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Probability spaces in the measure theoretic sense are structures (Q), £, i) with
(Q,€)a , i.e. we have
Q) is an arbitrary set

Eisa over (), i.e., a subset of p(Q) closed under complement
and countable unions.

i : € — [0,1] a countably additive measure, i.e.
na)=1;
#(Uien) = Ento #(Ei), when E;NE; = @ for i # j.

How do these relate to probabilities defined directly on ?



Everyone says ‘“consider the probability that X > 0,” where X is a random
variable, and only the pedant insists on replacing this phrase by “consider the
measure of the set {w € O : X(w) > 0}.” Indeed, when a process is specified,
only the distribution is of interest, not a particular underlying sample space. In

other words, practice shows that

—Scott & Krauss 1966



Suppose we have a countable propositional language L:

¢ = A1|A2||(p/\('()‘—\q)

We can define a probability P : £ — [0, 1] directly on L:
P(¢) = 1, for any tautology ¢ ;

P(op V) =P(¢)+P(y), whenever E =(p A1) .

Equivalent set of requirements:
P(¢) = 1, for any tautology ;

P(¢) < P(y) whenever E ¢ — ¢ ;

P(¢) =P(p N ) +P(p A ) .



A family of subsets R C p(Q) forms a if
LeR
If AAB€Rthen AUBE R and AA\BER
A measure y is if u(Q)) is finite.

Given a family of subsets F C p(Q), let o(F) the

Let u be a measure on a ring (Q), R). If u is a finite measure that is o-additive
on R, then there is a unique o-additive measure i’ on o(R) that extends .



Let V be the set of all valuations in language L.

Let 0 & {le] : ¢ € L}, where [¢] ={v:vE ¢}. Then O forms a
Boolean algebra, hence also a ring. Moreover, any probability measure IP
generates a measure that is o-additive on O. By the Carathéodory
Extension Theorem, it uniquely extends to a c-additive measure on the

smallest o-algebra extending O [this uses Compactness!].

In fact, O forms a clopen basis of a topology on V), which is
homeomorphic to standard Cantor space (coin-tossing space: space of
infinite binary sequences with clopen basis of cylinder sets). The o-algebra
generated by O is the standard Borel o-algebra on Cantor space.

In this way we can show that all functions P : £ — [0, 1] can define all the
usual probability measures (Borel measures).



Probabilities on propositional calculi are general, but not particularly
expressive.



Let £ be a first-order logical language, given by:
a set V of individual variables ;
a set C of individual constants ;
a set P of predicate variables .

Terms and formulas of £ are defined as usual:

¢ = R(t1,....th) | ¢AN@|—¢p]|Ixe|Vxe



Define S/ to be the set of of L, i.e., formulas with no free variables,
and 32 to be the set of of L.

A probability on £’ C S, is a function P : £ — [0, 1], with
P(¢) = 1, for any first-order validity ¢ ;

P(p V) =P(¢) +P(y), whenever E —(¢p A ¢) .

Question: Given a probability IP : 82 — [0, 1], is there a natural extension of IP
to all of Sp?



Question: Given a probability IP : 52 — [0, 1], is there a natural extension of P
to all of ;7

If there are only finitely many constants ¢ such that ]P(R(c)) > 0, then:

P(3xR(x)) =P(\/ R(c))

ceC

What about in the case where the size of C is infinite?



Consider a simple first-order arithmetical language £, with a constant n for
each n€ ZT ={1,2,3...}. Let R(x) be a one-place predicate. Define a
probability function IP : 82 — [0, 1] on the quantifier-free sentences so that:

P(R(n)) = 27("*Y forallne N ;

P(Aj<k R(ni)) = TLi<k P(R(nj)) .

In this case we should expect:

P(3xR(x)) = i

n=2

N
N



Let us assume in what follows that we have a countably infinite set of
constant symbols.



A probability P : Sy — [0, 1] satisfies the
with one free variable ¢(x):

if for all formulas

n

P(Ix¢(x)) = sup {]P(\/ ¢(ci)) |er,....ca€C},
i=1
or equivalently,
P(Vxgp(x)) = inf{P(/\ ¢(c)) |ct,....cn €C}.
i=1

Given P’ : 82 — [0, 1], there is exactly one extension IP of IP’ to all of Sy that
satisfies the Gaifman condition.



Given P : 82 — [0,1], there is extension IP of P’ to all of Sy that
satisfies the Gaifman condition.

Suppose we have IP; and IP; that agree on all of Sg. We show by induction on
quantifier complexity that they agree on all ¢ € S;. Suppose the P;’s agree all
I, sentences. Let ¢ a X,41 sentence. We have ¢ = 3X¢(X) where (X) is

I1,. Now, since both satisfy the Gaifman condition, we have

]P,((P) :nlianJi( \/ 1/](Ck1,...,ckm)).
ki,..., km<n
Each ¢(cy,, ..., ck,,) is a I1, sentence. Since IT, sentences are closed under
disjunctions, each such \/; . _,(ck,, ..., Ck, ) is also a IT, sentence, and by
inductive hypothesis IP; and IP» must agree on it. This uniquely determines the
limit above, and so the IP;'s must agree on ¢. The same argument works for

11,41 sentences, using the closure of £, sentences under conjunctions.



Given P’ : 8% — [0,1], exactly one extension IP of P’ to all of S/ that

satisfies the Gaifman condition.

Consider the space Mod,, of all countable models with a fixed countable
domain (take as domain set of constants C). As in propositional case, let

[#] A {M=(C,Z): M E ¢} for each ¢ € S2. This defines a Boolean
algebra By (hence a ring) in the obvious way, and we can define a measure
#([¢l) = P(¢), which can be canonically uniquely extended (by Carathéodory
again) to a (countably additive) measure p* on the full o-algebra o(By) (NB.
we use compactness!). Lastly, [3x¢(x)] = Ucecl@(c)]. so all sets of this form
are in the o-algebra. If we define P* (Ix¢(x)) A w* ([Bxe(x)]), then
countable additivity guarantees the Gaifman condition.



We have built a measure p on the space of countable models.

Mod,, is the space of countable structures {91 an L-model | dom(9M) = w}
with the topology generated by opens

[£R(3)] := {M € Mody, | M F £R(3)} with a€ w<¥

This is a Polish space: it is homeomorphic to the Cantor space (2¢, O) with O
generated by cylinder sets.



The same is true in the propositional case. if we take the space (V, O) with O
the topology generated by [A;<, £pi] = {v e V|vE Aic, £pi}.

In both cases, we can treat probability functions on our language £ as
probability measures on the standard Borel space Mod,,.

In this sense we can get all the standard Borel measures: and we already have
this with measures on propositional languages with countably many atomic
propositions.



Given a probability measure IP on £, we can see it as

A measure on the Lindenbaum-Tarski algebra £/ = (the algebra of

equivalence classes of formulas modulo logical equivalence), where we let

P*([g]) := P(p)

The induced countably additive measure y on the space of models
(/valuations), which satisfies:

p{veVivi=g}) =P(e)

One should be careful about treating these as the same thing!



One important difference:
Consider a probability measure IP on an infinite (countable) propositional
language. The measure p induced by IP on Mod(L) is countably additive.

...but he measure IP* on the Lindenbaum-Tarski algebra always fails to be
countably additive [Amer, 1985] and even badly so [Seidenfeld].



Takeway:
We can translate between the logical and measure-theoretic perspective
without losing anything essential. (There are however some subtle points to
take into consideration, such as the issue of o-additivity.)

Now: when can logic and probability genuinely illuminate one another?

From logic to probability and back: the case of random structures.



What is a typical property of a graph?

Let G, the set of all (labelled) graphs on n vertices.

For a well-defined graph property F, define

~ {G €G,|G has F}|
|Gl

pn(F) :

When does P(F) = limp_y00 pn(F) exist? What proportion of finite graphs
has property P (asymptotically)?



Consider various properties for F:
G has a complete subgraph of size m: limp_c0 pn(F) = 1.
G is planar: limp_e0 pn(F) = 0.
G has an odd number of vertices: no asymptotic probability.

Which properties have a limiting probability? Which ones are typical, in the

sense of occurring almost surely?



Probabilities on First Order Formulas

0-1 law.

Let ¢ a FOL sentence. Define

GeG,|GF
Pn(q’) = |{ n| Q}l
|Gl

All first-order properties (1) have a limiting probability and (2) are either
typical or atypical!

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probabilities on rich languages, random structures and 0-1 laws
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Probabilities on First Order Formulas

Alice's Restaurant Property

You can get anything you want at Alice's Restaurant.

Given X = {x1,...xx} and Y = {y1,..., ym} we say z as above is a witness
for X and Y: we write W(z, X, Y).

Uniqueness: the AFP gives a winning strategy for Duplicator in EF,,.

Existence?
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Take IN as vertex set, and for each (n, m) € IN? with n # m, toss a fair coin to
decide if R(n, m). This random process generates a countable random
structure (IN, R). Now:

The Random graph. The procedure above almost surely generates a graph
satisfying the Alice's Restaurant Property.

So by drawing edges independently at random with probability 1/2, we
almost-surely generate the unique countable graph satisfying ARP. This is the
Random/Rado graph ‘.



Fix A= {a1,...,ax} and B = {by, ..., by} two disjoint sets of vertices. List all
vertices (V) ncw not belonging to either set. For any such vy,
P(W(A, B,v)) = 1/2k*™_ The probability that no other vertex is a witness is

P(()~W(va, A B)) = Jgan(n —W(vp, A, B))

= lim (1 —1/2ktmn =

n—o00

(edges are drawn independently). Now P(—ARP) is at most

P( U (N-W(vn A B)))

ABeS n

where S ranges over disjoints pairs of finite sets of vertices. This is a countable
union of probability 0 events, so it has probability 0.



Probabilities on First Order Formulas

Asymptotic probabilities and random structures

Now for the 0-1 law. Let a ., denote the sentence

Vxl,...xk,yl,...,ym( /\ Xi #yj — EIzW(z,xl,...xk,yl,...,ym))
i<k, j<m

Let Tg:={apm|n m< w}.

A sentence ¢ holds almost surely—in almost all finite graphs—if and only if it
holds on the random graph.

Cn(Tg) = Th(R) = {¢ € Sent | nIi_r)noop,,(q)) =1}
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By our back-and-forth argument, Tg is w-categorical, and has no finite models:
so it is complete. It has R as a model, and so Tg - ¢ is equivalent to ¢
holding on the random graph. Next, we show that Tg - ¢ entails

limp—eo pn(@) = 1. Tg F ¢ means that there is a finite set I' of extension
axioms «ay n, such that I' = @. It is enough to show that each wy ,, holds
(asymptotically) almost surely.

As before, for a finite graph G of size n and two disjoint subsets A, B C G of

respective sizes k and m, the probability that no v € G\ (AU B) is a witness is
(1 _ 1/2k+m)n—k—m_



For sufficiently large n, ay , fails with probability at most

()5

and indeed an cruder upper bound for lim,_e0 pn(—k m) is
lim nktm(1 —1/2ktmyn—k=m _ o
n—oo
Now the expression is of the form n* x B"~% with &, B constants and 0 < 8 < 1:

the term "% going to 0 exponentially, while n* has only polynomial growth.

So it goes to 0, and so we conclude limp_00 pn(—0k ;) = 0.



Lastly, we show that limy_co pn(@) = 1 entails Tg - ¢. Suppose Tg I/ ¢. By
completeness of T, we have Tg = —¢. By the previous argument, this means

that limp_—0 pn(—¢) = 1, and so ¢ cannot hold in almost all finite graphs.



Probabilities on First Order Formulas

Consequences

Trakhtenbrot:

sure properties over finite structures are undecidable

The theory Tg := {&nm|n m < w} is w-categorical and so it is complete.
The axiomatisation is also recursive. Consequence:

sure properties over finite graphs are decidable! (in fact, PSPACE)
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We built the random graph by randomly (i.i.d) deciding on each potential edge
(a, b) € IN?. But the infinite random graph is easy to get.
The brute-force construction: starting from the empty graph, build an infinite
increasing sequence of graphs Gg C ...G, C Gp41 C ... as follows:
Given G, = (Vp, Ep), let Gpp1 = (Vpy1, Ent1) where

Vn+1 =V,U {VA ‘ AC Vn},

En+1 N V,? = Ep,

forall AC V,, we let Epp1(va, x) & x€A

At each stage, for each subset of vertices, we add a vertex that has precisely
this subset as neighbours.

By design, is an infinite countable graph satisfying ARP.



Probabilities on First Order Formulas

Set-theoretic construction

Why? Foundation! Let ay,...apn, b1,..., bm € M with the a's and b's pairwise
distinct. Consider the set

zZ:= {a1, -~y dny {blu s bm}}

Note that R(z, b;) would mean that there are €-cycles in M.
(M, R) is thus a countable graph satisfying ARP, and so (M, €) = fR.
(what if we take non well-founded set theory, e.g. ZFA?)

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probabilities on rich languages, random structures and 0-1 laws
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Probabilities on First Order Formulas

Number-theoretic construction (Payley)

Let {u1,...,ux} and {vi, .., vim} disjoint sets in V. Pick some b;'s st.
—3x, x% = b; (mod v;).
By the Chinese Remainder Theorem, there is an x € IN such that
x =1 (mod 4)
x =1(mod u;) fori <k
x = b;j(mod v;) fori <m
and any number in the progression (x + nd), (d = 4uj...ugvi...vp) is also a
solution to the above congruences. By Dirichlet's Theorem on arithmetic

progressions, there exists a prime p’ of this form, so that p’ = x satisfies the
above. Then p' is a witness for {uy, ..., ux} and {v1, .., vim}, as desired.
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What is special about the random graph?
Uniqueness (back-and-forth)
Almost-sure theory
Universality
Symmetry (ultra-homogeneous)

Its relation to the class of finite graphs: a kind of limit, encoding
probabilistic information.



This construction (and the 0-1 law) generalises to finite relational signatures:
we can carry over the same general model-theoretic construction for the class

of all finite models (via Fraissé limits)



Random structures offer fertile ground for exploring different notions of
typicality:
Asymptotic over finite structures
Measure theoretic
Probability space (Mod,,, F, #) with F the Borel algebra of the underlying
topology. The Lebesgue measure concentrates on the isomorphism class of

the random graph (assigns it measure one). [Symmetric probabilistic
constructions: 4 a Se-invariant measure, i.e for every Borel set A and

permutation g € Seo, (A) = u(gA)].
Topological:
Seeing Mod,, as a topological space, the isomorphism class of the random
graph forms a co-meagre set (topologically large).
But these notions of typicality need not always agree with one another. How to
they relate? By virtue of which property of a theory or class of structures?



Random structures lie at the cusp of probability and logic, bridging together
model theory and combinatorics. They can be put to use to:

establish asymptotic 0-1 laws for logics over classes of finite structures
display infinitary structures ‘approximating’ finite ones

investigate the connection between symmetries of a structure and

probabilistic models

explore the relationship between topological and measure-theoretic notions

of typicality.



Tomorrow:

Probabilistic grammars and probabilistic programs
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