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Overview

Logic as a theory of:

• truth-preserving inference

• consistency

• definability

• proof / deduction

• rationality

. . .

Probability as a theory of:

• ampliative inference

• learning

• information

• induction

• rationality

. . .
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Some questions and points of contact:

• In what ways might probability be said to extend logic?

• How do probability and various logical systems differ on
what they say about rational inference?

• What are sensible ways of discretizing continuous
probabilistic models? What do we lose in the process?

• How might probability be a useful tool in elucidating
logical phenomena of interest?

• What happens to probability when we impose
logical—e.g., computability-theoretic—constraints?
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Course Outline

• Day 1: “Probability as Logic” and Landscape of
Probability Logics (TI)

• Day 2: Default Reasoning, Acceptance Rules, and the
Quantitative/Qualitative Interface (TI/KM)

• Day 3: First Order Probability Logic and 0/1 Law (KM)

• Day 4: Probabilistic Grammars and Programs (TI)

• Day 5: Computable Measure Theory & Applications (KM)
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Probability as (Extended) Logic

A measurable space is a pair (W , E) with

• W is an arbitrary set

• E is a σ-algebra over W , i.e., a subset of ℘(W ) closed
under complement and infinite union.

A probability space is a triple (W , E , µ), with (W , E) a
measurable space and µ : E → [0, 1] a measure function,
satisfying the following two axioms:

1 µ(W ) = 1 ;

2 µ(E ∪ F ) = µ(E ) + µ(F ), whenever E ∩ F = ∅ .
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Probability as (Extended) Logic

Suppose we have a propositional logical language L

ϕ ::= A | B | . . . | ϕ ∧ ϕ | ¬ϕ

We can define a probability P : L → [0, 1] by requiring

1 P(ϕ) = 1, for any tautology ϕ ;

2 P(ϕ ∨ ψ) = P(ϕ) + P(ψ), whenever � ¬(ϕ ∧ ψ) .

Equivalent set of requirements:

1 P(ϕ) = 1 for any tautology ;

2 P(ϕ) ≤ P(ψ) whenever � ϕ→ ψ ;

3 P(ϕ) = P(ϕ ∧ ψ) + P(ϕ ∧ ¬ψ) .

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Overview / Probability Logic 6



Probability as (Extended) Logic

It is then easy to show:

• P(ϕ) = 0, for any contradiction ϕ ;

• P(¬ϕ) = 1−P(ϕ) ;

• P(ϕ ∨ ψ) = P(ϕ) + P(ψ)−P(ϕ ∧ ψ) ;

• A propositional valuation sending atoms to 1 or 0 is a
special case of a probability function ;

• A probability on L gives rise to a standard probability
measure over ‘world-states’, i.e., maximally consistent
sets of formulas from L. In fact, any standard probability
measure can be obtained this way.
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Probability as (Extended) Logic

Why these axioms?
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Probability as (Extended) Logic

Interpretations of Probability

• Frequentist: Probabilities are about ‘limiting frequencies’
of in-principle repeatable events.

• Propensity: Probabilities are about physical dispositions,
or propensities, of events.

• Logical: Probabilities are determined objectively using a
logical language and some additional background
principles, e.g., of ‘symmetry’.

• Bayesian: Probabilities are subjective and reflect an
agent’s degree of confidence concerning some event.

...

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Overview / Probability Logic 9



Probability as (Extended) Logic

We strive to make judgments as dispassionate, reflective, and
wise as possible by a doctrine that shows where and how they
intervene and lays bare possible inconsistencies between
judgments. There is an instructive analogy between
[deductive] logic, which convinces one that acceptance of
some opinions as ‘certain’ entails the certainty of others, and
the theory of subjective probabilities, which similarly connects
uncertain opinions.

—Bruno de Finetti, 1974
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Probability as (Extended) Logic

De Finetti’s Argument

1 Interpret probability assignment as betting odds judged
fair. For example, an assignment P(A) = 0.2 means any
bet that costs at most 0.2× S , but pays at least S if A
turns out to be true, would be judged fair.

2 Assume that fair gambles do not become collectively
unfair upon collection into a joint gamble.

3 Show that P : L → [0, 1] is consistent with the axioms if
and only if no system of bets with odds licensed by P

results in a sure loss.

In other words, the axioms can be interpreted as consistency
constraints on betting odds. (See also Howson 2007.)
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Probability as (Extended) Logic

Related Arguments

• Cox’s Theorem: Axioms fall out of basic (logical)
consistency postulates on real-number-valued “plausibility
assignments” (Cox, Jaynes, etc.).

• Accuracy Dominance: Any violation of the axioms results
in probability assignments that could be strictly more
accurate (Joyce, Leitgeb & Pettigrew, etc.).
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Comparative Probability

A different way of construing probability as logic—also
pioneered by de Finetti—is to interpret the probability function
as representing purely qualitative, comparative judgments:

“E is more likely than F”

“E is at least as likely as F”

“E and F are equally likely”

What is the logic of such comparative judgments?

What kind of logic would we expect if such judgments were
derived from some probability measure?
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Comparative Probability

Definition
Call (E ,�) a de Finetti order (de Finetti 1937) if it satisfies:

• Positivity:
E � ∅

• Non-triviality:
∅ � W

• Totality:
E � F or F � E

• Quasi-additivity: Whenever (E ∪ F ) ∩ G = ∅,

E � F ⇔ E ∪ G � F ∪ G .
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Comparative Probability

Agreement

Does every de Finetti order (E ,�) admit of an agreeing
probability measure? That is, a measure µ such that

E � F ⇔ µ(E ) ≥ µ(F ) ?

Notation
Given an order (E ,�) let us write E � F just in case E � F
but not F � E . Agreement requires E � F ⇒ µ(E ) > µ(F ).
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Comparative Probability

Example (Kraft, Pratt, & Seidenberg, 1959)
Let W = {a, b, c , d , e}:

{d} � {a, c} {b, c} � {a, d} {a, e} � {c , d}

{a, c , d} � {b, e}

Fact
(℘(W ),�) admits no agreeing probability measure.

µ({d}) > µ({a, c})
µ({b, c}) > µ({a, d})
µ({a, e}) > µ({c , d})
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Comparative Probability

Example (Kraft, Pratt, & Seidenberg, 1959)
Let W = {a, b, c , d , e}:

{d} � {a, c} {b, c} � {a, d} {a, e} � {c , d}

{a, c , d} � {b, e}

Fact
(℘(W ),�) admits no agreeing probability measure.

µ({d}) > µ({a}) + µ({c})
µ({b}) + µ({c}) > µ({a}) + µ({d})
µ({a}) + µ({e}) > µ({c}) + µ({d})
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Comparative Probability

Example (Kraft, Pratt, & Seidenberg, 1959)
Let W = {a, b, c , d , e}:

{d} � {a, c} {b, c} � {a, d} {a, e} � {c , d}

{a, c , d} � {b, e}

Fact
(℘(W ),�) admits no agreeing probability measure.

µ({d}) + µ({b}) + µ({c}) + µ({a}) + µ({e})
> µ({a}) + µ({c}) + µ({a}) + µ({d}) + µ({c}) + µ({d})
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Comparative Probability

Example (Kraft, Pratt, & Seidenberg, 1959)
Let W = {a, b, c , d , e}:

{d} � {a, c} {b, c} � {a, d} {a, e} � {c , d}

{a, c , d} � {b, e}

Fact
(℘(W ),�) admits no agreeing probability measure.

µ({b}) + µ({e}) > µ({a}) + µ({c}) + µ({d})
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Comparative Probability

Example (Kraft, Pratt, & Seidenberg, 1959)
Let W = {a, b, c , d , e}:

{d} � {a, c} {b, c} � {a, d} {a, e} � {c , d}

{a, c , d} � {b, e}

Fact
(℘(W ),�) admits no agreeing probability measure.

µ({b, e}) > µ({a, c , d})
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Comparative Probability

World Cup

• Denmark is more likely to win than either of
Argentina or China.

• One of Argentina or England is more likely to
win than China or Denmark.

• One of Brazil or China is more likely than one of
Argentina or Denmark.

• One of Argentina, China, or Denmark is more
likely than Brazil or England.
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Comparative Probability

For finite sequences of events E0, . . . ,En and F0, . . . ,Fn, write

(E0, . . . ,En) =0 (F0, . . . ,En)

(the sequences are balanced) if for all w ∈ W ,

|{i : w ∈ Ei}| = |{i : w ∈ Fi}| .

Definition (Kraft et al. 1959, Scott 1964)
(E ,�) satisfies Finite Cancellation (FC) if for all balanced
sequences E0, . . . ,En and F0, . . . ,Fn, if Fi � Ei for i < n, then

En � Fn .
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Comparative Probability

Fact
If (E ,�) is probabilistically representable, then it satisfies FC.

Proof.
Let µ agree with �, and (E0, . . . ,En) =0 (F0, . . . ,Fn). Then

∑
i≤n

∑
w∈Ei

µ({w}) = ∑
i≤n

∑
w∈Fi

µ({w})

Since µ is additive, this means

∑
i≤n

µ(Ei ) = ∑
i≤n

µ(Fi ) (1)

If µ(Fi ) ≥ µ(Ei ), for i < n, then by (1) we must have
µ(En) ≥ µ(Fn), and hence En � Fn.
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Comparative Probability

Theorem (Scott 1964)
If (E ,�) is a de Finetti order that satisfies FC, it is
probabilistically representable.

Proof Sketch.
Consider the vector space generated by linear combinations of
indicator functions 1E for E ∈ E . Let Γ be the set of pairs
γ = E � F , and let γ = 1E − 1F . Let Σ be the set of pairs
σ = E � F , and let σ = 1E − 1F . Define

G = cone({γ : γ ∈ Γ}) S = cone({σ : σ ∈ Σ}) .

Using the axioms and invoking a separation theorem, one can
show there is a vector v such that

E � F ⇔ v · (1E − 1F ) ≥ 0 .
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Comparative Probability

Proof Sketch.
Consider the vector space generated by linear combinations of
indicator functions 1E for E ∈ E . Let Γ be the set of pairs
γ = E � F , and let γ = 1E − 1F . Let Σ be the set of pairs
σ = E � F , and let σ = 1E − 1F . Define

G = cone({γ : γ ∈ Γ}) S = cone({σ : σ ∈ Σ}) .

Using the axioms and invoking a separation theorem, one can
show there is a vector v such that

E � F ⇔ v · (1E − 1F ) ≥ 0 .

Let v(E ) = v · 1E
[

note v(E ) ≥ 0 for all E ∈ E
]

and define

µ(E ) =
v(E )

v(W )
.

Then µ is a probability measure that agrees with �.
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Probability Logic

One can couch all of this in a modal logical setting.

ϕ ::= A | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ)

Natural models are triples M = 〈W , µ,V 〉 such that
µ : ℘(W )→ [0, 1] is a probability function. Crucial clause:

M,w � ϕ % ψ iff µ(JϕKM) ≥ µ(JψKM).
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Probability Logic

Theorem (Segerberg 1971, Gärdenfors 1975)
The complete logic of probability measure models is given by
boolean tautologies, modus ponens, and the following:

From ϕ infer (ϕ % >)(
(ϕ1 → ϕ2) % >∧ (ψ2 → ψ1) % >

)
→
(
(ϕ1 % ψ1)→ (ϕ2 % ψ2)

)
ϕ % ⊥

¬(⊥ % >)

(ϕ % ψ) ∨ (ψ % ϕ)

ϕ1 . . . ϕnEψ1 . . . ψn →
(
(
∧
i<n

(ϕi % ψi ))→ (ψn % ϕn)
)
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Probability Logic

An alternative (Kraft et al. 1959, Burgess 2010): add to de
Finetti’s quasi-additivity a polarization rule.

From (α ∧ A) ≈ (α ∧ ¬A)→ ϕ infer ϕ.

Argument for soundness: if ¬ϕ is satisfiable, show it is also
satisfiable together with (α ∧ A) ≈ (α ∧ ¬A) by “duplicating”
the extension of α (where A is fresh).
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Adding Addition

What happens if we add addition over probability terms?

P(ϕ) ≈ P(ϕ ∧ ψ) +P(ϕ ∧ ¬ψ)
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Adding Addition

P(ϕ) ≈ P(ϕ ∧ ψ) +P(ϕ ∧ ¬ψ)

a + (b + c) ≈ (a + b) + c

a + b ≈ b + a

a + 0 ≈ a

(a + e % c + f ∧ b + f % d + e)→ a + b % c + d

(a + b % c + d∧ d % b)→ a % c
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Adding Addition

Theorem
1 The additive system is finitely axiomatizable; there is no

finite axiomatization for the purely comparative system.

2 Moreover, both systems are decidable in NP-time.

3 Both admit models in (natural or) rational numbers.

Ibeling, Icard, Mierzewski, and Mossé, Probing the Qualitative-
Quantitative Distinction in Probability Logics. Manuscript.
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Multiplication and Conditionality

A|B � C |D

A ⊥⊥ B

H |E � H
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Multiplication and Conditionality

α|β % γ|δ

α ⊥⊥ β

α|β � α
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Multiplication and Conditionality

Example

(α ∧ β) ≈ ¬(α ∧ β)

α|β ≈ β

Any probability model will have µ([[β]]) = 1/
√

2.
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Multiplication and Conditionality

We could also allow explicit multiplication, just as we
previously added addition.

P(α)3 + 5 ·P(β)2 % P(γ)−P(θ)P(β)
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Multiplication and Conditionality

An Expressive Hierarchy

LcompLind

Lconfirm

Lcond

Lquad

Ladd

Lpoly

Ibeling, Icard, Mierzewski, and Mossé, Probing the Qualitative-
Quantitative Distinction in Probability Logics. Manuscript.
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Multiplication and Conditionality

The polynomial system

Add to the axioms of additive probability logic:

a · (b · c) ≈ (a · b) · c
a · b ≈ b · a
a · 0 ≈ 0

a · 1 ≈ a

c � 0→ (a · c % b · c↔ a % b)

a · (b + c) ≈ a · b + a · c
a % b∧ c % d→ a · c + b · d % a · d + b · c

Completeness by Positivstellensatz (Krivine 1964).
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Multiplication and Conditionality

Complexity
ETR is the class of all sentences of the form

∃x1 . . . ∃xnϕ,

with ϕ quantifier-free in the language of first-order arithmetic.

∃R is the complexity class for ETR. NP ⊆ ∃R ⊆ PSPACE.

Theorem (Ibeling, Icard, Mierzewski & Mossé)
Satisfiability for the polynomial probability calculus is
∃R-complete. So is it for all other (even minimally)
multiplicative languages: comparative conditionals,
independence, confirmation, etc.
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Multiplication and Conditionality

LcompLind

Lconfirm

Lcond

Lquad

Ladd

Lpoly
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Multiplication and Conditionality

Conclusion and Look Ahead
• Probability can be seen as an axiomatic subject. This

already brings in issues central to logic.

• On one way of thinking about justification for the
probability axioms, the operative notion is consistency, on
a par with ordinary deductive logic.

• Devising probabilistic logical languages allows us to study
probabilistic reasoning in explicitly logical terms,
manifesting a rich landscape of systems.

• Next time we will continue on the qualitative/quantitative
distinction, especially as it relates to important aspects of
reasoning (default inference, acceptance, etc.).
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