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Probability theory in a computable setting

Probabilistic algorithms and machine implementations of probabilistic reasoning

are limited by what (probabilistic) Turing machines can do.

A framework for understanding the limits and possibilities of what probabilistic

computation, and computational probability models, can do in principle.

We will see some applications to the theory of Bayesian reasoning and inductive

learning performed by computable agents.
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Computable Reals

What is a computable real?

Proposal: identify a real number with a Turing machine program that

computes the digits in its decimal (or binary) expansion, and define computable

functions on computable numbers as operating on the corresponding programs.
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Computable Reals: WAS TURING WRONG?!

Suppose we have

x := 0.232323232323...

y := 0.767676767676...

Compute x + y .

Worry: we want addition to be a computable operation on real numbers,

uniformly in the inputs!
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Computable Reals

Another proposal:

Computable reals. A real r ∈ R is computable if and only if both sets

{q ∈ Q | q < r} and {q ∈ Q | r < q} are computable. Equivalently:

r is computable ⇐⇒ there is a computable sequence of rationals

{qn}n∈N such that |qn − r | < 2−n for all n.

• Examples:
√

2, π, e,... (almost anything you can think of).

Under this definition, standard arithmetical operations (+,×, ...) become

computable.
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Computable Reals

However:

A real r ∈ R if computable in Turing’s sense if and only if it is computable in

the fast-approximation sense.

So, was Turing’s definition “wrong” after all?

(Lesson: when giving a computable account of an object, and of computations

on it, it matters what we take as a computable representor for the object.)
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Computable Reals

Fix a (prefix-free) universal Turing machine U that takes binary strings as

inputs.

Pick an input string at random according to a fair coin measure. What is the

probability that U will halt?

The halting probability is:

Ω := ∑
w∈dom(U )

2−|w |

Ω is left-ce. That is, there is a computable enumeration of rationals {qi}i∈N

such that limi→∞ qi = Ω.

However, Ω is not computable: approximating Ω from the right would allow us

to compute the Halting set.
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Cantor space

The set 2N of infinite binary sequences
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Cantor space

Given a sequence w ∈ {0, 1}∗, let [[w ]] := {X ∈ 2N |X extends w}, called the

cylinder set of w .
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Cantor space

(2N,B)

The collection C of finite unions of cylinders forms a ring.

• B is the Borel algebra generated by the cylinder sets (the smallest

σ-algebra extending C).

By Carathéodory’s extension theorem, to uniquely specify a (countably

additive) measure on (2N,B), it is enough to have a finitely additive measure

on the cylinder sets [[w ]].
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Computable measures on Cantor space

Any measure on (2N,B) can be uniquely associated with a pre-measure: a

function m : {0, 1}∗ → [0, 1] such that

• m(ε) = 1

• m(w) = m(w0) +m(w1) for every w ∈ {0, 1}∗.

Setting µ([[w ]]) := m(w), this uniquely extends to a probability measure on B.

A (Borel) measure µ on (2N,B) is computable if and only if the values of

µ([[τ]]) are uniformly computable.

This means: there exists a computable function f : N× {0, 1}∗ → Q such

that for every n, |f (n,w)− µ([[w ]])| ≤ 2−n.

(i.e. µ([[τ]]) is a computable real uniformly in the string w .)
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Computable measures on Cantor space

Examples:

• Uniform measure: λ([[w ]]) := 2−|w |

• Bernoulli measure with computable bias: Bp([[w ]]) = p#w (1− p)|w |−#w

where p ∈ (0, 1) is computable (and #w := number of 1’s in w).

• Computable mixture of computable measures: ν = αµ1 + (1− α)µ2
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Probabilistic Turing Machines

Random bit tape (read):

1 0 0 1 0 1 1 0 ...

Work tape (read/write):

0 1 0 0 0 1 1 0 ...

Output tape (read/write):

1 1 0 0 0 0 0 0 ...

A measure µ is the output distribution of a PTM T if, for each w ∈ {0, 1}∗, T
outputs w with probability µ([[w ]]).

This means: µ([[w ]]) is the probability of getting a random bit tape (by tossing

a fair coin) that results in output w .

Given a PTM T , write PT for its output distribution.
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Computable measures on Cantor space

Proposition

A probability measure on Cantor space is computable if and only if it is the

output distribution of a probabilistic Turing machine that halts almost surely.
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⇐: Suppose we run T using a string r as the first bits of the random tape

(terminate if the program calls for random bits beyond those in r).

If T halts and outputs w , this tells us that PT ([[w ]]) ≥ 2−|r | (any random tape

that extends r will yield the same output).

Dovetail the computation to get a computable enumeration of a prefix-free set

of strings {ri} and their corresponding outputs {wi} (such that T outputs wi

when accessing only the bits in ri ). By taking

qn := ∑
i≤n,wi=w

2−|ri |

we get an approximation of PT ([[w ]]) from below. Similarly,

an := 1− ∑
i≤n,wi 6=w

2−|ri |

approximates it from above. This process can be done uniformly in w .
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⇒: Let α a computable real with a computable approximation {qn}. Suppose

we want a PTM that halts a.s. and outputs a string w with probability α.

Given a random tape r = (r1, ..., rn, ...) ∈ 2N, perform the following:

Step n Compute An(r) := ∑n
i=1 ri · 2−n.

1. if An(r ) < qn − 2−n: then HALT and OUTPUT w .

2. if An(r ) > qn + 2−n: then HALT and OUTPUT w0.

else: set n := n+ 1 and repeat previous step.

Then A∞ := limn→∞ An is uniformly distributed on the interval. The program

returns w if and only if A∞ < α, which happens with probability α.

Note also the program halts with probability one (why?).

This can be done uniformly in (a computable approximation {qn} of) α.

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probability and Computability 15



s0

output w0

µ(w0)

s1

output w1

µ(w1)
1−µ(w0)

s2

output w2

µ(w2)
1−(µ(w0)+µ(w1))

s3

1− µ(w2)
1−(µ(w0)+µ(w1))

1− µ(w1)
1−µ(w0)

1− µ(w0)
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Computable measures: the continuous case

What about continuous distributions over more general spaces (standard Borel

spaces: Rn, spaces of probability measures,...)?

General idea: a computable object in a space is one that has a computable

‘name’: it can be computably approximated by a family of ‘simple’ objects.

• The ‘simple’ (or ideal) points need to be computably enumerable;

• We need a notion of distance on the space to capture approximations;

• The distances between the ideal points must be all uniformly computable;

• There needs to be enough ‘simple‘ points to approximate all distances.

This gives rise to the notion of a computable metric (Polish) space.
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Computable metric spaces

Computable metric space. A computable metric space is a triple (S , d ,D),

where d : S × S → R is a metric on the set S satisfying

(1) (S , d) is a complete metric space

(2) D = {si}i∈N is an enumeration of a dense subset of S , called ideal

points.

(3) the real numbers d(si , sj ) are computable, uniformly in i and j .

Let B(si , qj ) denote the ball of radius qj centered at si . The collection

BS := {B(si , qj ) | si ∈ D, qi ∈ Q, qi > 0}

is the set of ideal balls in S . Fix one canonical enumeration {Bj}j∈N of the

ideal balls.
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Computable functions and random variables

Let (S , δ,D) and (T , δT ,DT ) be computable metric spaces, the latter with

the corresponding enumeration {Bi}i∈ω of the ideal open balls in BT . A

function f : S → T is said to be computable on R ⊆ S when there is a

computable sequence {Un}n∈ω of c.e. open sets Un ⊆ S such that

∀n, f −1[Bi ] ∩ R = Un ∩ R.

Such a sequence {Un}n∈ω is a witness to the computability of f .

Let S be a computable metric space. A random variable X : 2ω → S in S

is a computable random variable when X is computable on some measure

one subset.
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The space of Borel measures over a computable metric space

The space M1(S) of probability measures.

Let (S , δ,DS ) a computable metric space. We define the following metric

space over M1(S):

(1) The set DP of ideal points consists of rational-valued probability

measures that are concentrated on a finite subset of DS .

(2) the metric is the Prokhorov metric given by

δP (µ, ν) := inf{ε > 0 | ∀A ∈ B(S), µ(A) ≤ ν(Aε) + ε},

where

Aε := {p ∈ S | ∃q ∈ A, δS (p, q) < ε} =
⋃
p∈A

Bε(p).
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Computable measures: the general case

The set of ideal points is defined as follows: we have ν ∈ DP if and only if

ν = ∑k
i=1 qi δti , for some rationals qi ≥ 0 such that ∑k

i=1 qi = 1 and some

points ti ∈ DS , where δti denotes the Dirac delta measure on ti .

• If S is a computable metric space, so is (M1(S), δP ,DP ).

• Under the Prokhorov metric, DP is indeed a dense set in M1(S).

Computable probability measure.

We say that µ ∈ M1(S) is a computable (Borel) probability measure on S

when µ is a computable point in M1(S) as a computable metric space.
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Computable measures

Under this general sense of a computable measure, we can show:

A measure µ is computable if and only if µ(Bi ) is a lower-semi computable

real, uniformly in an enumeration of the Bi ’s.

In particular, each computable measure on 2N is a computable point in the

corresponding metric space of measures over 2N.

Another equivalence: a measure µ is computable if and only if the expectation

E[f ] of any bounded computable function f : S → [0, 1] is uniformly

computable.
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Computable Bayesianism

How much of the theory of Bayesian learning, and which foundational results,

survive the passage to the computability-theoretic setting?
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Conditioning and continuous measures

A fundamental question for (computational) Bayesian inference:

Is Bayesian conditioning computable? We want an algorithm that can

compute conditional probabilities for computable joint distributions.

Say we have two random variables X and Y such that the joint distribution

P(X ,Y ) is computable, and we want to be able to compute P(X |Y = y).

Theorem (Ackerman, Freer, and Roy 2014)

NOPE.

There is no generic algorithm for Bayesian conditioning.

(However: conditioning is computable if we allow some noise!)
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Conditioning and Computability

Let C, U and N be independent random variables, where

• U has uniform distribution on [0, 1].

• C is a fair coin (Bernoulli on {0, 1} with p=1/2).

• N is a geometric r.v in N: that is, P(N = n) = 1/(2n+1) for any n.

Fix an computable enumeration {ri}i∈N of the rationals in (0, 1). Now define

the following random variable X : 2N → [0, 1]:

X =

U if C = 1,

rN otherwise.

Then (every version of) P [C = 1|X = ·] is discontinuous everywhere on every

PX measure-1 set: it is uncomputable.
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Bayesian convergence to the truth and randomness

A Bayesian agent is interested in estimating the value of a random variable X .

As they observe new bits of data, they update their expectation of the value of

a random variable.

Theorem (Lévy’s Upward Theorem, 1937)

Let X : 2N → R an integrable random variable, relative to (2N,B, µ). Then,

lim
n→∞

Eµ[X | Fn](ω) = X (ω)

for µ-almost every ω ∈ 2N.

In words: with probability one, a Bayesian agent expects their estimates to

converge to the correct value.
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Bayesian convergence to the truth and randomness

But which exactly are the sequences of observations for which convergence to

the truth occurs, given a prior?

Suppose you have a computable prior µ and are interested in learning the value

of some class of effective random variables (e.g. the computable ones, or the

lower-semi computable ones, etc.).

Then one can identify exactly the set of data sequences where convergence to

the truth occurs: as it happens, these systematically turn out to be the

algorithmically random sequences! [Huttegger, Walsh, Zaffora Blando, ms.].
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Bayesian convergence to the truth and randomness

Algorithmically random: roughly, sequences that are can be characterised in

either one of the following (equivalent!) ways:

• disordered and incompressible, with no computably identifiable patterns;

• typical: not computably distinguishable from most other sequences,

satisfying all effectively specifiable probability-one laws;

• unpredictable, not gameable by computable gambling strategies.
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Other applications of computable probability theory

• Statistics: exchangeability and Bayesian statistical models;

• Solomonoff induction;

• Computable analysis.
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Conclusion

Wrapping up

• Probability as a (family of) logic(s)

• Inference: nonmonotonic reasoning and belief dynamics

• Logical languages and measure theory

• Random structures and limit laws

• Probability and computability

Logic and probability theory are intimately and intricately re-

lated, with deep connections at multiple levels, both technical

and conceptual. Each illuminates the other, and there is much

to gain by combining insights from both.

Thomas Icard & Krzysztof Mierzewski: Logic and Probability, Probability and Computability 30



Conclusion

Thank you!
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