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Overview of Today

• Yesterday we explored probability calculi as modal logical
systems, ranging from probability comparisons to systems with
explicit arithmetic operators.

• Today we expand this to prominent kinds of probabilistic
reasoning, including inference.

• Default reasoning and rules for acceptance of hypotheses in
uncertain contexts have been studied in both logical and
probabilistic settings. How do these approaches relate?
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Some people think it is possible to
try to save monotonicity by saying
that what was in your mind was
not a general rule [. . . ] but a
probabilistic rule. So far these
people have not worked out any
detailed epistemology for this
approach, i.e. exactly what
probabilistic sentences should be
used. Instead AI has moved to
directly formalizing nonmonotonic
logical reasoning.

—John McCarthy, 1990
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Consequence Relations

Preferential Consequence Relations: System P

(Refl.)
ϕ |∼ ϕ

� ϕ1 ↔ ϕ2 ϕ1 |∼ ψ
(L-E)

ϕ2 |∼ ψ

� ψ1 → ψ2 ϕ |∼ ψ1
(R-W)

ϕ |∼ ψ2

ϕ |∼ ψ1 ϕ |∼ ψ2
(And)

ϕ |∼ ψ1 ∧ ψ2

ϕ1 |∼ ψ ϕ2 |∼ ψ
(Or)

ϕ1 ∨ ϕ2 |∼ ψ

ϕ |∼ ψ ϕ |∼ χ
(Cautious Monotonicity)

ϕ ∧ ψ |∼ χ
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Consequence Relations

Semantics for System P: Preferential Models
A preferential model is a triple (W ,�,V ) of a set W of states, a
preorder �, and a propositional valuation V : Prop→ ℘(W ).

Given a model M = (W ,�,V ), define:

[[ϕ]]M = {s ∈ W | M, s � ϕ}

min�(X ) = {s ∈ X | there is no t ∈ X , such that t ≺ s}

We can then extend a propositional logical language to include a
conditional operator ϕ ; ψ:

M |= ϕ ; ψ iff min�([[ϕ]]M) ⊆ [[ψ]]M .
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Consequence Relations

Theorem (Veltman 1986; Kraus et al. 1990)

For any consequence relation |∼ closed under the rules of P, there
is a model M, such that:

ϕ |∼ ψ iff M |= ϕ ; ψ .

Conversely, given any model M, there is a P-consequence relation
|∼ satisfying the above equivalence.
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Consequence Relations

Rational Consequence Relations: System R

Some have proposed a stronger rule than Cautious
Monotonicity:

ϕ |∼ ψ1 ϕ |� ¬ψ2
(Rational Monotonicity)

ϕ ∧ ψ2 |∼ ψ1

The system that results from adding this rule to P is called R.
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Consequence Relations

Semantics for System R
The models for R are just like those for P, namely triples
(W ,�,V ), except � is now assumed to be a total preorder:

for all s, t ∈ W , either s � t or t � s (or both).

. .
.

Theorem (Lehmann & Magidor)

R consequence relations correspond to total models.
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Belief Revision

Another Angle: Belief Revision

• Imagine some agent with current knowledge K, say, given by
a set of formulas.

• Suppose this agent receives (veridical) information ϕ. How
should K be revised in light of this fact?
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Belief Revision

Alchourrón-Gärdenfors-Makinson (AGM) Belief Revision

1 K ∗ ϕ is closed under (classical) consequence ;

2 ϕ ∈ K ∗ ϕ ;

3 K ∗ ϕ ⊆ Cl(K ∪ {ϕ}) ;

4 If ¬ϕ /∈ K, then Cl(K ∪ {ϕ}) ⊆ K ∗ ϕ ;

5 K ∗ ϕ = Cl({⊥}), if and only if � ¬ϕ ;

6 If � ϕ1 ↔ ϕ2, then K ∗ ϕ1 = K ∗ ϕ2 ;

7 K ∗ (ϕ ∧ ψ) ⊆ Cl(K ∗ ϕ ∪ {ψ}) ;

8 If ¬ψ /∈ K ∗ ϕ, then Cl(K ∗ ϕ ∪ {ψ}) ⊆ K ∗ (ϕ ∧ ψ) .
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Belief Revision

Theorem (Folklore)

1 Suppose we are given a knowledge base K and a revision
operation ∗. Define a consequence relation |∼ so that

ϕ |∼ ψ iff ψ ∈ K ∗ ϕ .

Then |∼ satisfies all the rules of R.

2 Suppose |∼ is a consequence relation satisfying R, and such
that ϕ |∼ ⊥ only if � ¬ϕ. If we define

K ∆
= {ψ | > |∼ ψ} and K ∗ ϕ

∆
= {ψ : ϕ |∼ ψ} ,

then this gives us an AGM belief revision operation.
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Probabilistic Semantics

How do these systems to relate to probability?

Thomas Icard & Krzysztof Mierzewski: Default Reasoning, Acceptance Rules, The Quantitative/Qualitative Interface 12



Probabilistic Semantics

Probabilistic Semantics for System P

(Refl.)
ϕ |∼ ϕ

� ϕ1 ↔ ϕ2 ϕ1 |∼ ψ
(L-E)

ϕ2 |∼ ψ

� ψ1 → ψ2 ϕ |∼ ψ1
(R-W)

ϕ |∼ ψ2

ϕ |∼ ψ1 ϕ |∼ ψ2
(And)

ϕ |∼ ψ1 ∧ ψ2

ϕ1 |∼ ψ ϕ2 |∼ ψ
(Or)

ϕ1 ∨ ϕ2 |∼ ψ

ϕ |∼ ψ ϕ |∼ χ
(Cautious Monotonicity)

ϕ ∧ ψ |∼ χ

Thomas Icard & Krzysztof Mierzewski: Default Reasoning, Acceptance Rules, The Quantitative/Qualitative Interface 13



Probabilistic Semantics

Probabilistic Semantics for System P

Let ∆ be a finite set {α1 |∼ β1, . . . , αn |∼ βn}.

We write
∆ �A ϕ |∼ ψ ,

if ∀ε > 0, ∃δ > 0, such that for all P : L → [0, 1]:

if P(βi |αi ) > 1− δ for all i ≤ n, then P(ψ|ϕ) > 1− ε.
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Probabilistic Semantics

Probabilistic Semantics for System P

Theorem (Adams 1966)

A default statement ϕ |∼ ψ is derivable from a set ∆ of default
statements using the rules of P, if and only if ∆ �A ϕ |∼ ψ.
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Probabilistic Semantics

Probabilistic Semantics for System R

Definition
Define a conditional probability function to be any function
P : L×L → [0, 1] satisfying the following:

1 For some ϕ, ψ, we have P(ϕ|ψ) 6= 1.

2 P(ϕ|ϕ) = 1.

3 P(¬ϕ|ψ) = 1−P(ϕ|ψ).

4 P(ϕ ∧ ψ|χ) = P(ϕ|ψ ∧ χ)P(ψ|χ).
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4 P(ϕ ∧ ψ|χ) = P(ϕ|ψ ∧ χ)P(ψ|χ).
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Probabilistic Semantics

Probabilistic Semantics for System R

Theorem (Harper 1975; Hawthorne 1998)

1 Given a conditional probability function P, define a
consequence relation ϕ |∼ ψ, which holds just in case
P(ψ | ϕ) = 1. Then |∼ is an R relation.

2 For any R relation |∼, there is a conditional probability
function P such that:

• P(ψ | ϕ) = 1, iff ϕ |∼ ψ ;

• P(ψ | ϕ) = 0, iff ϕ |∼ ¬ψ ;

• 0 < P(ψ | ϕ) < 1, iff ϕ |� ψ and ϕ |� ¬ψ .
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Probabilistic Semantics

Probability Threshold Semantics

• Instead of starting with qualitative intuitions and trying to find
quantitative representations, we can go the other direction.

• Natural thought: ϕ |∼ ψ holds just in case P(ψ | ϕ) > t.

• What is the logic of this?

• Rational Monotonicity fails: Define P so that:

P(A∧ ¬B ∧ ¬C ) = P(¬A∧ B ∧ ¬C ) =

P(¬A∧ ¬B ∧ C ) = 1/3

and let t = 0.5. Then > |∼ A∨ B and > |� ¬(A∨ C ), but
A∨ C |� A∨ B.
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Probabilistic Semantics

System P

(Refl.)
ϕ |∼ ϕ

� ϕ1 ↔ ϕ2 ϕ1 |∼ ψ
(L-E)

ϕ2 |∼ ψ

� ψ1 → ψ2 ϕ |∼ ψ1
(R-W)

ϕ |∼ ψ2

ϕ |∼ ψ1 ϕ |∼ ψ2
(And)

ϕ |∼ ψ1 ∧ ψ2

ϕ1 |∼ ψ ϕ2 |∼ ψ
(Or)

ϕ1 ∨ ϕ2 |∼ ψ

ϕ |∼ ψ ∧ χ
(Very Cautious Monotonicity)

ϕ ∧ ψ |∼ χ
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Probabilistic Semantics

System O

(Refl.)
ϕ |∼ ϕ

� ϕ1 ↔ ϕ2 ϕ1 |∼ ψ
(L-E)

ϕ2 |∼ ψ

� ψ1 → ψ2 ϕ |∼ ψ1
(R-W)

ϕ |∼ ψ2

ϕ |∼ ψ1 ϕ ∧ ¬ψ2 |∼ ψ2
(W-A)

ϕ |∼ ψ1 ∧ ψ2

ϕ ∧ χ |∼ ψ ϕ ∧ ¬χ |∼ ψ
(W-O)

ϕ |∼ ψ

ϕ |∼ ψ ∧ χ
(Very Cautious Monotonicity)

ϕ ∧ ψ |∼ χ
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Probabilistic Semantics

System O

Another rule, called Negation Rationality:

ϕ |∼ ψ

ϕ ∧ χ |∼ ψ OR ϕ ∧ ¬χ |∼ ψ

Theorem (Paris & Simmonds 2009)

Threshold semantics cannot be axiomatized by any finite set of
rules of this form. In particular system O is not complete.
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A direct approach: acceptance rules

ϕ |∼P ψ if and only if P(ψ | ϕ) > t

From a more general perspective, these can be seen as encoding a
logic of acceptance:

Given prior P, after learning ϕ, accept ψ.

Implicit acceptance rule:

“Accept ϕ if and only if P(ϕ) > t”
(Lockean rule)
Compare this to

ϕ |∼ ψ iff ψ ∈ K ∗ ϕ .

Question: how do we get K and ∗ from P?
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A direct approach: acceptance rules

Acceptance rules aim at answering the following question:

Question
Suppose our information/degrees of belief are described by a probability space
(W , E , µ). Which propositions/hypotheses should we (tentatively) accept
simpliciter?

• Bridge between probabilistic credences and qualitative beliefs (collection
of accepted propositions).

• Relating probability spaces to nonmotononic consequence relations.
• Relating dynamics of probabilistic update to belief revision operators.
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A direct approach: acceptance rules

Acceptance rules and the logic of uncertain reasoning

Acceptance rule: translation between credences and all-or-nothing beliefs.

� What are well-behaved acceptance rules?

Desiderata:
• Non-trivial: do not rule out the acceptance of uncertain hypotheses.
• Consistent: never accept contradictions.
• Conjunctive: accepting A and accepting B entails accepting A∩ B.
• High-probability: only accept high-probability propositions (above some

threshold t > 0.5)

B The Lockean rule does not meet these criteria! (Lottery Paradox)
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A direct approach: acceptance rules

Acceptance rules on finite spaces

Let (W , E , µ) be a finite probability space, X ,Y , ... ∈ E and ∆E the set of all
probability measures on E .

An acceptance rule is a map α : ∆E → E . The agent accepts X ∈ E if and only
if α(µ) ⊆ X : i.e., α(µ) is the strongest accepted proposition.

ω1

ω2

ω3

ω4

µ

∅

W
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Acceptance rules on finite spaces

Let (W , E , µ) be a finite probability space, X ,Y , ... ∈ E and ∆E the set of all
probability measures on E .

An acceptance rule is a map α : ∆E → E . The agent accepts X ∈ E if and only
if α(µ) ⊆ X : i.e., α(µ) is the strongest accepted proposition.

ω1

ω2

ω3

ω4

µ

∅

W

α
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The tracking problem

Revision & the Reverend: Bayes & Boole

µ

µ(· |X )
|X

Bayesian conditioning

KK K ∗X
∗X

revision operator

acceptance acceptance
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The tracking problem

Dynamic compatibility: tracking

Tracking. A qualitative revision policy maps each µ ∈ ∆E to
a belief set α(µ) and a revision operator ∗ applicable to that
belief set. It tracks Bayesian conditioning if, for any measure µ
and proposition X ∈ E with µ(X ) > 0,

α(µ)∗X = α(µ(· |X )).

µ µ(· |X )

α(µ) α(µ)∗X = α(µ(· |X ))

|X
Bayesian conditioning

acceptance rule α

∗X
revision operator

α
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Stability and AGM revision

Stability (Skyrms, Arló-Costa, Leitgeb)

Let (W , E , µ) a probability space and t ∈ (0.5, 1].
A hypothesis H ∈ E is (µ, t)-stable if and only if ∀Y ∈ E such
that H ∩ Y 6= ∅ and µ(Y ) > 0, µ(H |Y ) ≥ t.

H is stable if it has resiliently high probability under new
information.

� On finite spaces, the collection of stable sets, written St(µ),
is well-ordered by logical strength. (why?)
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Stability and AGM revision

Stability (Skyrms, Arló-Costa, Leitgeb)

Let S = (W , E , µ) a probability space and t ∈ (0.5, 1). We
define the collection L(µ) of accepted hypotheses as follows:

L(µ) := {X ∈ E | ∃A ∈ St(µ), A ⊆ X}
= {X ∈ E | τ(µ) ⊆ X} where τ(µ) = min

⊆
St(µ)

Sk

S3

. .
.

S2

τ(µ)
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Stability and AGM revision

Stability and tracking

The stability rule gives an AGM revision policy. Does this AGM
policy commute with conditioning?

µ µ(· |X )

L(µ) L(µ)∗X =? L
(
µ(· |X )

)
|X

L
∗X

L

The revision L(µ)→ L
(
µ(· |X )

)
is not in general AGM, as it can

fail Inclusion.

� Tracking fails for the stability rule.
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Stability and AGM revision

Theorem (No-Go Theorem (Lin & Kelly, 2012))

Let α : ∆E → E be any sensible acceptance rule. No AGM
revision policy based on α tracks Bayesian conditioning.

W

{ω1,ω2}

{ω2,ω3}

{ω1,ω3}

{ω1}

{ω2} {ω3}
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Stability and AGM revision

Belief revision as ‘lossy’ Bayesian reasoning

In spite of the No-Go Theorem, is there still a way to bridge AGM
revision and Bayesian conditioning? How can a Bayesian agent
make sense of AGM revision?

Observation: AGM revision can be represented as Bayesian
conditioning on a distinguished probabilistic representative of the
agent’s qualitative belief state.

Consider an agent with a belief set K . Credences compatible with
K : all µ such that L(µ) = K .
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Stability and AGM revision

Max Entropy Principle

Entropy: H(µ) = ∑ω∈W −µ(ω) log µ(ω)

• Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):
Select a distribution with maximal entropy consistent with the

constraints imposed by the available information (if such
distributions exist).

• Max Entropy distribution thought of as the least biased
representation of the agent’s belief state, given the
constraints.
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Stability and AGM revision

Max Entropy Principle

In making inferences on the basis
of partial information we must use
that probability distribution which
has maximum entropy subject to to
whatever is known. This is the only
unbiased assignment we can make;
to use any other would amount to
arbitrary assumption of information
which by hypothesis we do not
have. [. . . ] The maximum entropy
distribution may be asserted for the
positive reason that it is uniquely
determined as the one which is

maximally noncommittal with
regard to missing information.

– E.T. Jaynes, Information Theory
and Statistical Mechanics
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Stability and AGM revision

AGM from Bayes via Max Entropy
For finite probability spaces:

Let K a consistent belief set on E , and fix t ∈ (0.5, 1). Then
there is a unique maximal entropy distribution µ ∈ ∆E such that
L(µ) = K . Moreover, for any positive probability X ∈ E , we
have L(µ

(
· |X )

)
= K ∗X , where ∗ is the AGM revision operator

generated by S(µ).

K

µ

Max
Entropy

in L−1(K )

µ(· |X )
Bayesian conditioning

|X

L(µ(· |X ))

L acceptance

K ∗X = L(µ(· |X ))

L acceptance

∗X
AGM
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Stability and AGM revision

Belief revision as ‘lossy’ Bayesian reasoning
The same obtains even for a finer representation of belief: a
plausibility ranking.

µ µ(· |X )

S S � X

Max Entropy

|X

Restriction to X

L(µ) L(µ(· |X ))
AGM

minmin

L L

(For the revision to be autonomous—fully determined by the qualitative
structure alone—the agent must retain the plausibility ranking S.)
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Stability and AGM revision

AGM revision = stable belief + MaxEnt + Bayes

• AGM reasoners behave as if they were lossy Bayesian
reasoners; they revise their beliefs as if they were relying on
the maximum entropy representative of their belief state.

• Dynamic compatibility can be (approximately) recovered, and
AGM represented as ‘coarse-grained’ Bayesian reasoning.

• A grain of salt: representation vs. rationalisation.

• A grain of truth? Resource-rational approaches to cognition
[Lieder & Griffiths 2020].

KM (2020). Probabilistic Stability, AGM Operators and Maxi-
mum Entropy. The Review of Symbolic Logic, 1-34.
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Other approaches

Bridges: a potpourri

µ µ(· |X )

α(µ) α(µ)∗X = α(µ(· |X ))

|X
Bayes

Bayes

∗X
revision operator

AGM

acceptance rule α α

acceptance rule? α α?

L(µ)

Max Ent LL

L(µ)∗X = L(µ(· |X ))
AGM

κ(µ)

κodds-ratio rule κ

κ(µ)∗X = κ(µ(· |X ))
Shoham revision

Stability

L(µ)

L

L(µ)∗X := L(µ(· |X ))
∗X

revision operator?s.s.s operator σµ

General models for revision policies: (W , E , σ) with σ : E → E a
selection function: here, σ(A) is the revised state after learning A.

A selection function specifies a belief set K = σ(W ) together with
a qualitative revision policy K ∗A := σ(A).

ϕ |∼ ψ if and only if σ([[ϕ]]) ⊆ [[ψ]]

Characterise strongest stable set operators σµ : X 7→ τ
(
µ(· |X )

)
.

Representation result: these operators σ encode the behaviour of a
(special class of) comparative probability orders.

Probabilistically stable revision is not trackable using order
minimisation.
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Other approaches

AGM = Stability + MaxEnt + Bayes

µ µ(· |X )

α(µ) α(µ)∗X = α(µ(· |X ))
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Bayes
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Stability

L(µ)

L

L(µ)∗X := L(µ(· |X ))
∗X

revision operator?s.s.s operator σµ

Nonmonotonic consequence relations closed under system R.

σ(X ) := min�(X ) for � a total preorder on W .

ωi � ωj if and only if for any (µ, t)-stable H, if ωi ∈ H then ωj ∈ H

Characterise strongest stable set operators σµ : X 7→ τ
(
µ(· |X )

)
.
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Other approaches

System P = Odds Ratio + Bayes (Lin and Kelly, 2012)
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)
.
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Other approaches

Probabilistically stable revision
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Other approaches

Probabilistically stable revision

Theorem (M.)

Let (W , E , σ) be a selection structure. Then σ is a strongest stable set
operator σµ : X 7→ τ(µ(· |X )) for some (regular) measure µ on E if and
only if the following hold:

(S1) σ(X ) = ∅ only if X = ∅
(S2) σ(X ) ⊆ X

(S3) If σ(A) ∩ B 6= ∅, then σ(A∩ B) ⊆ σ(A) ∩ B

(S4) If Xi \ Xj ⊆ σ(Xi ) for all i 6= j ≤ n, then σ(
⋃
i≤n Xi ) ⊆

⋃
i≤n σ(Xi )

(SC) If (Ai )i6n =0 (Bi )i6n and ∀i 6 n, Ai <∗σ Bi , then ∀i 6 n, Ai 4∗σ Bi .

Say A� B iff σ(A∪ B) ⊆ A \ B. We define

A <∗σ B ⇔ either
[
A� B

]
or
[
B is a E -atom & B 6� A

]
 (SC): Finite Cancellation-style axiom for comparative probability.
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Other approaches

Probabilistically stable revision

(Refl.)

!

ϕ |∼ ϕ

� ϕ1 ↔ ϕ2 ϕ1 |∼ ψ
(L-E)

!

ϕ2 |∼ ψ

� ψ1 → ψ2 ϕ |∼ ψ1
(R-W)

!

ϕ |∼ ψ2

ϕ |∼ ψ1 ϕ |∼ ψ2
(And)

!

ϕ |∼ ψ1 ∧ ψ2

ϕ1 |∼ ψ ϕ2 |∼ ψ
(Or)

7

ϕ1 ∨ ϕ2 |∼ ψ

ϕ 6 |∼¬ψ ϕ |∼ χ
(Rational Monotonicity)

!

ϕ ∧ ψ |∼ χ
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Conclusion

We saw:

• Common systems for non-monotonic reasoning, their standard
‘qualitative’ and probabilistic semantics, and belief revision;

• The tracking problem: in what sense can logical belief revision
be compatible, or emerge from, probabilistic reasoning and
Bayesian updating in particular?

• Acceptance rules as bridge principles between quantitative and
all-or-nothing beliefs, and the non-monotonic/defeasible
reasoning principles they validate.
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Conclusion

Next time:

• What is the relationship between measure-theoretic probability
and probability functions on formal languages?

• When logic and probability shed light on each other: random
structures and the 0-1 law.
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