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Many processes are (well-modeled as) random.
Randomized procedures can be more efficient.

Probabilistic generative processes could play the
functional role of ‘subjective probabilities’.
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Hidden Markov models

Boltzmann machines

Bayesian networks

Probabilistic context-free grammars

Probabilistic programs

These modeling tools typically define distributions on
behaviors (or outputs) only implicitly.
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p ~ Beta(a,p)
k ~ Binomial(n, p)

o - (gt



Which generative models are capable of
encoding distributions like these?



Given X (“terminal symbols”) and AV ( “nonterminal

symbols™), we consider productions of the form:
(a = B)
with &, B € (X UN)* strings over X and N.

A grammar is a quadruple (X, A/, I1, S).



Regular (Type 3) Grammars:

(X = 0oY)
(X = 0)

Context-Free (Type 2) Grammars:
(X = a)

Context-Sensitive (Type 1) Grammars:

(aXp — ayp)
(S—e€)

Unrestricted (Type 0) Grammars:
(a = B)



Formal Grammars

Regular vs. Context-Free
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Context-Free but not Regular
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For each & we assume there are at most two f such
that IT includes production

(a — B).

If IT includes (& — B1) and (« — B5), we think of
the grammar as flipping a fair coin.
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Probabilistic grammars and probabilistic Turing machines
define the same class of distributions.



X1, Xo := Geom(1/4)
t 1= x1+x2
if £f1ip(5/9) then t :=t + 1
for j = 1,2,3
draw 2t fair coin flips
if #Heads # #Tails then return 0

return 1

u(l)y=1/m.



p:IN — [0,1] is a semi-measure if }_, (k) < 1.

u is semi-computable if for each k there is a computably
enumerable sequence of rationals g1 < g2 < g3... with

lim q; = p(k).

1—00

Probabilistic grammars define exactly the semi-computable
semi-measures.



Unrestricted Probabilistic Grammars

while (h < t)
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flip(1/4) then h := h + Unif(1,7)
t-1
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Unrestricted Probabilistic Grammars

t :=1; h:=0
while (h < t)
t :=t + 1.0000000000001
if f1ip(1/4) then h := h + Unif(1,7)

return t-1

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probabilistic Grammars and Programs 37



The following are equally expressive:
Probabilistic regular grammars
Probabilistic finite-state automata

Discrete hidden Markov models



Suppose we only had a g-biased coin. To reproduce

X =Y
X = Y

introduce nonterminal 71, Z> and write

X35 7 75 X Z 7 x
XYz z25v 2%V,
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Probabilistic regular grammars can express every
rational-valued distribution with finite support.

Beta-Binomial (parameters in IN)
Dirichlet-Multinomial
Bayesian networks

Arbitrarily good approximation to any Borel probability
measure whatsoever!

PRGs can only define rational-valued distributions.



Given 1 we define the pgf &,(z) so that:

Rational if &,(z) = a0

Algebraic if y = &,(z) is a solution to a polynomial
equation 0 = Q(y, z)

Transcendental otherwise



The probability generating function for y(k) =27k is 5.



The probability generating function for any probabilistic
regular grammar will be rational.

The random walk hitting time distribution has pgf
(1 —+/1— 22)/z, algebraic but not rational.
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S — SSS
S — ¢

The probability of returning € is the solution to x =
i.e., the reciprocal of the golden ratio!
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To find probability of returning € we need to solve
x = x5+ %, which has no closed form.



The pgf for a PCFG is always algebraic.

(Cf. Chomsky-Schiitzenberger Theorem)
(Cf. also Parikh's Theorem)

For distributions with finite support, PCFGs define only the
rational-valued ones.



Add to N and X a finite set Z of indices. Each non-terminal
can carry a stack of indices.

X[] = afl]
X[I] — afkl]
X[ =«



Probabilistic indexed grammars can define distributions with
transcendental pgfs.

S[l — Y[/
Y[l — Y[
Y[I] — Z[l]
Zll — zZ
Z[] — b

This defines 1 (2%) = 27, with transcendental pgf.



Allow only one non-terminal on the right.

Equivalent to Tree-Adjoining Grammar, Combinatory
Categorial Grammar, etc.

Still algebraic, but can define finite-support,

irrational-valued measures—thus surpassing expressive
power of PCFGs.

Equivalent to probabilistic pushdown automata.



S B b YLy viLBy
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With 1/2 probability S rewrites to bY[/], while Y[/] in turn

rewrites to € with irrational probability 2 — v/2. Thus,
P(b) = 322, while P(bb) = ¥2-1



Probabilistic context-sensitive grammars define the same
distributions as non-erasing Turing machines.

PCSGs can define transcendental distributions that elude all
the grammars considered up to this point.



Consider any semi-computable semi-measure P : * — [0, 1].
There is a PCSG on augmented vocabulary 2 U {<1} defining a
semi-measure IP such that P(c) = ¥, IP(c<") for all ¢ € Z*.

PCSGs can only define rational probabilities!



Classical Hierarchy Probabilistic Hierarchy




Exact characterization of the classes of distributions
defined by PRGs or PCFGs?

Probabilistic (right-)linear grammars or PCSGs?

What kinds of generative models could naturally define
Poisson distributions?

Efficient approximation at lower levels of distributions
definable at higher levels?

Closure under probabilistic conditioning?



Minds as (probabilistic) machines.

Target: landscape of grammars and machines and what
classes of distributions they can express.

Many open questions and directions.



Tomorrow: computable measure theory + applications to
Bayesian epistemology



	Motivation
	Formal Grammars
	Unrestricted Probabilistic Grammars
	Probabilistic Regular Grammars
	
	Probabilistic Regular Grammars
	Probabilistic Context-Free Grammars
	Probabilistic Mildly-Context-Sensitive Grammars
	Probabilistic Context-Sensitive Grammars
	Summary

