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Measure theory vs. probabilities over a language

Probability spaces in the measure theoretic sense are structures (Ω, E , µ) with

• (Ω, E) a measurable space, i.e. we have

• Ω is an arbitrary set

• E is a σ-algebra over Ω, i.e., a subset of ℘(Ω) closed under complement

and countable unions.

• µ : E→ [0, 1] a countably additive measure, i.e.

• µ(Ω) = 1 ;

• µ(
⋃

i∈N) = ∑∞
n=0 µ(Ei ), when Ei ∩ Ej = ∅ for i 6= j .

How do these relate to probabilities defined directly on logical languages?
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Everyone says “consider the probability that X ≥ 0,” where X is a random

variable, and only the pedant insists on replacing this phrase by “consider the

measure of the set {ω ∈ Ω : X (ω) ≥ 0}.” Indeed, when a process is specified,

only the distribution is of interest, not a particular underlying sample space. In

other words, practice shows that it is more natural in many situations to assign

probabilities to statements rather than sets.

—Scott & Krauss 1966
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Suppose we have a countable propositional language L:

ϕ ::= A1 | A2 | . . . | ϕ ∧ ϕ | ¬ϕ

We can define a probability P : L → [0, 1] directly on L:

• P(ϕ) = 1, for any tautology ϕ ;

• P(ϕ ∨ ψ) = P(ϕ) + P(ψ), whenever � ¬(ϕ ∧ ψ) .

Equivalent set of requirements:

• P(ϕ) = 1, for any tautology ;

• P(ϕ) ≤ P(ψ) whenever � ϕ→ ψ ;

• P(ϕ) = P(ϕ ∧ ψ) + P(ϕ ∧ ¬ψ) .
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Some measure-theoretic notions

A family of subsets R ⊆ ℘(Ω) forms a ring if

• ∅ ∈ R
• If A,B ∈ R then A∪ B ∈ R and A \ B ∈ R

A measure µ is finite if µ(Ω) is finite.

Given a family of subsets F ⊆ ℘(Ω), let σ(F ) the smallest σ-algebra

containing F .

Theorem (Carathéodory’s Extension Theorem)

Let µ be a measure on a ring (Ω,R). If µ is a finite measure that is σ-additive

on R, then there is a unique σ-additive measure µ′ on σ(R) that extends µ.
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From Probabilities on Languages to Spaces

• Let V be the set of all valuations in language L.

• Let O ∆
= {[[ϕ]] : ϕ ∈ L}, where [[ϕ]] = {v : v � ϕ}. Then O forms a

Boolean algebra, hence also a ring. Moreover, any probability measure P

generates a measure that is σ-additive on O. By the Carathéodory

Extension Theorem, it uniquely extends to a σ-additive measure on the

smallest σ-algebra extending O [this uses Compactness!].

• In fact, O forms a clopen basis of a topology on V , which is

homeomorphic to standard Cantor space (coin-tossing space: space of

infinite binary sequences with clopen basis of cylinder sets). The σ-algebra

generated by O is the standard Borel σ-algebra on Cantor space.

• In this way we can show that all functions P : L → [0, 1] can define all the

usual probability measures (Borel measures).
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Probabilities on propositional calculi are general, but not particularly

expressive.
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Probabilities on First Order Formulas

Let L be a first-order logical language, given by:

• a set V of individual variables ;

• a set C of individual constants ;

• a set P of predicate variables .

Terms and formulas of L are defined as usual:

ϕ ::= R(t1, . . . , tn) | ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∀xϕ
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Probabilities on First Order Formulas

Define SL to be the set of sentences of L, i.e., formulas with no free variables,

and S0L to be the set of quantifier-free sentences of L.

A probability on L′ ⊆ SL is a function P : L′ → [0, 1], with

• P(ϕ) = 1, for any first-order validity ϕ ;

• P(ϕ ∨ ψ) = P(ϕ) + P(ψ), whenever � ¬(ϕ ∧ ψ) .

Question: Given a probability P : S0L → [0, 1], is there a natural extension of P

to all of SL?
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Probabilities on First Order Formulas

Question: Given a probability P : S0L → [0, 1], is there a natural extension of P

to all of SL?

If there are only finitely many constants c such that P
(
R(c)

)
> 0, then:

P
(
∃xR(x)

)
= P

(∨
c∈C

R(c)
)

What about in the case where the size of C is infinite?
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Probabilities on First Order Formulas

Example

Consider a simple first-order arithmetical language L, with a constant n for

each n ∈ Z+ = {1, 2, 3 . . . }. Let R(x) be a one-place predicate. Define a

probability function P : S0L → [0, 1] on the quantifier-free sentences so that:

• P
(
R(n)

)
= 2−(n+1), for all n ∈N ;

• P
(∧

i≤k R(ni )
)
= ∏i≤k P

(
R(ni )

)
.

In this case we should expect:

P
(
∃xR(x)

)
=

∞

∑
n=2

1

2n
=

1

2
.
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Probabilities on First Order Formulas

Let us assume in what follows that we have a countably infinite set of

constant symbols.
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Probabilities on First Order Formulas

Definition (Gaifman’s Condition)

A probability P : SL → [0, 1] satisfies the Gaifman condition if for all formulas

with one free variable ϕ(x):

P
(
∃xϕ(x)

)
= sup {P

( n∨
i=1

ϕ(ci )
)
| c1, . . . , cn ∈ C} ,

or equivalently,

P
(
∀xϕ(x)

)
= inf {P

( n∧
i=1

ϕ(ci )
)
| c1, . . . , cn ∈ C} .

Theorem (Gaifman 1964)

Given P′ : S0L → [0, 1], there is exactly one extension P of P′ to all of SL that

satisfies the Gaifman condition.
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Probabilities on First Order Formulas

Theorem (Gaifman 1964)

Given P′ : S0L → [0, 1], there is exactly one extension P of P′ to all of SL that

satisfies the Gaifman condition.

Proof of Uniqueness.

Suppose we have P1 and P2 that agree on all of S0L. We show by induction on

quantifier complexity that they agree on all ϕ ∈ SL. Suppose the Pi ’s agree all

Πn sentences. Let ϕ a Σn+1 sentence. We have ϕ = ∃~xψ(~x) where ψ(~x) is

Πn. Now, since both satisfy the Gaifman condition, we have

Pi (ϕ) = lim
n→∞

Pi

( ∨
k1,...,km<n

ψ(ck1 , ..., ckm )
)
.

Each ψ(ck1 , ..., ckm ) is a Πn sentence. Since Πn sentences are closed under

disjunctions, each such
∨
k1,...,km<n ψ(ck1 , ..., ckm ) is also a Πn sentence, and by

inductive hypothesis P1 and P2 must agree on it. This uniquely determines the

limit above, and so the Pi ’s must agree on ϕ. The same argument works for

Πn+1 sentences, using the closure of Σn sentences under conjunctions.
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Probabilities on First Order Formulas

Theorem (Gaifman 1964)

Given P′ : S0L → [0, 1], there is exactly one extension P of P′ to all of SL that

satisfies the Gaifman condition.

Proof Sketch of Existence.

Consider the space Modω of all countable models with a fixed countable

domain (take as domain set of constants C). As in propositional case, let

[[ϕ]]
∆
= {M = (C, I) :M � ϕ} for each ϕ ∈ S0L. This defines a Boolean

algebra B0 (hence a ring) in the obvious way, and we can define a measure

µ([[ϕ]]) = P(ϕ), which can be canonically uniquely extended (by Carathéodory

again) to a (countably additive) measure µ∗ on the full σ-algebra σ(B0) (NB.

we use compactness!). Lastly, [[∃xϕ(x)]] =
⋃
c∈C [[ϕ(c)]], so all sets of this form

are in the σ-algebra. If we define P∗
(
∃xϕ(x)

) ∆
= µ∗

(
[[∃xϕ(x)]]

)
, then

countable additivity guarantees the Gaifman condition.
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Probabilities on First Order Formulas

The space of models

We have built a measure µ on the space of countable models.

Modω is the space of countable structures {M an L-model | dom(M) = ω}
with the topology generated by opens

[[±R(ā)]] := {M ∈ Modω |M � ±R(ā)} with ā ∈ ω<ω

This is a Polish space: it is homeomorphic to the Cantor space (2ω,O) with O
generated by cylinder sets.
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Probabilities on First Order Formulas

The same is true in the propositional case. if we take the space (V ,O) with O
the topology generated by [[

∧
i≤n ±pi ]] = {v ∈ V | v �

∧
i≤n ±pi}.

In both cases, we can treat probability functions on our language L as

probability measures on the standard Borel space Modω.

In this sense we can get all the standard Borel measures: and we already have

this with measures on propositional languages with countably many atomic

propositions.
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Probabilities on First Order Formulas

From Probabilities on Languages to Spaces

Given a probability measure P on L, we can see it as

• A measure on the Lindenbaum-Tarski algebra L/ ≡ (the algebra of

equivalence classes of formulas modulo logical equivalence), where we let

P∗([ϕ]) := P(ϕ)

• The induced countably additive measure µ on the space of models

(/valuations), which satisfies:

µ({v ∈ V | v |= ϕ}) = P(ϕ)

One should be careful about treating these as the same thing!
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Probabilities on First Order Formulas

From Probabilities on Languages to Spaces

One important difference:

• Consider a probability measure P on an infinite (countable) propositional

language. The measure µ induced by P on Mod(L) is countably additive.

• ...but he measure P∗ on the Lindenbaum-Tarski algebra always fails to be

countably additive [Amer, 1985] and even badly so [Seidenfeld].
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Probabilities on First Order Formulas

Takeway:

We can translate between the logical and measure-theoretic perspective

without losing anything essential. (There are however some subtle points to

take into consideration, such as the issue of σ-additivity.)

Now: when can logic and probability genuinely illuminate one another?

From logic to probability and back: the case of random structures.
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Probabilities on First Order Formulas

Asymptotic probability of graph properties

What is a typical property of a graph?

• Let Gn the set of all (labelled) graphs on n vertices.

• For a well-defined graph property F , define

pn(F ) :=
|{G ∈ Gn |G has F}|

|Gn|

• When does P(F ) = limn→∞ pn(F ) exist? What proportion of finite graphs

has property P (asymptotically)?
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Probabilities on First Order Formulas

Asymptotic probability

Consider various properties for F :

• G has a complete subgraph of size m: limn→∞ pn(F ) = 1.

• G is planar: limn→∞ pn(F ) = 0.

• G has an odd number of vertices: no asymptotic probability.

Which properties have a limiting probability? Which ones are typical, in the

sense of occurring almost surely?
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Probabilities on First Order Formulas

0-1 law.

Let ϕ a FOL sentence. Define

pn(ϕ) :=
|{G ∈ Gn |G � ϕ}|

|Gn|

0-1 law. Let ϕ a FOL sentence. Then limn→∞ pn(ϕ) always exists, and

takes a value in {0, 1}.

All first-order properties (1) have a limiting probability and (2) are either

typical or atypical!

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probabilities on rich languages, random structures and 0-1 laws 23



Probabilities on First Order Formulas

Alice’s Restaurant Property

You can get anything you want at Alice’s Restaurant.

∀x1, . . . xk , y1, . . . , ym( ∧
i≤k, j≤m

xi 6= yj → ∃z
( ∧
i≤k

z 6= xi ∧R(z , xi )∧
∧
i≤m

z 6= yi ∧¬R(z , yi )
))

Given X = {x1, . . . xk} and Y = {y1, . . . , ym} we say z as above is a witness

for X and Y : we write W(z ,X ,Y ).

There is a unique (up to isomorphism) countably infinite graph with the

ARP.

Uniqueness: the AFP gives a winning strategy for Duplicator in EFω.

Existence?
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Probabilities on First Order Formulas

Probabilistic construction

Take N as vertex set, and for each (n,m) ∈N2 with n 6= m, toss a fair coin to

decide if R(n,m). This random process generates a countable random

structure (N,R). Now:

The Random graph. The procedure above almost surely generates a graph

satisfying the Alice’s Restaurant Property.

So by drawing edges independently at random with probability 1/2, we

almost-surely generate the unique countable graph satisfying ARP. This is the

Random/Rado graph R.
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Probabilities on First Order Formulas

Probabilistic construction

Proof.

Fix A = {a1, ..., ak} and B = {b1, ..., bm} two disjoint sets of vertices. List all

vertices 〈vn〉n∈ω not belonging to either set. For any such vn,

P(W(A,B, v)) = 1/2k+m. The probability that no other vertex is a witness is

P
(⋂

n

¬W(vn,A,B)
)
= lim

n→∞
P(
⋂
i≤n
¬W(vn,A,B))

= lim
n→∞

(1− 1/2k+m)n = 0

(edges are drawn independently). Now P(¬ARP) is at most

P
( ⋃
A,B∈S

(⋂
n

¬W(vn,A,B)
))

where S ranges over disjoints pairs of finite sets of vertices. This is a countable

union of probability 0 events, so it has probability 0.
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Probabilities on First Order Formulas

Asymptotic probabilities and random structures

Now for the 0-1 law. Let αk,m denote the sentence

∀x1, . . . xk , y1, . . . , ym
( ∧
i≤k, j≤m

xi 6= yj → ∃z W(z , x1, . . . xk , y1, . . . , ym)
)

Let TR := {αn,m | n,m < ω}.

Thm (Glebskii et al. [1969], Fagin [1976]). Let ϕ a first-order sentence.

The following are equivalent:

• limn→∞ pn(ϕ) = 1

• ϕ holds on the random graph;

• TR ` ϕ.

A sentence ϕ holds almost surely—in almost all finite graphs—if and only if it

holds on the random graph.

Cn(TR ) = Th(R) = {ϕ ∈ Sent | lim
n→∞

pn(ϕ) = 1}
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Probabilities on First Order Formulas

The 0-1 law

Proof.

By our back-and-forth argument, TR is ω-categorical, and has no finite models:

so it is complete. It has R as a model, and so TR ` ϕ is equivalent to ϕ

holding on the random graph. Next, we show that TR ` ϕ entails

limn→∞ pn(ϕ) = 1. TR ` ϕ means that there is a finite set Γ of extension

axioms αk,m such that Γ ` ϕ. It is enough to show that each αk,m holds

(asymptotically) almost surely.

As before, for a finite graph G of size n and two disjoint subsets A,B ⊆ G of

respective sizes k and m, the probability that no v ∈ G \ (A∪B) is a witness is

(1− 1/2k+m)n−k−m.
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Probabilities on First Order Formulas

The 0-1 law

Proof.

For sufficiently large n, αk,m fails with probability at most(
n

k

)(
n− k

m

)
(1− 1/2k+m)n−k−m

and indeed an cruder upper bound for limn→∞ pn(¬αk,m) is

lim
n→∞

nk+m(1− 1/2k+m)n−k−m = 0,

Now the expression is of the form nα × βn−α with α, β constants and 0 < β < 1:

the term βn−α going to 0 exponentially, while nα has only polynomial growth.

So it goes to 0, and so we conclude limn→∞ pn(¬αk,m) = 0.

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probabilities on rich languages, random structures and 0-1 laws 29



Probabilities on First Order Formulas

The 0-1 law

Proof.

Lastly, we show that limn→∞ pn(ϕ) = 1 entails TR ` ϕ. Suppose TR 6` ϕ. By

completeness of T , we have TR ` ¬ϕ. By the previous argument, this means

that limn→∞ pn(¬ϕ) = 1, and so ϕ cannot hold in almost all finite graphs.
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Consequences

Thm Let ϕ a first-order sentence. The following are equivalent

• limn→∞ pn(ϕ) = 1

• ϕ holds on the random graph;

• TR ` ϕ.

Trakhtenbrot:

sure properties over finite structures are undecidable

The theory TR := {αn,m | n,m < ω} is ω-categorical and so it is complete.

The axiomatisation is also recursive. Consequence:

almost sure properties over finite graphs are decidable! (in fact, PSPACE)
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Bonus: constructing the Rado graph

We built the random graph by randomly (i.i.d) deciding on each potential edge

(a, b) ∈N2. But the infinite random graph is easy to get.

The brute-force construction: starting from the empty graph, build an infinite

increasing sequence of graphs G0 ⊆ ...Gn ⊆ Gn+1 ⊆ ... as follows:

Given Gn = (Vn,En), let Gn+1 = (Vn+1,En+1) where

• Vn+1 := Vn ∪ {vA |A ⊆ Vn},
• En+1 ∩ V 2

n = En,

• for all A ⊆ Vn, we let En+1(vA, x)⇔ x ∈ A

At each stage, for each subset of vertices, we add a vertex that has precisely

this subset as neighbours.

By design, Gω :=
⋃
n∈N Gn is an infinite countable graph satisfying ARP.
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Set-theoretic construction

• Take (M,∈), a countable model of ZFC.

• For a, b ∈ M, define R(a, b) if and only if a ∈ b or b ∈ a.

• Then (M,R) is isomorphic to the Rado graph.

Why? Foundation! Let a1, . . . an, b1, . . . , bm ∈ M with the a’s and b’s pairwise

distinct. Consider the set

z := {a1, ..., an, {b1, ..., bm}}

Note that R(z , bi ) would mean that there are ∈-cycles in M.

(M,R) is thus a countable graph satisfying ARP, and so (M,∈) ∼= R.

(what if we take non well-founded set theory, e.g. ZFA?)
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Number-theoretic construction (Payley)

Let V := {p ∈ P | p ≡ 1 (mod 4)}, and let R(p, q) if and only if ∃x ∈
{0, ..., q}, p ≡ x2 (mod p). Then (V ,R) ∼= R.

Let {u1, ..., uk} and {v1, .., vm} disjoint sets in V . Pick some bi ’s st.

¬∃x , x2 ≡ bi (mod vi ).

By the Chinese Remainder Theorem, there is an x ∈N such that

x ≡ 1 (mod 4)

x ≡ 1 (mod ui ) for i ≤ k

x ≡ bi (mod vi ) for i ≤ m

and any number in the progression 〈x + nd〉n (d = 4u1...ukv1...vn) is also a

solution to the above congruences. By Dirichlet’s Theorem on arithmetic

progressions, there exists a prime p′ of this form, so that p′ = x satisfies the

above. Then p′ is a witness for {u1, ..., uk} and {v1, .., vm}, as desired.
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Properties of the random graph

What is special about the random graph?

• Uniqueness (back-and-forth)

• Almost-sure theory

• Universality

• Symmetry (ultra-homogeneous)

• Its relation to the class of finite graphs: a kind of limit, encoding

probabilistic information.
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This construction (and the 0-1 law) generalises to finite relational signatures:

we can carry over the same general model-theoretic construction for the class

of all finite models (via Fräıssé limits)
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Perspectives on typicality

Random structures offer fertile ground for exploring different notions of

typicality:

• Asymptotic over finite structures

• Measure theoretic

• Probability space (Modω,F , µ) with F the Borel algebra of the underlying

topology. The Lebesgue measure concentrates on the isomorphism class of

the random graph (assigns it measure one). [Symmetric probabilistic

constructions: µ a S∞-invariant measure, i.e for every Borel set A and

permutation g ∈ S∞, µ(A) = µ(gA)].

• Topological:

• Seeing Modω as a topological space, the isomorphism class of the random

graph forms a co-meagre set (topologically large).

But these notions of typicality need not always agree with one another. How to

they relate? By virtue of which property of a theory or class of structures?
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Conclusion

Random structures lie at the cusp of probability and logic, bridging together

model theory and combinatorics. They can be put to use to:

• establish asymptotic 0-1 laws for logics over classes of finite structures

• display infinitary structures ‘approximating’ finite ones

• investigate the connection between symmetries of a structure and

probabilistic models

• explore the relationship between topological and measure-theoretic notions

of typicality.
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Tomorrow:

Probabilistic grammars and probabilistic programs
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