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Motivation

Minds as (Probabilistic) Machines
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Minds as (Probabilistic) Machines

λx .x(y) acd → abbd

S → NP VP
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Motivation

Why Probabilistic?

• Many processes are (well-modeled as) random.

• Randomized procedures can be more efficient.

• Probabilistic generative processes could play the
functional role of ‘subjective probabilities’.

...
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Motivation

Probabilistic generative models

• Hidden Markov models

• Boltzmann machines

• Bayesian networks

• Probabilistic context-free grammars

• Probabilistic programs
...

These modeling tools typically define distributions on
behaviors (or outputs) only implicitly.
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Motivation

Poisson distribution

µ(k) = e−λ λk

k !
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Motivation

Random Walk Hitting Time

. . .
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Motivation

Random Walk Hitting Time

. . .

0 1 2 3 4 5

µ(2k + 1) = ck2−2k+1

ck =

(
2k

k

)
1

k + 1
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Motivation

Beta-Binomial (or Dirichlet-Multinomial)

p ∼ Beta(α, β)

k ∼ Binomial(n, p)

µ(k) =

(
n

k

)
B(α + k , β + n− k)

B(α, β)
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Motivation

Which generative models are capable of

encoding distributions like these?
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Formal Grammars

Given Σ (“terminal symbols”) and N (“nonterminal

symbols”), we consider productions of the form:

(α→ β)

with α, β ∈ (Σ ∪N )∗ strings over Σ and N .

A grammar is a quadruple (Σ,N , Π, S).
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Formal Grammars

• Regular (Type 3) Grammars:

• (X → σY )
• (X → σ)

• Context-Free (Type 2) Grammars:

• (X → α)

• Context-Sensitive (Type 1) Grammars:

• (αX β→ αγβ)
• (S → ε)

• Unrestricted (Type 0) Grammars:

• (α→ β)
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Formal Grammars

Regular vs. Context-Free

S → bS

S → b

S → bSS

S → b
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Formal Grammars

S

b bS

bb bbS

bbb bbbS

bbbb bbbbS

bbbbb
...

bbbbbS
...
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Formal Grammars

S

b bSS

bbS

bbb bbbSS

bbbbS

bbbbb
...

bbbbbSS
...

bbbbSSS
...

bbSSS

bbbSS

bbbbS

bbbbb
...

bbbbbSS
...

bbbbSSS
...

bbbSSSS
...
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Formal Grammars
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Formal Grammars

Context-Free but not Regular

S → aSb

S → ε
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Formal Grammars

Probabilistic Grammars

For each α we assume there are at most two β such
that Π includes production

(α→ β).

If Π includes (α→ β1) and (α→ β2), we think of
the grammar as flipping a fair coin.
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Formal Grammars

S

b bSS

bbS

bbb bbbSS

bbbbS

bbbbb
...

bbbbbSS
...

bbbbSSS
...

bbSSS

bbbSS

bbbbS

bbbbb
...

bbbbbSS
...

bbbbSSS
...

bbbSSSS
...
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Unrestricted Probabilistic Grammars

S → WYaZ

Ya → aaY

YZ → U

YZ → VZ

aV → Va

WV → WY

WU → ε

aU → Ua

This defines µ(2k) = 2−k .
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Unrestricted Probabilistic Grammars

Probabilistic Grammars and Machines

Theorem
Probabilistic grammars and probabilistic Turing machines
define the same class of distributions.
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Unrestricted Probabilistic Grammars

Example (Flajolet et al. 2011)

x1, x2 := Geom(1/4)

t := x1 + x2

if flip(5/9) then t := t + 1

for j = 1, 2, 3

draw 2t fair coin flips

if #Heads 6= #Tails then return 0

return 1

µ(1) = 1/π.
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Unrestricted Probabilistic Grammars

µ : N→ [0, 1] is a semi-measure if ∑k µ(k) ≤ 1.

µ is semi-computable if for each k there is a computably
enumerable sequence of rationals q1 ≤ q2 ≤ q3 . . . with
lim
i→∞

qi = µ(k).

Theorem
Probabilistic grammars define exactly the semi-computable
semi-measures.
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Unrestricted Probabilistic Grammars

t := 1; h := 0

while (h < t)

t := t + 1

if flip(1/4) then h := h + Unif(1,7)

return t-1
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Unrestricted Probabilistic Grammars

t := 1; h := 0

while (h < t)

t := t + 1.0000000000001

if flip(1/4) then h := h + Unif(1,7)

return t-1
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Probabilistic Regular Grammars

The following are equally expressive:

• Probabilistic regular grammars

• Probabilistic finite-state automata

• Discrete hidden Markov models
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Probabilistic Regular Grammars

Suppose we only had a q-biased coin. To reproduce

X → Y1

X → Y2

introduce nonterminal Z1,Z2 and write

X
q→ Z1 Z1

q→ X Z2
1−q→ X

X
1−q→ Z2 Z1

1−q→ Y1 Z2
q→ Y2.
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Probabilistic Regular Grammars

Nondyadic rationals

X
1/3→ Y1

X
1/3→ Y2

X
1/3→ Y3

X → Z1 Z1 → X Z2 → Y2

X → Z2 Z1 → Y1 Z2 → Y3
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Probabilistic Regular Grammars

Theorem
Probabilistic regular grammars can express every
rational-valued distribution with finite support.

• Beta-Binomial (parameters in N)

• Dirichlet-Multinomial

• Bayesian networks

• Arbitrarily good approximation to any Borel probability
measure whatsoever!

Proposition
PRGs can only define rational-valued distributions.
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Probability generating functions

Given µ we define the pgf Gµ(z) so that:

Gµ(z) =
∞

∑
k=0

µ(k)zk

• Rational if Gµ(z) =
Q0(z)
Q1(z)

• Algebraic if y = Gµ(z) is a solution to a polynomial
equation 0 = Q(y , z)

• Transcendental otherwise

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probabilistic Grammars and Programs 42



Example (Geometric Distribution)
The probability generating function for µ(k) = 2−k is 1

2−z .

S → bS

S → b
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Probabilistic Regular Grammars

Theorem (Schützenberger)
The probability generating function for any probabilistic
regular grammar will be rational.

Example
The random walk hitting time distribution has pgf
(1−

√
1− z2)/z , algebraic but not rational.
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Probabilistic Context-Free Grammars

Example (Random Walk Hitting Time)

. . .

0 1 2 3 4 5

S → bSS

S → b
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Probabilistic Context-Free Grammars

Example (Olmedo et al. 2016)

S → SSS

S → ε

The probability of returning ε is the solution to x = 1
2x

3 + 1
2 ,

i.e., the reciprocal of the golden ratio!
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Probabilistic Context-Free Grammars

Example (Etessami & Yannakakis 2009)

S
1/6→ SSSSS S

1/2→ b S
1/3→ ε

To find probability of returning ε we need to solve
x = 1

6x
5 + 1

3 , which has no closed form.
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Probabilistic Context-Free Grammars

Theorem
The pgf for a PCFG is always algebraic.

(Cf. Chomsky-Schützenberger Theorem)
(Cf. also Parikh’s Theorem)

Proposition
For distributions with finite support, PCFGs define only the
rational-valued ones.
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Probabilistic Mildly-Context-Sensitive Grammars

Indexed Grammars

Add to N and Σ a finite set I of indices. Each non-terminal
can carry a stack of indices.

• X [l ]→ α[l ]

• X [l ]→ α[kl ]

• X [l ]→ α
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Probabilistic Mildly-Context-Sensitive Grammars

Theorem
Probabilistic indexed grammars can define distributions with
transcendental pgfs.

Example S [] → Y [l ]

Y [l ] → Y [ll ]

Y [l ] → Z [l ]

Z [l ] → ZZ

Z [] → b

This defines µ(2k) = 2−k , with transcendental pgf.
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Probabilistic Mildly-Context-Sensitive Grammars

Probabilistic Linear Indexed Grammars

• Allow only one non-terminal on the right.

• Equivalent to Tree-Adjoining Grammar, Combinatory
Categorial Grammar, etc.

• Still algebraic, but can define finite-support,
irrational-valued measures—thus surpassing expressive
power of PCFGs.

• Equivalent to probabilistic pushdown automata.
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Probabilistic Mildly-Context-Sensitive Grammars

Example ((Right-)Linear Indexed Grammar)

S []
1/2→ b Y [l ]

1/4→ Y [ll ] Y [l ]
1/2→ Y

S []
1/2→ bY [l ] Y [l ]

1/4→ b Y []
1→ ε

With 1/2 probability S rewrites to bY [l ], while Y [l ] in turn
rewrites to ε with irrational probability 2−

√
2. Thus,

P(b) = 3−
√
2

2 , while P(bb) =
√
2−1
2
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Probabilistic Context-Sensitive Grammars

Theorem
Probabilistic context-sensitive grammars define the same
distributions as non-erasing Turing machines.

Corollary
PCSGs can define transcendental distributions that elude all
the grammars considered up to this point.
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Probabilistic Context-Sensitive Grammars

Proposition
Consider any semi-computable semi-measure P : Σ∗ → [0, 1].
There is a PCSG on augmented vocabulary Σ∪ {�} defining a
semi-measure P̃ such that P(σ) = ∑n P̃(σ�n) for all σ ∈ Σ∗.

Proposition
PCSGs can only define rational probabilities!
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Summary
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Summary

Some Open Questions

1 Exact characterization of the classes of distributions
defined by PRGs or PCFGs?

2 Probabilistic (right-)linear grammars or PCSGs?

3 What kinds of generative models could naturally define
Poisson distributions?

4 Efficient approximation at lower levels of distributions
definable at higher levels?

5 Closure under probabilistic conditioning?
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Summary

Summary of today

• Minds as (probabilistic) machines.

• Target: landscape of grammars and machines and what
classes of distributions they can express.

• Many open questions and directions.
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Summary

Tomorrow: computable measure theory + applications to
Bayesian epistemology
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