Logic and Probability

Probabilities on rich languages, random structures and 0-1 laws

Thomas Icard & Krzysztof Mierzewski

August 10, 2022

Measure theory vs. probabilities over a language

Probability spaces in the measure theoretic sense are structures $(\Omega, \mathcal{E}, \mu)$ with

- (Ω, \mathcal{E}) a measurable space, i.e. we have
 - Ω is an arbitrary set
 - \mathcal{E} is a σ -algebra over Ω , i.e., a subset of $\wp(\Omega)$ closed under complement and countable unions.
- $\mu:\mathfrak{E} o [\mathtt{0},\mathtt{1}]$ a countably additive measure, i.e.
 - $\mu(\Omega) = 1$;
 - $\mu(\bigcup_{i\in\mathbb{N}}) = \sum_{n=0}^{\infty} \mu(E_i)$, when $E_i \cap E_j = \emptyset$ for $i \neq j$.

How do these relate to probabilities defined directly on logical languages?

Everyone says "consider the probability that $X \geq 0$," where X is a random variable, and only the pedant insists on replacing this phrase by "consider the measure of the set $\{\omega \in \Omega : X(\omega) \geq 0\}$." Indeed, when a process is specified, only the distribution is of interest, not a particular underlying sample space. In other words, practice shows that it is more natural in many situations to assign probabilities to *statements* rather than *sets*.

—Scott & Krauss 1966

Suppose we have a countable propositional language \mathcal{L} :

$$\varphi ::= A_1 \mid A_2 \mid \ldots \mid \varphi \wedge \varphi \mid \neg \varphi$$

We can define a probability $\mathbb{P}:\mathcal{L} \to [0,1]$ directly on \mathcal{L} :

- $\mathbb{P}(\varphi) = 1$, for any tautology φ ;
- $\mathbb{P}(\varphi \lor \psi) = \mathbb{P}(\varphi) + \mathbb{P}(\psi)$, whenever $\vDash \neg(\varphi \land \psi)$.

Equivalent set of requirements:

- $\mathbb{P}(\varphi) = 1$, for any tautology ;
- $\mathbb{P}(\varphi) \leq \mathbb{P}(\psi)$ whenever $\vDash \varphi \rightarrow \psi$;
- $\mathbb{P}(\varphi) = \mathbb{P}(\varphi \wedge \psi) + \mathbb{P}(\varphi \wedge \neg \psi)$.

Some measure-theoretic notions

A family of subsets $\mathcal{R} \subseteq \wp(\Omega)$ forms a ring if

- $\emptyset \in \mathcal{R}$
- If $A, B \in \mathcal{R}$ then $A \cup \overline{B} \in \mathcal{R}$ and $A \setminus \overline{B} \in \mathcal{R}$

A measure μ is finite if $\mu(\Omega)$ is finite.

Given a family of subsets $\mathcal{F} \subseteq \wp(\Omega)$, let $\sigma(\mathcal{F})$ the smallest σ -algebra containing \mathcal{F} .

Theorem (Carathéodory's Extension Theorem)

Let μ be a measure on a ring (Ω, \mathcal{R}) . If μ is a finite measure that is σ -additive on \mathcal{R} , then there is a unique σ -additive measure μ' on $\sigma(\mathcal{R})$ that extends μ .

From Probabilities on Languages to Spaces

- Let $\mathcal V$ be the set of all valuations in language $\mathcal L$.
- Let $\mathcal{O} \stackrel{\triangle}{=} \{ \llbracket \varphi \rrbracket : \varphi \in \mathcal{L} \}$, where $\llbracket \varphi \rrbracket = \{ v : v \vDash \varphi \}$. Then \mathcal{O} forms a Boolean algebra, hence also a ring. Moreover, any probability measure \mathbb{P} generates a measure that is σ -additive on \mathcal{O} . By the Carathéodory Extension Theorem, it uniquely extends to a σ -additive measure on the smallest σ -algebra extending \mathcal{O} [this uses Compactness!].
- In fact, $\mathcal O$ forms a clopen basis of a topology on $\mathcal V$, which is homeomorphic to standard Cantor space (coin-tossing space: space of infinite binary sequences with clopen basis of cylinder sets). The σ -algebra generated by $\mathcal O$ is the standard Borel σ -algebra on Cantor space.
- In this way we can show that all functions $\mathbb{P}:\mathcal{L}\to[0,1]$ can define all the usual probability measures (Borel measures).

Let $\mathcal L$ be a first-order logical language, given by:

- ullet a set ${\cal V}$ of individual variables ;
- a set C of individual constants ;
- lacksquare a set ${\mathcal P}$ of predicate variables .

Terms and formulas of \mathcal{L} are defined as usual:

$$\varphi ::= R(t_1,\ldots,t_n) \mid \varphi \wedge \varphi \mid \neg \varphi \mid \exists x \varphi \mid \forall x \varphi$$

Define $\mathcal{S}_{\mathcal{L}}$ to be the set of sentences of \mathcal{L} , i.e., formulas with no free variables, and $\mathcal{S}_{\mathcal{L}}^0$ to be the set of quantifier-free sentences of \mathcal{L} .

A probability on $\mathcal{L}'\subseteq\mathcal{S}_{\mathcal{L}}$ is a function $\mathbb{P}:\mathcal{L}' o[0,1]$, with

- ullet $\mathbb{P}(arphi)=1$, for any first-order validity arphi ;
- $\mathbb{P}(\varphi \lor \psi) = \mathbb{P}(\varphi) + \mathbb{P}(\psi)$, whenever $\vDash \neg(\varphi \land \psi)$.

Question: Given a probability $\mathbb{P}:\mathcal{S}^0_{\mathcal{L}} \to [0,1]$, is there a natural extension of \mathbb{P} to all of $\mathcal{S}_{\mathcal{L}}$?

Question: Given a probability $\mathbb{P}:\mathcal{S}^0_{\mathcal{L}}\to [0,1]$, is there a natural extension of \mathbb{P} to all of $\mathcal{S}_{\mathcal{L}}$?

If there are only finitely many constants c such that $\mathbb{P}(R(c)) > 0$, then:

$$\mathbb{P}\big(\exists x R(x)\big) = \mathbb{P}\big(\bigvee_{c \in \mathcal{C}} R(c)\big)$$

What about in the case where the size of C is infinite?

Example

Consider a simple first-order arithmetical language \mathcal{L} , with a constant \mathbf{n} for each $n \in \mathbb{Z}^+ = \{1, 2, 3 \dots\}$. Let R(x) be a one-place predicate. Define a probability function $\mathbb{P}: \mathcal{S}^0_{\mathcal{L}} \to [0, 1]$ on the quantifier-free sentences so that:

$${lue P}ig(R({f n})ig) = 2^{-(n+1)}, ext{ for all } n \in {\Bbb N} ;$$

•
$$\mathbb{P}(\bigwedge_{i \leq k} R(\mathbf{n}_i)) = \prod_{i \leq k} \mathbb{P}(R(\mathbf{n}_i))$$
.

In this case we should expect:

$$\mathbb{P}\big(\exists x R(x)\big) = \sum_{n=2}^{\infty} \frac{1}{2^n} = \frac{1}{2}.$$

Definition (Gaifman's Condition)

A probability $\mathbb{P}: \mathcal{S}_{\mathcal{L}} \to [0,1]$ satisfies the Gaifman condition if for all formulas with one free variable $\varphi(x)$:

$$\mathbb{P}\big(\exists x \varphi(x)\big) \ = \ \sup\big\{\mathbb{P}\big(\bigvee_{i=1}^n \varphi(c_i)\big) \mid c_1, \ldots, c_n \in \mathcal{C}\big\} \ ,$$

or equivalently,

$$\mathbb{P}\big(\forall x \varphi(x)\big) \ = \ \inf \big\{ \mathbb{P}\big(\bigwedge_{i=1}^n \varphi(c_i)\big) \mid c_1, \ldots, c_n \in \mathcal{C} \big\} \ .$$

Theorem (Gaifman 1964)

Given $\mathbb{P}':\mathcal{S}^0_{\mathcal{L}}\to [0,1]$, there is exactly one extension \mathbb{P} of \mathbb{P}' to all of $\mathcal{S}_{\mathcal{L}}$ that satisfies the Gaifman condition.

Theorem (Gaifman 1964)

Given $\mathbb{P}':\mathcal{S}^0_{\mathcal{L}}\to [0,1]$, there is exactly one extension \mathbb{P} of \mathbb{P}' to all of $\mathcal{S}_{\mathcal{L}}$ that satisfies the Gaifman condition.

Proof of Uniqueness.

Suppose we have \mathbb{P}_1 and \mathbb{P}_2 that agree on all of $\mathcal{S}^0_{\mathcal{L}}$. We show by induction on quantifier complexity that they agree on all $\varphi \in \mathcal{S}_{\mathcal{L}}$. Suppose the \mathbb{P}_i 's agree all Π_n sentences. Let φ a Σ_{n+1} sentence. We have $\varphi = \exists \vec{x} \psi(\vec{x})$ where $\psi(\vec{x})$ is Π_n . Now, since both satisfy the Gaifman condition, we have

$$\mathbb{P}_{i}(\varphi) = \lim_{n \to \infty} \mathbb{P}_{i} \Big(\bigvee_{\substack{k_{1}, \dots, k_{m} < n}} \psi(\mathbf{c}_{\mathbf{k}_{1}}, \dots, \mathbf{c}_{\mathbf{k}_{m}}) \Big).$$

Each $\psi(\mathbf{c_{k_1}},...,\mathbf{c_{k_m}})$ is a Π_n sentence. Since Π_n sentences are closed under disjunctions, each such $\bigvee_{k_1,...,k_m< n} \psi(\mathbf{c_{k_1}},...,\mathbf{c_{k_m}})$ is also a Π_n sentence, and by inductive hypothesis \mathbb{P}_1 and \mathbb{P}_2 must agree on it. This uniquely determines the limit above, and so the \mathbb{P}_i 's must agree on φ . The same argument works for Π_{n+1} sentences, using the closure of Σ_n sentences under conjunctions.

Theorem (Gaifman 1964)

Given $\mathbb{P}': \mathcal{S}^0_{\mathcal{L}} \to [0,1]$, there is exactly one extension \mathbb{P} of \mathbb{P}' to all of $\mathcal{S}_{\mathcal{L}}$ that satisfies the Gaifman condition.

Proof Sketch of Existence.

Consider the space $\operatorname{Mod}_{\omega}$ of all countable models with a fixed countable domain (take as domain set of constants $\mathcal C$). As in propositional case, let $\llbracket \varphi \rrbracket \stackrel{\Delta}{=} \{ \mathcal M = (\mathcal C, \mathcal I) : \mathcal M \vDash \varphi \}$ for each $\varphi \in \mathcal S^0_{\mathcal L}$. This defines a Boolean algebra $\mathcal B_0$ (hence a ring) in the obvious way, and we can define a measure $\mu(\llbracket \varphi \rrbracket) = \mathbb P(\varphi)$, which can be canonically uniquely extended (by Carathéodory again) to a (countably additive) measure μ^* on the full σ -algebra $\sigma(\mathcal B_0)$ (NB. we use compactness!). Lastly, $\llbracket \exists x \varphi(x) \rrbracket = \bigcup_{c \in \mathcal C} \llbracket \varphi(c) \rrbracket$, so all sets of this form are in the σ -algebra. If we define $\mathbb P^* \bigl(\exists x \varphi(x) \bigr) \stackrel{\Delta}{=} \mu^* \bigl(\llbracket \exists x \varphi(x) \rrbracket \bigr)$, then countable additivity guarantees the Gaifman condition.

The space of models

We have built a measure μ on the space of countable models.

 Mod_ω is the space of countable structures $\{\mathfrak{M} \text{ an } \mathcal{L}\text{-model} \,|\, \mathit{dom}(\mathfrak{M}) = \omega\}$ with the topology generated by opens

$$\llbracket \pm R(\bar{a})
rbracket := \{ \mathcal{M} \in \mathsf{Mod}_{\omega} \, | \, \mathcal{M} \vDash \pm R(\bar{a}) \} \ \ \text{with} \ \ \bar{a} \in \omega^{<\omega}$$

This is a Polish space: it is homeomorphic to the Cantor space $(2^{\omega}, \mathcal{O})$ with \mathcal{O} generated by cylinder sets.

The same is true in the propositional case. if we take the space $(\mathcal{V}, \mathcal{O})$ with \mathcal{O} the topology generated by $[\![\bigwedge_{i \leq n} \pm p_i]\!] = \{ v \in \mathcal{V} \mid v \models \bigwedge_{i \leq n} \pm p_i \}.$

In both cases, we can treat probability functions on our language \mathcal{L} as probability measures on the standard Borel space Mod_ω .

In this sense we can get all the standard Borel measures: and we already have this with measures on propositional languages with countably many atomic propositions.

From Probabilities on Languages to Spaces

Given a probability measure \mathbb{P} on \mathcal{L} , we can see it as

• A measure on the Lindenbaum-Tarski algebra \mathcal{L}/\equiv (the algebra of equivalence classes of formulas modulo logical equivalence), where we let

$$\mathbb{P}^*([\varphi]) := \mathbb{P}(\varphi)$$

• The induced countably additive measure μ on the space of models (/valuations), which satisfies:

$$\mu(\{v \in \mathcal{V} \mid v \models \varphi\}) = \mathbb{P}(\varphi)$$

One should be careful about treating these as the same thing!

From Probabilities on Languages to Spaces

One important difference:

- Consider a probability measure $\mathbb P$ on an infinite (countable) propositional language. The measure μ induced by $\mathbb P$ on $\mathsf{Mod}(\mathcal L)$ is countably additive.
- ...but he measure \mathbb{P}^* on the Lindenbaum-Tarski algebra always fails to be countably additive [Amer, 1985] and even badly so [Seidenfeld].

Takeway:

We can translate between the logical and measure-theoretic perspective without losing anything essential. (There are however some subtle points to take into consideration, such as the issue of σ -additivity.)

Now: when can logic and probability genuinely illuminate one another?

From logic to probability and back: the case of random structures.

Asymptotic probability of graph properties

What is a typical property of a graph?

- Let \mathbb{G}_n the set of all (labelled) graphs on n vertices.
- For a well-defined graph property F, define

$$p_n(F) := \frac{|\{G \in \mathbb{G}_n \mid G \text{ has } F\}|}{|\mathbb{G}_n|}$$

• When does $P(F) = \lim_{n \to \infty} p_n(F)$ exist? What proportion of finite graphs has property P (asymptotically)?

Asymptotic probability

Consider various properties for F:

- G has a complete subgraph of size m: $\lim_{n\to\infty} p_n(F) = 1$.
- G is planar: $\lim_{n\to\infty} p_n(F) = 0$.
- G has an odd number of vertices: no asymptotic probability.

Which properties have a limiting probability? Which ones are *typical*, in the sense of occurring almost surely?

0-1 law.

Let φ a FOL sentence. Define

$$p_n(\varphi) := \frac{|\{G \in \mathbb{G}_n \mid G \vDash \varphi\}|}{|\mathbb{G}_n|}$$

0-1 law. Let φ a FOL sentence. Then $\lim_{n\to\infty} p_n(\varphi)$ always exists, and takes a value in $\{0,1\}$.

All first-order properties (1) have a limiting probability and (2) are either typical or atypical!

Alice's Restaurant Property

You can get anything you want at Alice's Restaurant.

$$\forall x_1, \dots x_k, y_1, \dots, y_m$$

$$\left(\bigwedge_{i \leq k, j \leq m} x_i \neq y_j \to \exists z \left(\bigwedge_{i \leq k} z \neq x_i \land R(z, x_i) \land \bigwedge_{i \leq m} z \neq y_i \land \neg R(z, y_i) \right) \right)$$

Given $X = \{x_1, ..., x_k\}$ and $Y = \{y_1, ..., y_m\}$ we say z as above is a witness for X and Y: we write W(z, X, Y).

There is a unique (up to isomorphism) countably infinite graph with the ARP.

Uniqueness: the AFP gives a winning strategy for Duplicator in EF_ω . Existence?

Probabilistic construction

Take $\mathbb N$ as vertex set, and for each $(n,m)\in\mathbb N^2$ with $n\neq m$, toss a fair coin to decide if R(n,m). This random process generates a countable random structure $(\mathbb N,R)$. Now:

The Random graph. The procedure above almost surely generates a graph satisfying the Alice's Restaurant Property.

So by drawing edges independently at random with probability 1/2, we almost-surely generate the *unique* countable graph satisfying ARP. This is the **Random/Rado graph** \Re .

Probabilistic construction

Proof.

Fix $A = \{a_1, ..., a_k\}$ and $B = \{b_1, ..., b_m\}$ two disjoint sets of vertices. List all vertices $\langle v_n \rangle_{n \in \omega}$ not belonging to either set. For any such v_n ,

 $P(W(A, B, v)) = 1/2^{k+m}$. The probability that no other vertex is a witness is

$$P\left(\bigcap_{n} \neg W(v_{n}, A, B)\right) = \lim_{n \to \infty} P\left(\bigcap_{i \le n} \neg W(v_{n}, A, B)\right)$$
$$= \lim_{n \to \infty} (1 - 1/2^{k+m})^{n} = 0$$

(edges are drawn independently). Now $P(\neg ARP)$ is at most

$$P\Big(\bigcup_{A,B\in S}\Big(\bigcap_{n}\neg W(v_{n},A,B)\Big)\Big)$$

where S ranges over disjoints pairs of finite sets of vertices. This is a *countable* union of probability 0 events, so it has probability 0.

Asymptotic probabilities and random structures

Now for the 0-1 law. Let $\alpha_{k,m}$ denote the sentence

$$\forall x_1, \ldots x_k, y_1, \ldots, y_m \Big(\bigwedge_{i \leq k, j \leq m} x_i \neq y_j \rightarrow \exists z \, W(z, x_1, \ldots x_k, y_1, \ldots, y_m) \Big)$$

Let $T_R := \{ \alpha_{n,m} \mid n, m < \omega \}.$

Thm (Glebskii et al. [1969], Fagin [1976]). Let φ a first-order sentence. The following are equivalent:

- $\lim_{n\to\infty} p_n(\varphi) = 1$
- φ holds on the random graph;
- $T_R \vdash \varphi$.

A sentence φ holds almost surely—in almost all finite graphs—if and only if it holds on the random graph.

$$Cn(T_R) = Th(\mathfrak{R}) = \{ \varphi \in Sent \mid \lim_{n \to \infty} p_n(\varphi) = 1 \}$$

The 0-1 law

Proof.

By our back-and-forth argument, T_R is ω -categorical, and has no finite models: so it is complete. It has $\mathfrak R$ as a model, and so $T_R \vdash \varphi$ is equivalent to φ holding on the random graph. Next, we show that $T_R \vdash \varphi$ entails $\lim_{n \to \infty} p_n(\varphi) = 1$. $T_R \vdash \varphi$ means that there is a finite set Γ of extension axioms $\alpha_{k,m}$ such that $\Gamma \vdash \varphi$. It is enough to show that each $\alpha_{k,m}$ holds (asymptotically) almost surely.

As before, for a finite graph G of size n and two disjoint subsets $A, B \subseteq G$ of respective sizes k and m, the probability that $no \ v \in G \setminus (A \cup B)$ is a witness is $(1-1/2^{k+m})^{n-k-m}$.

The 0-1 law

Proof.

For sufficiently large n, $\alpha_{k,m}$ fails with probability at most

$$\binom{n}{k} \binom{n-k}{m} (1-1/2^{k+m})^{n-k-m}$$

and indeed an cruder upper bound for $\lim_{n\to\infty} p_n(\neg \alpha_{k,m})$ is

$$\lim_{n \to \infty} n^{k+m} (1 - 1/2^{k+m})^{n-k-m} = 0,$$

Now the expression is of the form $n^{\alpha} \times \beta^{n-\alpha}$ with α, β constants and $0 < \beta < 1$: the term $\beta^{n-\alpha}$ going to 0 exponentially, while n^{α} has only polynomial growth. So it goes to 0, and so we conclude $\lim_{n\to\infty} p_n(\neg \alpha_{k,m}) = 0$.

The 0-1 law

Proof.

Lastly, we show that $\lim_{n\to\infty} p_n(\varphi)=1$ entails $T_R \vdash \varphi$. Suppose $T_R \not\vdash \varphi$. By completeness of T, we have $T_R \vdash \neg \varphi$. By the previous argument, this means that $\lim_{n\to\infty} p_n(\neg \varphi)=1$, and so φ cannot hold in almost all finite graphs. \square

Consequences

Thm Let φ a first-order sentence. The following are equivalent

- $\lim_{n\to\infty} p_n(\varphi) = 1$
- φ holds on the random graph;
- $T_R \vdash \varphi$.

Trakhtenbrot:

sure properties over finite structures are undecidable

The theory $T_R := \{\alpha_{n,m} \mid n,m < \omega\}$ is ω -categorical and so it is complete.

The axiomatisation is also recursive. Consequence:

almost sure properties over finite graphs are decidable! (in fact, PSPACE)

Bonus: constructing the Rado graph

We built the random graph by randomly (i.i.d) deciding on each potential edge $(a, b) \in \mathbb{N}^2$. But the infinite random graph is easy to get.

The brute-force construction: starting from the empty graph, build an infinite increasing sequence of graphs $G_0 \subseteq ...G_n \subseteq G_{n+1} \subseteq ...$ as follows:

Given
$$G_n = (V_n, E_n)$$
, let $G_{n+1} = (V_{n+1}, E_{n+1})$ where

- $V_{n+1} := V_n \cup \{v_A \mid A \subseteq V_n\},$
- $E_{n+1} \cap V_n^2 = E_n$,
- for all $A \subseteq V_n$, we let $E_{n+1}(v_A, x) \Leftrightarrow x \in A$

At each stage, for each subset of vertices, we add a vertex that has precisely this subset as neighbours.

By design, $G_{\omega} := \bigcup_{n \in \mathbb{N}} G_n$ is an infinite countable graph satisfying ARP.

Set-theoretic construction

- Take (M, \in) , a countable model of ZFC.
- For $a, b \in M$, define R(a, b) if and only if $a \in b$ or $b \in a$.
- Then (M, R) is isomorphic to the Rado graph.

Why? Foundation! Let $a_1, \ldots, a_n, b_1, \ldots, b_m \in M$ with the a's and b's pairwise distinct. Consider the set

$$z := \{a_1, ..., a_n, \{b_1, ..., b_m\}\}$$

Note that $R(z,b_i)$ would mean that there are \in -cycles in M. (M,R) is thus a countable graph satisfying ARP, and so $(M,\in)\cong\mathfrak{R}$. (what if we take non well-founded set theory, e.g. ZFA?)

Number-theoretic construction (Payley)

Let $V:=\{p\in\mathbb{P}\,|\,p\equiv 1\,(\text{mod }4)\}$, and let R(p,q) if and only if $\exists x\in\{0,...,q\},p\equiv x^2\,(\text{mod }p)$. Then $(V,R)\cong\mathfrak{R}$.

Let $\{u_1, ..., u_k\}$ and $\{v_1, ..., v_m\}$ disjoint sets in V. Pick some b_i 's st. $\neg \exists x, x^2 \equiv b_i \pmod{v_i}$.

By the Chinese Remainder Theorem, there is an $x \in \mathbb{N}$ such that

$$x \equiv 1 \pmod{4}$$

 $x \equiv 1 \pmod{u_i}$ for $i \leq k$
 $x \equiv b_i \pmod{v_i}$ for $i \leq m$

and any number in the progression $\langle x+nd\rangle_n$ $(d=4u_1...u_kv_1...v_n)$ is also a solution to the above congruences. By Dirichlet's Theorem on arithmetic progressions, there exists a *prime* p' of this form, so that p'=x satisfies the above. Then p' is a witness for $\{u_1,...,u_k\}$ and $\{v_1,...,v_m\}$, as desired.

Properties of the random graph

What is special about the random graph?

- Uniqueness (back-and-forth)
- Almost-sure theory
- Universality
- Symmetry (ultra-homogeneous)
- Its relation to the class of finite graphs: a kind of limit, encoding probabilistic information.

This construction (and the 0-1 law) generalises to finite relational signatures: we can carry over the same general model-theoretic construction for the class of all finite models (via Fraïssé limits)

Perspectives on typicality

Random structures offer fertile ground for exploring different notions of typicality:

- Asymptotic over finite structures
- Measure theoretic
 - Probability space (Mod_ω, F, µ) with F the Borel algebra of the underlying topology. The Lebesgue measure concentrates on the isomorphism class of the random graph (assigns it measure one). [Symmetric probabilistic constructions: µ a S_∞-invariant measure, i.e for every Borel set A and permutation g ∈ S_∞, µ(A) = µ(gA)].
- Topological:
 - Seeing Modω as a topological space, the isomorphism class of the random graph forms a co-meagre set (topologically large).

But these notions of typicality need not always agree with one another. How to they relate? By virtue of which property of a theory or class of structures?

Conclusion

Random structures lie at the cusp of probability and logic, bridging together model theory and combinatorics. They can be put to use to:

- establish asymptotic 0-1 laws for logics over classes of finite structures
- display infinitary structures 'approximating' finite ones
- investigate the connection between symmetries of a structure and probabilistic models
- explore the relationship between topological and measure-theoretic notions of typicality.

Tomorrow:

Probabilistic grammars and probabilistic programs