landscape of Probability Logics (TI)
- Day 2: Default Reasoning, Acceptance Rules, and the Quantitative/Qualitative Interface (TI/KM)
- Day 3: First Order Probability Logic and 0/1 Law (KM)
- Day 4: Probabilistic Grammars and Programs (TI)
- Day 5: Computable Measure Theory & Applications (KM)

A measurable space is a pair (W, \mathcal{E}) with

- W is an arbitrary set
- \mathcal{E} is a σ -algebra over W, i.e., a subset of $\wp(W)$ closed under complement and infinite union.

A probability space is a triple (W, \mathcal{E}, μ) , with (W, \mathcal{E}) a measurable space and $\mu : \mathcal{E} \to [0, 1]$ a measure function, satisfying the following two axioms:

- **1** $\mu(W) = 1$;
- $\mathfrak{D} \mu(E \cup F) = \mu(E) + \mu(F), \text{ whenever } E \cap F = \emptyset.$

Suppose we have a propositional logical language ${\cal L}$

$$\varphi ::= A \mid B \mid \ldots \mid \varphi \land \varphi \mid \neg \varphi$$

We can define a probability $\mathbb{P}:\mathcal{L} o [0,1]$ by requiring

- ${f 1}$ ${\Bbb P}(\varphi)=1$, for any tautology φ ;
- $\mathbb{P}(\varphi \lor \psi) = \mathbb{P}(\varphi) + \mathbb{P}(\psi)$, whenever $\vDash \neg(\varphi \land \psi)$.

Equivalent set of requirements:

- ${f 1}$ ${\Bbb P}(arphi)=1$ for any tautology ;
- $\mathbf{P}(\varphi) \leq \mathbf{P}(\psi)$ whenever $\vDash \varphi \to \psi$;
- $\mathbb{P}(\varphi) = \mathbb{P}(\varphi \wedge \psi) + \mathbb{P}(\varphi \wedge \neg \psi) .$

It is then easy to show:

- $\mathbb{P}(\varphi) = 0$, for any contradiction φ ;
- $\mathbb{P}(\neg \varphi) = 1 \mathbb{P}(\varphi)$;
- $\mathbb{P}(\varphi \lor \psi) = \mathbb{P}(\varphi) + \mathbb{P}(\psi) \mathbb{P}(\varphi \land \psi)$;
- A propositional valuation sending atoms to 1 or 0 is a special case of a probability function;
- A probability on \mathcal{L} gives rise to a standard probability measure over 'world-states', i.e., maximally consistent sets of formulas from \mathcal{L} . In fact, any standard probability measure can be obtained this way.

Probability as (Extended) Logic

Why these axioms?

Interpretations of Probability

- Frequentist: Probabilities are about 'limiting frequencies' of in-principle repeatable events.
- Propensity: Probabilities are about physical dispositions, or propensities, of events.
- Logical: Probabilities are determined objectively using a logical language and some additional background principles, e.g., of 'symmetry'.
- Bayesian: Probabilities are subjective and reflect an agent's degree of confidence concerning some event.

i

Probability as (Extended) Logic

We strive to make judgments as dispassionate, reflective, and wise as possible by a doctrine that shows where and how they intervene and lays bare possible inconsistencies between judgments. There is an instructive analogy between [deductive] logic, which convinces one that acceptance of some opinions as 'certain' entails the certainty of others, and the theory of subjective probabilities, which similarly connects uncertain opinions.

—Bruno de Finetti, 1974

De Finetti's Argument

- 1 Interpret probability assignment as betting odds judged fair. For example, an assignment $\mathbb{P}(A) = 0.2$ means any bet that costs at most $0.2 \times S$, but pays at least S if A turns out to be true, would be judged fair.
- Assume that fair gambles do not become collectively unfair upon collection into a joint gamble.
- 3 Show that $\mathbb{P}:\mathcal{L}\to [0,1]$ is consistent with the axioms if and only if no system of bets with odds licensed by \mathbb{P} results in a sure loss.

In other words, the axioms can be interpreted as consistency constraints on betting odds. (See also Howson 2007.)

Related Arguments

- Cox's Theorem: Axioms fall out of basic (logical) consistency postulates on real-number-valued "plausibility assignments" (Cox, Jaynes, etc.).
- Accuracy Dominance: Any violation of the axioms results in probability assignments that could be strictly more accurate (Joyce, Leitgeb & Pettigrew, etc.).

Comparative Probability

A different way of construing probability as logic—also pioneered by de Finetti—is to interpret the probability function as representing purely qualitative, comparative judgments:

"E is more likely than F"

"E is at least as likely as F"

"E and F are equally likely"

What is the logic of such comparative judgments?

What kind of logic would we expect if such judgments were derived from some probability measure?

Comparative Probability

Definition

Call (\mathcal{E}, \succeq) a de Finetti order (de Finetti 1937) if it satisfies:

Positivity:

$$E \succeq \emptyset$$

Non-triviality:

$$\emptyset \not\succeq W$$

Totality:

$$E \succeq F$$
 or $F \succeq E$

• Quasi-additivity: Whenever $(E \cup F) \cap G = \emptyset$,

$$E \succ F \Leftrightarrow E \cup G \succ F \cup G$$
.

Agreement

Does every de Finetti order (\mathcal{E}, \succeq) admit of an agreeing probability measure? That is, a measure μ such that

$$E \succeq F \Leftrightarrow \mu(E) \geq \mu(F)$$
?

Notation

Given an order (\mathcal{E}, \succeq) let us write $E \succ F$ just in case $E \succeq F$ but not $F \succeq E$. Agreement requires $E \succ F \Rightarrow \mu(E) > \mu(F)$.

Example (Kraft, Pratt, & Seidenberg, 1959) Let $W = \{a, b, c, d, e\}$: $\{d\} \succ \{a, c\} \quad \{b, c\} \succ \{a, d\} \quad \{a, e\} \succ \{c, d\}$ $\{a, c, d\} \succ \{b, e\}$

Fact

$$\mu(\{d\}) > \mu(\{a,c\})$$

 $\mu(\{b,c\}) > \mu(\{a,d\})$
 $\mu(\{a,e\}) > \mu(\{c,d\})$

Example (Kraft, Pratt, & Seidenberg, 1959)

Let
$$W = \{a, b, c, d, e\}$$
:

 $\{d\} \succ \{a, c\} \quad \{b, c\} \succ \{a, d\} \quad \{a, e\} \succ \{c, d\}$
 $\{a, c, d\} \succ \{b, e\}$

Fact

$$\mu(\{d\}) > \mu(\{a\}) + \mu(\{c\})$$

$$\mu(\{b\}) + \mu(\{c\}) > \mu(\{a\}) + \mu(\{d\})$$

$$\mu(\{a\}) + \mu(\{e\}) > \mu(\{c\}) + \mu(\{d\})$$

Example (Kraft, Pratt, & Seidenberg, 1959)

Let
$$W = \{a, b, c, d, e\}$$
:

$$\{d\} \succ \{a,c\} \quad \{b,c\} \succ \{a,d\} \quad \{a,e\} \succ \{c,d\}$$

$$\{a,c,d\} \succ \{b,e\}$$

Fact

$$\mu(\{d\}) + \mu(\{b\}) + \mu(\{c\}) + \mu(\{a\}) + \mu(\{e\})$$
> $\mu(\{a\}) + \mu(\{c\}) + \mu(\{a\}) + \mu(\{d\}) + \mu(\{c\}) + \mu(\{d\})$

Example (Kraft, Pratt, & Seidenberg, 1959) Let $W = \{a, b, c, d, e\}$: $\{d\} \succ \{a, c\} \quad \{b, c\} \succ \{a, d\} \quad \{a, e\} \succ \{c, d\}$ $\{a, c, d\} \succ \{b, e\}$

Fact

$$\mu(\{b\}) + \mu(\{e\}) > \mu(\{a\}) + \mu(\{c\}) + \mu(\{d\})$$

Example (Kraft, Pratt, & Seidenberg, 1959)

Let
$$W = \{a, b, c, d, e\}$$
:

 $\{d\} \succ \{a, c\} \quad \{b, c\} \succ \{a, d\} \quad \{a, e\} \succ \{c, d\}$
 $\{a, c, d\} \succ \{b, e\}$

Fact

$$\mu(\{b,e\}) > \mu(\{a,c,d\})$$

World Cup

- Denmark is more likely to win than either of Argentina or China.
- One of Argentina or England is more likely to win than China or Denmark.
- One of Brazil or China is more likely than one of Argentina or Denmark.
- One of Argentina, China, or Denmark is more likely than Brazil or England.

Comparative Probability

For finite sequences of events E_0, \ldots, E_n and F_0, \ldots, F_n , write

$$(E_0,\ldots,E_n)=_0(F_0,\ldots,E_n)$$

(the sequences are balanced) if for all $w \in W$,

$$|\{i: w \in E_i\}| = |\{i: w \in F_i\}|.$$

Definition (Kraft et al. 1959, Scott 1964)

 (\mathcal{E}, \succeq) satisfies Finite Cancellation (FC) if for all balanced sequences E_0, \ldots, E_n and F_0, \ldots, F_n , if $F_i \succeq E_i$ for i < n, then

$$E_n \succeq F_n$$
.

Fact

If (\mathcal{E},\succeq) is probabilistically representable, then it satisfies FC.

Proof.

Let μ agree with \succeq , and $(E_0, \ldots, E_n) =_0 (F_0, \ldots, F_n)$. Then

$$\sum_{i \leq n} \sum_{w \in E_i} \mu(\{w\}) = \sum_{i \leq n} \sum_{w \in F_i} \mu(\{w\})$$

Since μ is additive, this means

$$\sum_{i \le n} \mu(E_i) = \sum_{i \le n} \mu(F_i) \tag{1}$$

If $\mu(F_i) \ge \mu(E_i)$, for i < n, then by (1) we must have $\mu(E_n) \ge \mu(F_n)$, and hence $E_n \succeq F_n$.

Theorem (Scott 1964)

If (\mathcal{E}, \succeq) is a de Finetti order that satisfies FC, it is probabilistically representable.

Proof Sketch.

Consider the vector space generated by linear combinations of indicator functions $\mathbf{1}_E$ for $E \in \mathcal{E}$. Let Γ be the set of pairs $\gamma = E \succeq F$, and let $\overline{\gamma} = \mathbf{1}_E - \mathbf{1}_F$. Let Σ be the set of pairs $\sigma = E \npreceq F$, and let $\overline{\sigma} = \mathbf{1}_E - \mathbf{1}_F$. Define

$$\mathcal{G} = cone(\{\overline{\gamma} : \gamma \in \Gamma\})$$
 $\mathcal{S} = cone(\{\overline{\sigma} : \sigma \in \Sigma\})$.

Using the axioms and invoking a separation theorem, one can show there is a vector \mathbf{v} such that

$$E \succeq F \Leftrightarrow \mathbf{v} \cdot (\mathbf{1}_E - \mathbf{1}_F) \geq 0$$
.

Proof Sketch.

Consider the vector space generated by linear combinations of indicator functions $\mathbf{1}_E$ for $E \in \mathcal{E}$. Let Γ be the set of pairs $\gamma = E \succeq F$, and let $\overline{\gamma} = \mathbf{1}_E - \mathbf{1}_F$. Let Σ be the set of pairs $\sigma = E \not\succeq F$, and let $\overline{\sigma} = \mathbf{1}_E - \mathbf{1}_F$. Define

$$\mathcal{G} = cone(\{\overline{\gamma} : \gamma \in \Gamma\}) \qquad \mathcal{S} = cone(\{\overline{\sigma} : \sigma \in \Sigma\}) \ .$$

Using the axioms and invoking a separation theorem, one can show there is a vector \mathbf{v} such that

$$E \succeq F \quad \Leftrightarrow \quad \mathbf{v} \cdot (\mathbf{1}_E - \mathbf{1}_F) \geq 0$$
.

Let $v(E) = \mathbf{v} \cdot \mathbf{1}_E$ [note $v(E) \geq 0$ for all $E \in \mathcal{E}$] and define v(E)

$$\mu(E) = \frac{v(E)}{v(W)} .$$

Then μ is a probability measure that agrees with \succeq .

One can couch all of this in a modal logical setting.

$$\varphi$$
 ::= $A \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \succsim \varphi)$

Natural models are triples $\mathcal{M} = \langle W, \mu, V \rangle$ such that $\mu : \wp(W) \to [0, 1]$ is a probability function. Crucial clause:

$$\mathcal{M}, w \vDash \varphi \succsim \psi \quad \text{iff} \quad \mu(\llbracket \varphi \rrbracket^{\mathcal{M}}) \ge \mu(\llbracket \psi \rrbracket^{\mathcal{M}}).$$

Theorem (Segerberg 1971, Gärdenfors 1975)

The complete logic of probability measure models is given by boolean tautologies, *modus ponens*, and the following:

From
$$\varphi$$
 infer $(\varphi \succsim \top)$

$$\begin{pmatrix} (\varphi_1 \to \varphi_2) \succsim \top \land (\psi_2 \to \psi_1) \succsim \top \\ & \to \Big((\varphi_1 \succsim \psi_1) \to (\varphi_2 \succsim \psi_2) \Big) \\ \varphi \succsim \bot \\ \neg(\bot \succsim \top) \\ (\varphi \succsim \psi) \lor (\psi \succsim \varphi) \\ \varphi_1 \dots \varphi_n \mathbb{E} \psi_1 \dots \psi_n \to \Big((\bigwedge (\varphi_i \succsim \psi_i)) \to (\psi_n \succsim \varphi_n) \Big)
\end{pmatrix}$$

An alternative (Kraft et al. 1959, Burgess 2010): add to de Finetti's quasi-additivity a polarization rule.

From
$$(\alpha \land A) \approx (\alpha \land \neg A) \rightarrow \varphi$$
 infer φ .

Argument for soundness: if $\neg \varphi$ is satisfiable, show it is also satisfiable together with $(\alpha \land A) \approx (\alpha \land \neg A)$ by "duplicating" the extension of α (where A is fresh).

What happens if we add addition over probability terms?

$$\mathbf{P}(\varphi) \approx \mathbf{P}(\varphi \wedge \psi) + \mathbf{P}(\varphi \wedge \neg \psi)$$

$$\mathbf{P}(\varphi) \approx \mathbf{P}(\varphi \wedge \psi) + \mathbf{P}(\varphi \wedge \neg \psi)$$

$$a + (b + c) \approx (a + b) + c$$

$$a + b \approx b + a$$

$$a + 0 \approx a$$

$$(a + e \succsim c + f \land b + f \succsim d + e) \rightarrow a + b \succsim c + d$$

$$(a + b \succsim c + d \land d \succsim b) \rightarrow a \succsim c$$

Theorem

- The additive system is finitely axiomatizable; there is no finite axiomatization for the purely comparative system.
- Moreover, both systems are decidable in NP-time.
- 8 Both admit models in (natural or) rational numbers.

Ibeling, Icard, Mierzewski, and Mossé, Probing the Qualitative Quantitative Distinction in Probability Logics. Manuscript.

$$A|B \succeq C|D$$

$$A \perp \!\!\! \perp B$$

$$H|E \succ H$$

Multiplication and Conditionality

$$\alpha | \beta \succsim \gamma | \delta$$

$$\alpha \perp \!\!\! \perp \beta$$

$$\alpha | \beta > \alpha$$

Example

$$(\alpha \wedge \beta) \approx \neg(\alpha \wedge \beta)$$

 $\alpha | \beta \approx \beta$

Any probability model will have $\mu(\llbracket \beta \rrbracket) = 1/\sqrt{2}$.

We could also allow explicit multiplication, just as we previously added addition.

$$\mathbf{P}(\alpha)^3 + 5 \cdot \mathbf{P}(\beta)^2 \succsim \mathbf{P}(\gamma) - \mathbf{P}(\theta)\mathbf{P}(\beta)$$

An Expressive Hierarchy

Ibeling, Icard, Mierzewski, and Mossé, Probing the Qualitative-Quantitative Distinction in Probability Logics. Manuscript.

The polynomial system

Add to the axioms of additive probability logic:

$$\begin{aligned} & a \cdot (b \cdot c) \approx (a \cdot b) \cdot c \\ & a \cdot b \approx b \cdot a \\ & a \cdot 0 \approx 0 \\ & a \cdot 1 \approx a \\ & c \succ 0 \rightarrow (a \cdot c \succsim b \cdot c \leftrightarrow a \succsim b) \\ & a \cdot (b + c) \approx a \cdot b + a \cdot c \\ & a \succsim b \wedge c \succsim d \rightarrow a \cdot c + b \cdot d \succsim a \cdot d + b \cdot c \end{aligned}$$

Completeness by Positivstellensatz (Krivine 1964).

Complexity

ETR is the class of all sentences of the form

$$\exists x_1 \ldots \exists x_n \varphi$$
,

with φ quantifier-free in the language of first-order arithmetic.

 $\exists \mathbb{R}$ is the complexity class for ETR. $\mathsf{NP} \subseteq \exists \mathbb{R} \subseteq \mathsf{PSPACE}$.

Theorem (Ibeling, Icard, Mierzewski & Mossé)

Satisfiability for the polynomial probability calculus is $\exists \mathbb{R}$ -complete. So is it for all other (even minimally) multiplicative languages: comparative conditionals, independence, confirmation, etc.

Multiplication and Conditionality

Conclusion and Look Ahead

- Probability can be seen as an axiomatic subject. This already brings in issues central to logic.
- On one way of thinking about justification for the probability axioms, the operative notion is consistency, on a par with ordinary deductive logic.
- Devising probabilistic logical languages allows us to study probabilistic reasoning in explicitly logical terms, manifesting a rich landscape of systems.
- Next time we will continue on the qualitative/quantitative distinction, especially as it relates to important aspects of reasoning (default inference, acceptance, etc.).