Logic and Probability Probabilistic Grammars and Programs

Thomas Icard & Krzysztof Mierzewski

August 11, 2022

Minds as (Probabilistic) Machines

Minds as (Probabilistic) Machines

$$\lambda x.x(y)$$
 acd o abbd
S o NP VP

Why Probabilistic?

- Many processes are (well-modeled as) random.
- Randomized procedures can be more efficient.
- Probabilistic generative processes could play the functional role of 'subjective probabilities'.

:

Motivation

Probabilistic generative models

- Hidden Markov models
- Boltzmann machines
- Bayesian networks
- Probabilistic context-free grammars
- Probabilistic programs

These modeling tools typically define distributions on behaviors (or outputs) only implicitly.

Poisson distribution

$$\mu(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\mu(2k+1) = c_k 2^{-2k+1}$$

$$c_k = {2k \choose k} \frac{1}{k+1}$$

Beta-Binomial (or Dirichlet-Multinomial)

$$p \sim \text{Beta}(\alpha, \beta)$$

 $k \sim \text{Binomial}(n, p)$

$$\mu(k) = \binom{n}{k} \frac{B(\alpha + k, \beta + n - k)}{B(\alpha, \beta)}$$

Which generative models are capable of encoding distributions like these?

Given Σ ("terminal symbols") and \mathcal{N} ("nonterminal symbols"), we consider **productions** of the form:

$$(\alpha \rightarrow \beta)$$

with $\alpha, \beta \in (\Sigma \cup \mathcal{N})^*$ strings over Σ and \mathcal{N} .

A grammar is a quadruple $(\Sigma, \mathcal{N}, \Pi, \mathcal{S})$.

- Regular (Type 3) Grammars:
 - $(X \rightarrow \sigma Y)$
 - $(X \to \sigma)$
- Context-Free (Type 2) Grammars:
 - $(X \rightarrow \alpha)$
- Context-Sensitive (Type 1) Grammars:
 - $(\alpha X\beta \rightarrow \alpha \gamma \beta)$
 - $(S \rightarrow \epsilon)$
- Unrestricted (Type 0) Grammars:
 - $(\alpha \rightarrow \beta)$

Regular vs. Context-Free

$$S \rightarrow bS$$

 $S \rightarrow b$

$$S \rightarrow bSS$$

 $S \rightarrow b$

Context-Free but not Regular

$$egin{array}{lll} {\it S} &
ightarrow & {\it aSb} \ {\it S} &
ightarrow & \epsilon \end{array}$$

Probabilistic Grammars

For each α we assume there are at most two β such that Π includes production

$$(\alpha \rightarrow \beta)$$
.

If Π includes $(\alpha \to \beta_1)$ and $(\alpha \to \beta_2)$, we think of the grammar as flipping a fair coin.

$$S \rightarrow WYaZ$$
 $Ya \rightarrow aaY$
 $YZ \rightarrow U$
 $YZ \rightarrow VZ$
 $aV \rightarrow Va$
 $WV \rightarrow WY$
 $WU \rightarrow \epsilon$
 $aU \rightarrow Ua$

This defines $\mu(2^k) = 2^{-k}$.

Probabilistic Grammars and Machines

Theorem

Probabilistic grammars and probabilistic Turing machines define the same class of distributions.

Example (Flajolet et al. 2011)

$$x_1, x_2 := Geom(1/4)$$
 $t := x_1 + x_2$
if flip(5/9) then $t := t + 1$
for $j = 1, 2, 3$
draw 2t fair coin flips
if #Heads \neq #Tails then return 0
return 1

$$\mu(1) = 1/\pi$$
.

$$\mu: \mathbb{N} \to [0, 1]$$
 is a semi-measure if $\sum_k \mu(k) \leq 1$.

 μ is **semi-computable** if for each k there is a computably enumerable sequence of rationals $q_1 \leq q_2 \leq q_3 \ldots$ with $\lim_{i \to \infty} q_i = \mu(k)$.

Theorem

Probabilistic grammars define exactly the semi-computable semi-measures.

Unrestricted Probabilistic Grammars


```
t := 1; h := 0
while (h < t)
t := t + 1
if flip(1/4) then h := h + \text{Unif}(1,7)
return t-1
```

Unrestricted Probabilistic Grammars


```
t := 1; h := 0
while (h < t)
t := t + 1.0000000000001
if flip(1/4) then h := h + Unif(1,7)
return t-1
```

Probabilistic Regular Grammars

The following are equally expressive:

- Probabilistic regular grammars
- Probabilistic finite-state automata
- Discrete hidden Markov models

Suppose we only had a q-biased coin. To reproduce

$$X \rightarrow Y_1$$

 $X \rightarrow Y_2$

introduce nonterminal Z_1 , Z_2 and write

$$X \stackrel{q}{\rightarrow} Z_1$$
 $Z_1 \stackrel{q}{\rightarrow} X$ $Z_2 \stackrel{1-q}{\rightarrow} X$ $X \stackrel{1-q}{\rightarrow} Z_2$ $Z_1 \stackrel{1-q}{\rightarrow} Y_1$ $Z_2 \stackrel{q}{\rightarrow} Y_2$.

Nondyadic rationals

$$X \xrightarrow{1/3} Y_1$$

$$X \xrightarrow{1/3} Y_2$$

$$X \xrightarrow{1/3} Y_3$$

$$egin{array}{lll} X
ightarrow Z_1 & Z_1
ightarrow X & Z_2
ightarrow Y_2 \ X
ightarrow Z_2 & Z_1
ightarrow Y_1 & Z_2
ightarrow Y_3 \end{array}$$

Theorem

Probabilistic regular grammars can express every rational-valued distribution with finite support.

- ullet Beta-Binomial (parameters in ${\mathbb N}$)
- Dirichlet-Multinomial
- Bayesian networks
- Arbitrarily good approximation to any Borel probability measure whatsoever!

Proposition

PRGs can only define rational-valued distributions.

Probability generating functions

Given μ we define the pgf $\mathfrak{G}_{\mu}(z)$ so that:

$$\mathfrak{G}_{\mu}(z) = \sum_{k=0}^{\infty} \mu(k) z^{k}$$

- Rational if $\mathfrak{G}_{\mu}(z) = rac{Q_0(z)}{Q_1(z)}$
- **Algebraic** if $y = \mathfrak{G}_{\mu}(z)$ is a solution to a polynomial equation 0 = Q(y, z)
- Transcendental otherwise

Example (Geometric Distribution)

The probability generating function for $\mu(k)=2^{-k}$ is $\frac{1}{2-z}$.

$$S \rightarrow bS$$

 $S \rightarrow b$

Theorem (Schützenberger)

The probability generating function for any probabilistic regular grammar will be rational.

Example

The random walk hitting time distribution has pgf $(1-\sqrt{1-z^2})/z$, algebraic but not rational.

Example (Random Walk Hitting Time)

$$S \rightarrow bSS$$

 $S \rightarrow b$

Example (Olmedo et al. 2016)

$$S \rightarrow SSS$$

 $S \rightarrow \epsilon$

The probability of returning ϵ is the solution to $x = \frac{1}{2}x^3 + \frac{1}{2}$, i.e., the reciprocal of the golden ratio!

Example (Etessami & Yannakakis 2009)

$$S \stackrel{1/6}{\rightarrow} SSSSS$$
 $S \stackrel{1/2}{\rightarrow} b$ $S \stackrel{1/3}{\rightarrow} \epsilon$

To find probability of returning ϵ we need to solve $x = \frac{1}{6}x^5 + \frac{1}{3}$, which has no closed form.

Theorem

The pgf for a PCFG is always algebraic.

(Cf. Chomsky-Schützenberger Theorem)

(Cf. also Parikh's Theorem)

Proposition

For distributions with **finite support**, PCFGs define only the rational-valued ones.

Indexed Grammars

Add to \mathcal{N} and Σ a finite set \mathcal{I} of **indices**. Each non-terminal can carry a **stack** of indices.

- $X[I] \rightarrow \alpha[I]$
- $X[I] \rightarrow \alpha[kI]$
- $X[I] \rightarrow \alpha$

Theorem

Probabilistic indexed grammars can define distributions with transcendental pgfs.

Example
$$S[] o Y[I]$$
 $Y[I] o Y[II]$
 $Y[I] o Z[I]$
 $Z[I] o ZZ$
 $Z[] o b$

This defines $\mu(2^k) = 2^{-k}$, with transcendental pgf.

Probabilistic Linear Indexed Grammars

- Allow only one non-terminal on the right.
- Equivalent to Tree-Adjoining Grammar, Combinatory Categorial Grammar, etc.
- Still algebraic, but can define finite-support, irrational-valued measures—thus surpassing expressive power of PCFGs.
- Equivalent to probabilistic pushdown automata.

Example ((Right-)Linear Indexed Grammar)

$$S[] \xrightarrow{1/2} b \qquad Y[I] \xrightarrow{1/4} Y[II] \qquad Y[I] \xrightarrow{1/2} Y$$

$$S[] \xrightarrow{1/2} bY[I] \qquad Y[I] \xrightarrow{1/4} b \qquad Y[] \xrightarrow{1} \epsilon$$

With 1/2 probability S rewrites to bY[I], while Y[I] in turn rewrites to ϵ with irrational probability $2-\sqrt{2}$. Thus, $\mathbb{P}(b)=\frac{3-\sqrt{2}}{2}$, while $\mathbb{P}(bb)=\frac{\sqrt{2}-1}{2}$

Theorem

Probabilistic context-sensitive grammars define the same distributions as **non-erasing** Turing machines.

Corollary

PCSGs can define transcendental distributions that elude all the grammars considered up to this point.

Proposition

Consider any semi-computable semi-measure $\mathbb{P}: \Sigma^* \to [0,1]$. There is a PCSG on augmented vocabulary $\Sigma \cup \{ \lhd \}$ defining a semi-measure $\tilde{\mathbb{P}}$ such that $\mathbb{P}(\sigma) = \sum_n \tilde{\mathbb{P}}(\sigma \lhd^n)$ for all $\sigma \in \Sigma^*$.

Proposition

PCSGs can only define rational probabilities!

Classical Hierarchy

Probabilistic Hierarchy

Some Open Questions

- Exact characterization of the classes of distributions defined by PRGs or PCFGs?
- Probabilistic (right-)linear grammars or PCSGs?
- What kinds of generative models could naturally define Poisson distributions?
- 4 Efficient approximation at lower levels of distributions definable at higher levels?
- 6 Closure under probabilistic conditioning?

Summary of today

- Minds as (probabilistic) machines.
- Target: landscape of grammars and machines and what classes of distributions they can express.
- Many open questions and directions.

Summary

Tomorrow: computable measure theory + applications to Bayesian epistemology