Synthetic logic characterizations of meanings extracted from large corpora

Alex Djalali and Christopher Potts
Stanford Linguistics

Workshop on Natural Logic, Proof Theory, and Computational Semantics
Stanford, April 8-9, 2011
Overview

Goals
- Establish robust connections between MacCartney’s NatLog and linguistic theory
- Understand Natlog’s logical underpinnings

Plan
1. Rethinking NatLog as a logical system (a sequent calculus)
2. Completeness via representation (answering the question, What models does the logic characterize?)
3. Redefining the semantics using large corpora, focusing on
 - Sentiment
 - Veridicality
Two conceptions of semantic theory

- Meaning as model-theoretic denotation
- Meaning as relations between forms
Two conceptions of semantic theory

David Lewis, ‘General semantics’: Meaning as denotation

“Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese.
Two conceptions of semantic theory

David Lewis, ‘General semantics’: Meaning as denotation

“Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true.
Two conceptions of semantic theory

David Lewis, ‘General semantics’: Meaning as denotation

“Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true. Semantics with no treatment of truth conditions is not semantics. [. . .]
Two conceptions of semantic theory

David Lewis, ‘General semantics’: Meaning as denotation

“Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true. Semantics with no treatment of truth conditions is not semantics. [...] My proposals are in the tradition of referential, or model-theoretic, semantics descended from Frege, Tarski, Carnap (in his later works), and recent work of Kripke and others on semantic foundations in intensional logic.”
Two conceptions of semantic theory

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms
Two conceptions of semantic theory

Jerrold Katz, *Semantic Theory: Meaning as relations between forms*

- “The arbitrariness of the distinction between form and matter reveals itself […].”
Two conceptions of semantic theory

Jerrold Katz, *Semantic Theory: Meaning as relations between forms*

- “The arbitrariness of the distinction between form and matter reveals itself [. . .]”
- “makes no distinction between what is logical and what is not”
Two conceptions of semantic theory

 Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- “The arbitrariness of the distinction between form and matter reveals itself [. . .]”
- “makes no distinction between what is logical and what is not”
- What is meaning? broken down:
 - What is synonymy?
 - What is antonymy?
 - What is superordination?
 - What is semantic ambiguity?
 - What is semantic truth (analyticity, metalinguistic truth, etc.)?
 - What is a possible answer to a question?
 - . . .
Bill MacCartney’s natural logic

Bill MacCartney’s natural logic

1. Ask not what a phrase means, but how it relates to others.

 dog is entailed by *poodle*
excludes *tree*
is consistent with *hungry*

 dance without pants entails *move without jeans*
excludes *tango in chinos*
is consistent with *tango*

 ...

2. Seamless blending of logical and non-logical operators: everything appears synthetic (as opposed to analytic).

3. Following Popper: “synthetic statements in general are placed, by the entailment relation, in the open interval between self-contradiction and tautology”.

IBM’s Watson

“So you’re associating words with other words, and then you can associate those with other words...”
Rethinking NatLog as a logical system (a sequent calculus)
Natural language ‘proofs’

\[\Gamma \vdash \text{John is short} \mid \text{John is tall} \quad \Gamma \vdash \text{John is tall} \land \text{John is tall} \quad \Gamma \vdash \text{John is short} \models \text{John is tall}\]
Syntax

Definition (Syntax of \mathcal{L})

Let Φ be a countable set of proposition letters, which I will refer to as the set of proper terms. Then,

1. If φ is a proper term, then so is $\overline{\varphi}$;
2. If φ and ψ are proper terms, then

$$\varphi \equiv \psi, \quad \varphi \sqsubseteq \psi, \quad \varphi \sqsupseteq \psi,$$
$$\varphi \land \psi, \quad \varphi \mid \psi, \quad \varphi \dashv \psi$$

are synthetic terms. Nothing else is a term of \mathcal{L}.
Synthetic terms

MacCartney Relations

1. *Equivalence* (\equiv);
2. *Strict Forward Entailment* (\Box);
3. *Strict Reverse Entailment* (\forall);
4. *Negation* (∇);
5. *Alternation* (\mid);
6. *Cover* (\sqsubseteq).

- John is a Frenchman \mid John is a Dutchman
- Every beagle runs \sqsubseteq Some beagle moves
- John is tall ∇ John is tall
Models

Definition (Synthetic Models)

Let a **synthetic model** \(\mathcal{M} \) be the pair \(\langle D, \llbracket \cdot \rrbracket \rangle \), where

1. \(D \) is a non-empty set
2. \(\llbracket \cdot \rrbracket \) is an interpretation function taking proper terms \(\varphi \) to their denotations in \(D \) such that
 1. \(\llbracket \neg \varphi \rrbracket = D - \llbracket \varphi \rrbracket \) such that
 2. \(\llbracket \varphi \rrbracket \neq \emptyset \) or \(\llbracket \varphi \rrbracket = D \)
Semantics

Definition (Tarski-Style Truth Conditions)

\[M \models \varphi \equiv \psi \iff \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket \]
\[M \models \varphi \sqsubseteq \psi \iff \llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket \]
\[M \models \varphi \sqsupset \psi \iff \llbracket \varphi \rrbracket \supset \llbracket \psi \rrbracket \]
\[M \models \varphi \land \psi \iff (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \emptyset) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = D) \]
\[M \models \varphi \mid \psi \iff (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \emptyset) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \neq D) \]
\[M \models \varphi \dashv \psi \iff (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \neq \emptyset) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = D) \]
Graphical representation of the MacCartney relations

\[\varphi \equiv \psi \quad \text{equivalence} \]
\[\text{couch} \equiv \text{sofa} \]

\[\varphi \sqsubset \psi \quad \text{forward entailment} \]
\[\text{crow} \sqsubset \text{bird} \]

\[\varphi \sqsupset \psi \quad \text{reverse entailment} \]
\[\text{bird} \sqsupset \text{crow} \]

\[\varphi ^{\wedge} \psi \quad \text{negation} \]
\[\text{man} ^{\wedge} \text{non-man} \]

\[\varphi \mid \psi \quad \text{alternation} \]
\[\text{cat} \mid \text{dog} \]

\[\varphi \sqsupseteq \psi \quad \text{cover} \]
\[\text{animal} \sqsupseteq \text{non-human} \]
Mutual Exclusivity of the MacCartney Relations

Theorem 1

If M is a synthetic model then

$$M \models \varphi R \psi \Rightarrow M \not\models \varphi S \psi$$

for $R \neq S$.
Entailment

Definition (Synthetic Entailment)

Let Γ be a set of synthetic terms. Γ entails $\varphi R \psi$ written, $\Gamma \models \varphi R \psi$, if, and only if

$$M \models \Gamma \Rightarrow M \models \varphi R \psi$$
The synthetic proof calculus
MacCartney rules

| \mathcal{R}, \mathcal{S} | \equiv | \equiv | \land | $|$ | $\|$ |
|------------------------|--------|--------|--------|-----|-----|
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |
| \equiv | \equiv | \equiv | \land | $|$ | $\|$ |

M-rules

$$\Gamma \vdash \varphi \mathcal{R} \psi \quad \Gamma \vdash \psi \mathcal{S} \chi \quad \Gamma \vdash \varphi \mathcal{T} \chi \quad \mathcal{R}, \mathcal{S}$$
MacCartney Rules

\[
\begin{array}{c|cccc|c|c}
R, S & \equiv & \sqsubseteq & \psi & \land & | & \psi \\
\equiv & \equiv & \sqsubseteq & \psi & \land & | & \psi \\
\sqsubseteq & \sqsubseteq & \sqsubseteq & \psi & | & \psi & \psi \\
\psi & \psi & \psi & \psi & \psi & \psi & \psi \\
\land & \land & \psi & | & \psi & \psi & \psi \\
| & | & \psi & | & \psi & \psi & \psi \\
\psi & \psi & \psi & \psi & \psi & \psi & \psi \\
\end{array}
\]

\[M\text{-rules: } \sqsubseteq, \sqsubseteq\]

\[
\Gamma \vdash \varphi \sqsubseteq \psi \quad \Gamma \vdash \psi \sqsubseteq \chi \quad \Gamma \vdash \varphi \sqsubseteq \chi \quad \sqsubseteq, \sqsubseteq
\]
Additional proof rules

D-rules

- **\equiv_1**
 \[
 \Gamma \vdash \varphi \equiv \psi \quad \Rightarrow
 \Gamma \vdash \varphi \equiv \varphi \\
 \Gamma \vdash \psi \equiv \psi
 \]

- **\equiv_2**
 \[
 \Gamma \vdash \varphi \equiv \psi \\
 \Gamma \vdash \psi \equiv \varphi
 \]

- **\land_1**
 \[
 \Gamma \vdash \varphi \land \psi \\
 \Gamma \vdash \psi \land \varphi
 \]

- **\land_2**
 \[
 \Gamma \vdash \varphi \land \psi \\
 \Gamma \vdash \psi \land \varphi
 \]

Reflexivity

- **Reflexivity**
 \[
 \varphi R \psi \in \Gamma \\
 \Gamma \vdash \varphi R \psi
 \]
Theorem 2 (Complementation)

1. $\Gamma \vdash \varphi \equiv \psi \iff \Gamma \vdash \varphi \lor \overline{\psi}$
2. $\Gamma \vdash \varphi \lor \overline{\psi} \iff \Gamma \vdash \varphi \equiv \psi$
3. $\Gamma \vdash \varphi \equiv \overline{\varphi}$
4. $\Gamma \vdash \overline{\varphi} \lor \psi \iff \Gamma \vdash \overline{\psi} \lor \varphi$
5. $\Gamma \vdash \varphi \lor \overline{\psi} \iff \Gamma \vdash \overline{\varphi} \lor \overline{\psi}$
6. $\Gamma \vdash \varphi \lor \psi \iff \Gamma \vdash \varphi \lor \overline{\psi}$
7. $\Gamma \vdash \varphi \lor \psi \iff \Gamma \vdash \varphi \lor \overline{\psi}$

(double negation)

(contraposition)
Natural language inference

Theorem 2.6

\[\Gamma \vdash \varphi \mid \psi \Rightarrow \Gamma \vdash \varphi \sqsubseteq \psi \]

M-rule: \(|, ^\wedge \)

\[
\frac{\Gamma \vdash \varphi \mid \psi \quad \Gamma \vdash \psi \wedge \chi}{\Gamma \vdash \varphi \sqsubseteq \chi} |, ^\wedge
\]

Proof.

\[
\frac{\Gamma \vdash \varphi \mid \psi \quad \Gamma \vdash \psi \wedge \overline{\psi}}{\Gamma \vdash \varphi \sqsubseteq \overline{\psi}} |, ^\wedge
\]
Natural language proofs revisited

Theorem 2.6 (Natural Language Instantiation)

\[\Gamma \vdash \text{John is short} \mid \text{John is tall} \Rightarrow \]
\[\Gamma \vdash \text{John is short} \sqsubseteq \text{John is a tall} \]

\[\Gamma \vdash \text{John is short} \mid \text{John is tall} \]
\[\Gamma \vdash \text{John is tall} \sqcup \text{John is tall} \sqcup \text{John is tall} \]
\[\Gamma \vdash \text{John is short} \sqsubseteq \text{John is tall} \]

\[\Gamma \vdash \text{John is tall} \sqcup \text{John is tall} \sqcup \text{John is tall} \]
\[\Gamma \vdash \text{John is short} \sqsubseteq \text{John is tall} \]

\[\Gamma \vdash \text{John is tall} \sqcup \text{John is tall} \sqcup \text{John is tall} \]
\[\Gamma \vdash \text{John is short} \sqsubseteq \text{John is tall} \]

\[\Gamma \vdash \text{John is tall} \sqcup \text{John is tall} \sqcup \text{John is tall} \]
\[\Gamma \vdash \text{John is short} \sqsubseteq \text{John is tall} \]
Final proof rule

Definition (Explosion)

\[\Gamma \vdash \phi R \psi \quad \Gamma \vdash \phi S \psi \quad \text{for } R \neq S \]

\[\Gamma \vdash \phi \mathcal{T} \psi' \quad \text{for all synthetic terms } \phi \mathcal{T} \psi' \]

Exp
Consistency

Definition (Consistency)

Γ is consistent if, and only if Γ ν ϕηψ for some synthetic term ϕηψ.
Inconsistency

Theorem 3 (Inconsistent Set)

\[\Gamma = \{ \varphi \sqsubseteq \psi, \psi \sqsupseteq \theta, \varphi \sqsim \theta \} \text{ is inconsistent} \]

Proof.

\[
\frac{\varphi \sqsubseteq \psi \in \Gamma}{\Gamma \vdash \varphi \sqsubseteq \psi} \quad \text{Refl} \quad \frac{\varphi \sqsim \theta \in \Gamma}{\Gamma \vdash \varphi \sqsim \theta} \quad \text{Refl} \quad \frac{\psi \sqsupseteq \theta \in \Gamma}{\Gamma \vdash \psi \sqsupseteq \theta} \quad \text{Exp} \\
\]

\[
\frac{\Gamma \vdash \varphi \sqsubseteq \psi \quad \Gamma \vdash \varphi \sqsim \theta}{\Gamma \vdash \psi \sqsim \theta} \quad \text{Exp} \quad \frac{\psi \sqsupseteq \theta \vdash \psi \sqsim \theta}{\Gamma \vdash \psi \sqsim \theta} \quad \text{Exp} \\
\]

\[
\frac{\psi \sqsupseteq \theta \in \Gamma}{\Gamma \vdash \psi \sqsupseteq \theta} \quad \text{Exp} \\
\]

\[
\frac{\Gamma \vdash \psi \sqsupseteq \theta}{\Gamma \vdash \psi \sqsim \theta} \quad \text{Exp} \quad \frac{\psi \sqsupseteq \theta \vdash \psi \sqsim \theta}{\Gamma \vdash \psi \sqsim \theta} \quad \text{Exp} \\
\]
Meta-logical results

Completeness

\[\Gamma \vdash \varphi \Leftrightarrow \Gamma \models \varphi \]
Soundness proof sketch

Soundness

\[\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi \]

1. By induction on the height of the derivation.
2. Basic set-theoretic observations.
Soundness proof sketch (cont.)

Provability

\[
\Gamma \vdash \varphi \sqsubseteq \psi \quad \Gamma \vdash \psi \sqsubseteq \chi \quad \therefore \quad \Gamma \vdash \varphi \sqsubseteq \chi
\]

Truth

\[
\Gamma \models \varphi \sqsubseteq \psi \quad \Gamma \models \psi \sqsubseteq \chi \quad \therefore \quad \Gamma \models \varphi \sqsubseteq \chi
\]

- Recall that the semantics of strict forward entailment is strict set-theoretic containment.
- Strict set-theoretic containment is transitive.
Adequacy of the Proof Calculus

\[\Gamma \models \varphi R \psi \Rightarrow \Gamma \vdash \varphi R \psi \iff \Gamma \not\vdash \varphi R \psi \]

contraposition

1. Every consistent \(\Gamma \) has a synthetic model:

\[\Gamma \vdash \varphi R \psi \iff M \models \varphi R \psi \]

2. Given \(\Gamma \not\vdash \varphi R \psi \), then:

\[M \not\models \varphi R \psi \]

3. By (1) and (2),

\[M \models \Gamma \text{ but } M \not\models \varphi R \psi \]
Model construction via representation

- Every consistent Γ induces an order on the set of proper terms Φ;
- That ordered set can be transformed into an orthoposet;
- Every orthoposet can be represented as a system of sets;
- The system of sets will function as a synthetic model.

Algebraic machinery

Orthposets

An *orthoposet* is a tuple \((P, \leq, 0, -)\) such that

1. \((P, \leq)\) is a partial order;
2. 0 is a minimal element, i.e., \(0 \leq x\) for all \(x \in P\);
3. \(x \leq y\) if, and only if \(\overline{y} \leq \overline{x}\);
4. \(\overline{\overline{x}} = x\)
5. If \(x \leq y\) and \(x \leq \overline{y}\), then \(x = 0\).
An orthoposet

Consider the following premise set:

$$\Gamma = \{ \varphi \sqsubseteq \psi, \theta \sqsubseteq \psi, \varphi \mid \theta \}$$

- Define the relation:

 $$\varphi \leq_{\Gamma} \psi \Leftrightarrow \Gamma \vdash \varphi \equiv \psi \text{ or } \Gamma \vdash \varphi \sqsubseteq \psi$$

- \leq_{Γ} induces an equivalence relation under \equiv

- Let the elements of the orthoposet be those equivalence classes and set

 $$[\varphi] = [\varphi]$$
An orthoposet (cont.)

- Add elements 0, 1 to Φ, setting \(\overline{0} = 1 \) and \(0 < x < 1 \):
Forming an orthoposet from a premise set

For arbitrary, consistent Γ, we can form an orthoposet:

$$(\Phi^*, \leq_{\Gamma}, 0, -)$$

- Φ^* is a set of equivalence classes under \equiv;
- \leq_{Γ} is the order defined above;
- 0 is a fresh element added not in the original language;
- $-$ is the complementation operator.
Representation

Theorem

Let $P = (P, \leq, 0, -)$ be an orthoposet. There is a set S, and a strict morphism f such that

$$f : P \rightarrow S$$
Points (or a poor man’s ultra-filter)

A point of a orthoposet is a subset $S \subseteq P$ with the following properties:

1. If $x \in S$ and $x \leq y$, then $y \in S$ (S is upward-closed);
2. For all x, either $x \in S$ or $\bar{x} \in S$ (S is complete), but not both (S is consistent).
Representation

Theorem

Let $P = (P, \leq, 0, -)$ be an orthoposet. There is a set, $\text{points}(P)$ and a strict morphism f such that

$$f : P \rightarrow \mathcal{P}(\text{points}(P))$$

by setting $f(x) = \{ S \in \text{point}(P) \mid x \in S\}$.
Model construction

Recall, \((\Phi^*, \leq, 0, -)\) is an orthoposet. So,

1. Define \(g : \Phi \rightarrow \Phi^*\) such that
 \[
 \varphi \mapsto [\varphi]_{=\Gamma}
 \]

2. Set \(f : \Phi^* \rightarrow \mathcal{P}(\text{points}(\Phi^*))\) such that
 \[
 f(x) = \{ S \in \text{points}(\Phi^*) \mid x \in S \}
 \]

3. Let \([\cdot]_{\text{rel}}\) be defined as the composition of \(f\) and \(g\) \((f \cdot g)\).
Lemma

\[M \models \varphi \equiv \psi \iff \Gamma \vdash \varphi \equiv \psi \]

Proof.

\[\begin{align*}
\Gamma \vdash \varphi \equiv \psi & \iff g(\varphi) = g(\psi) \\
& \iff f(g(\varphi)) = f(g(\psi)) \\
& \iff [\varphi] = [\psi] \\
& \iff M \models \varphi \equiv \psi
\end{align*} \]

\[\begin{align*}
\Gamma \vdash \varphi \sqsubseteq \psi & \iff g(\varphi) \sqsubseteq g(\psi) \\
& \iff f(g(\varphi)) \sqsubseteq f(g(\psi)) \\
& \iff [\varphi] \sqsubseteq [\psi] \\
& \iff M \models \varphi \sqsubseteq \psi
\end{align*} \]
Theorem 2.1

\[\Gamma \vdash \varphi \equiv \psi \iff \Gamma \vdash \varphi \uparrow \bar{\psi} \]

Proof.

\[\Gamma \vdash \varphi \uparrow \psi \iff \Gamma \vdash \varphi \equiv \bar{\psi} \]

\[\iff [\varphi] = [\bar{\psi}] \]

\[\iff ([\varphi] \cap [\psi]) \land ([\varphi] \cup [\psi]) = D \]

\[\iff M \models \varphi \uparrow \psi \]
Redefining the semantics using large corpora, focusing on

- Sentiment
- Veridicality
Answers and inferences

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- What is meaning? broken down:
 - What is synonymy?
 - What is antonymy?
 - What is superordination?
 - What is semantic ambiguity?
 - What is semantic truth (analyticity, metalinguistic truth, etc.)?
 - What is a possible answer to a question?
 - …

Example

A: Was the vacation enjoyable?

B: It was memorable.
User Reviews (Review this title)

294 out of 454 people found the following review useful.

WALL-E is one of the most cutest, lovable ch

Author: michael11391 from Augusta, Ga

Not only it's Pixar's best film of all-time but it's the best animated films in years and surprisingly, one of the mines. It's so beautiful, moving, hilarious & sad at the same time. WALL-E, it's certainly one of his best right behind Finding Nemo. WALL-E knocked off Ratatouille of the top spot in whatever seen with Ratatouille right behind and Finding Nemo be remembered as one of the most lovable characters of all time.

Was the above review useful to you? Yes No

See more (855 total) »
IMDB user-supplied reviews

<table>
<thead>
<tr>
<th>Rating</th>
<th>Reviews</th>
<th>Words</th>
<th>Vocabulary</th>
<th>Mean words/review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>124,587 (9%)</td>
<td>25,395,214</td>
<td>172,346</td>
<td>203.84</td>
</tr>
<tr>
<td>2</td>
<td>51,390 (4%)</td>
<td>11,755,132</td>
<td>119,245</td>
<td>228.74</td>
</tr>
<tr>
<td>3</td>
<td>58,051 (4%)</td>
<td>13,995,838</td>
<td>132,002</td>
<td>241.10</td>
</tr>
<tr>
<td>4</td>
<td>59,781 (4%)</td>
<td>14,963,866</td>
<td>138,355</td>
<td>250.31</td>
</tr>
<tr>
<td>5</td>
<td>80,487 (6%)</td>
<td>20,390,515</td>
<td>164,476</td>
<td>253.34</td>
</tr>
<tr>
<td>6</td>
<td>106,145 (8%)</td>
<td>27,420,036</td>
<td>194,195</td>
<td>258.33</td>
</tr>
<tr>
<td>7</td>
<td>157,005 (12%)</td>
<td>40,192,077</td>
<td>240,876</td>
<td>255.99</td>
</tr>
<tr>
<td>8</td>
<td>195,378 (14%)</td>
<td>48,723,444</td>
<td>267,901</td>
<td>249.38</td>
</tr>
<tr>
<td>9</td>
<td>170,531 (13%)</td>
<td>40,277,743</td>
<td>236,249</td>
<td>236.19</td>
</tr>
<tr>
<td>10</td>
<td>358,441 (26%)</td>
<td>73,948,447</td>
<td>330,784</td>
<td>206.31</td>
</tr>
<tr>
<td>Total</td>
<td>1,361,796</td>
<td>317,062,312</td>
<td>800,743</td>
<td>232.83</td>
</tr>
</tbody>
</table>
Counting and visualizing: IMDB

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Count</td>
<td>Total</td>
<td>Pr(w</td>
<td>c)</td>
</tr>
<tr>
<td>-4.5</td>
<td>8,557</td>
<td>25,395,214</td>
<td>0.0003</td>
<td>0.10</td>
</tr>
<tr>
<td>-3.5</td>
<td>4,627</td>
<td>11,755,132</td>
<td>0.0004</td>
<td>0.12</td>
</tr>
<tr>
<td>-2.5</td>
<td>6,726</td>
<td>13,995,838</td>
<td>0.0005</td>
<td>0.14</td>
</tr>
<tr>
<td>-1.5</td>
<td>7,171</td>
<td>14,963,866</td>
<td>0.0008</td>
<td>0.14</td>
</tr>
<tr>
<td>-0.5</td>
<td>9,039</td>
<td>20,390,515</td>
<td>0.0004</td>
<td>0.13</td>
</tr>
<tr>
<td>+0.5</td>
<td>10,101</td>
<td>27,420,036</td>
<td>0.0004</td>
<td>0.11</td>
</tr>
<tr>
<td>+1.5</td>
<td>10,362</td>
<td>40,192,077</td>
<td>0.0003</td>
<td>0.08</td>
</tr>
<tr>
<td>+2.5</td>
<td>10,064</td>
<td>48,723,444</td>
<td>0.0002</td>
<td>0.06</td>
</tr>
<tr>
<td>+3.5</td>
<td>7,909</td>
<td>40,277,743</td>
<td>0.0002</td>
<td>0.06</td>
</tr>
<tr>
<td>+4.5</td>
<td>13,570</td>
<td>73,948,447</td>
<td>0.0002</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Pr\(w|c\) \(\overset{\text{def}}{=}\) Count\((w, c)\)/Total\((c)\)\n
Pr\(c|w\) \(\overset{\text{def}}{=}\) \(\frac{\text{Pr}(w|c)}{\sum_{x \in R} \text{Pr}(w|x)}\)
Scalars

Figure: Positive

Figure: Negative
Semantics

Definition (Lexical meanings)

\[
\llbracket \alpha \rrbracket = \begin{cases}
[\text{ER}(\alpha), +4.5] & \text{if } \text{ER}(\alpha) \geq 0 \\
[-4.5, \text{ER}(\alpha)] & \text{if } \text{ER}(\alpha) < 0
\end{cases}
\]

Definition (Negation)

\[
\llbracket \text{neg } \alpha \rrbracket = \begin{cases}
(\text{ER}(\alpha), +4.5] & \text{if } \text{ER}(\alpha) < 0 \\
[-4.5, \text{ER}(\alpha)) & \text{if } \text{ER}(\alpha) \geq 0
\end{cases}
\]

Definition (Lexical relations)

- \(\alpha \equiv \beta \) iff \(\llbracket \alpha \rrbracket \approx \llbracket \beta \rrbracket \)
- \(\alpha \sqsubseteq \beta \) iff \(\llbracket \alpha \rrbracket \subset \llbracket \beta \rrbracket \)
- \(\alpha \sqsupset \beta \) iff \(\llbracket \alpha \rrbracket \supset \llbracket \beta \rrbracket \)
- \(\alpha \mid \beta \) iff \(\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket = \emptyset \) \& \(\llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \neq [-4.5, +4.5] \)
- \(\alpha \wedge \beta \) iff \(\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket = \emptyset \) \& \(\llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket = [-4.5, +4.5] \)
- \(\alpha \sim \beta \) iff \(\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket \neq \emptyset \) \& \(\llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket = [-4.5, +4.5] \)
Application: Indirect question–answer pairs

Marie-Catherine de Marneffe

Scott Grimm

Chris Manning

Marie-Catherine de Marneffe, Christopher D. Manning & Christopher Potts. 2010. Was it good? It was provocative. Learning the meaning of scalar adjectives. Proceedings of ACL 48.
IQAP corpus

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

<table>
<thead>
<tr>
<th>Modification in answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other adjective</td>
<td>125</td>
</tr>
<tr>
<td>Adverb - same adjective</td>
<td>55</td>
</tr>
<tr>
<td>Negation - same adjective</td>
<td>21</td>
</tr>
<tr>
<td>Omitted adjective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
</tr>
</tbody>
</table>
IQAP corpus

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

<table>
<thead>
<tr>
<th>Modification in answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other adjective</td>
<td>125</td>
</tr>
<tr>
<td>Adverb - same adjective</td>
<td>55</td>
</tr>
<tr>
<td>Negation - same adjective</td>
<td>21</td>
</tr>
<tr>
<td>Omitted adjective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
</tr>
</tbody>
</table>

A: Is it good?
B: It’s noteworthy.
Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

<table>
<thead>
<tr>
<th>Modification in answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other adjective</td>
<td>125</td>
</tr>
<tr>
<td>Adverb - same adjective</td>
<td>55</td>
</tr>
<tr>
<td>Negation - same adjective</td>
<td>21</td>
</tr>
<tr>
<td>Ommitted adjective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
</tr>
</tbody>
</table>

A: Is it good?
B: It’s impressively good.
IQAP corpus

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

<table>
<thead>
<tr>
<th>Modification in answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other adjective</td>
<td>125</td>
</tr>
<tr>
<td>Adverb - same adjective</td>
<td>55</td>
</tr>
<tr>
<td>Negation - same adjective</td>
<td>21</td>
</tr>
<tr>
<td>Ommitted adjective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
</tr>
</tbody>
</table>
Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which:

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

<table>
<thead>
<tr>
<th>Modification in answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other adjective</td>
<td>125</td>
</tr>
<tr>
<td>Adverb - same adjective</td>
<td>55</td>
</tr>
<tr>
<td>Negation - same adjective</td>
<td>21</td>
</tr>
<tr>
<td>Omitted adjective</td>
<td>4</td>
</tr>
</tbody>
</table>

Total 205

A: Is that a huge gap in the system?
B: It is a gap.
Annotations

Indirect Answers to Yes/No Questions

In the following dialogue, speaker A asks a simple Yes/No question, but speaker B answers with something more indirect and complicated:

Question

Answer

Which of the following best captures what speaker B meant here?

- B definitely meant to convey "Yes".
- B probably meant to convey "Yes".
- B definitely meant to convey "No".
- B probably meant to convey "No".
- (I really can't tell whether B meant to convey "Yes" or "No").

Any comments would be very much appreciated:

Submit
Annotations

30 annotators per IQAP
120 annotators
Median items done: 28
Mean items done: 56.5

A: Was it a good ad?
B: It was memorable.

<table>
<thead>
<tr>
<th></th>
<th>definite yes</th>
<th>probable yes</th>
<th>uncertain</th>
<th>probably no</th>
<th>definite no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

⇒

<table>
<thead>
<tr>
<th>yes</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncertain</td>
<td>3</td>
</tr>
<tr>
<td>no</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure: The faces of Mechanical Turk.
Procedure

Definition (de Marneffe, Manning, Potts)

Let D be a dialogue consisting of (i) a polar question whose main predication is based on scalar predicate P_Q and (ii) an indirect answer whose main predication is based on scalar predicate P_A.

1. If P_A or P_Q is missing from our data, infer ‘Uncertain’;
2. Else if $\text{ER}(P_Q)$ and $\text{ER}(P_A)$ have different signs, infer ‘No’;
3. Else if $|\text{ER}(P_Q)| \leq |\text{ER}(P_A)|$, infer ‘Yes’;
4. Else infer ‘No’.
5. In the presence of downward monotone expressions, map ‘Yes’ to ‘No’, ‘No’ to ‘Yes’, and ‘Uncertain’ to ‘Uncertain’.
Procedure

Definition (de Marneffe, Manning, Potts)

Let D be a dialogue consisting of (i) a polar question whose main predication is based on scalar predicate P_Q and (ii) an indirect answer whose main predication is based on scalar predicate P_A.

1. If P_A or P_Q is missing from our data, infer ‘Uncertain’;
2. Else if $\text{ER}(P_Q)$ and $\text{ER}(P_A)$ have different signs, infer ‘No’;
3. Else if $\text{abs}(\text{ER}(P_Q)) \leq \text{abs}(\text{ER}(P_A))$, infer ‘Yes’;
4. Else infer ‘No’.
5. In the presence of downward monotone expressions, map ‘Yes’ to ‘No’, ‘No’ to ‘Yes’, and ‘Uncertain’ to ‘Uncertain’.

Definition (Synthetic logic)

\[
P_Q \quad R \quad P_A \begin{cases}
 \text{Yes} & \text{if } R \in \{\equiv, \sqcup\} \\
 \text{No} & \text{if } R \in \{\sqsubset, |, ^\wedge\} \\
 \text{Uncertain} & \text{otherwise}
\end{cases}
\]
Examples

Definition (Synthetic logic)

\[
P_Q R P_A \begin{cases}
 \text{Yes} & \text{if } R \in \{\equiv, \sqsupset\} \\
 \text{No} & \text{if } R \in \{\sqsubseteq, |, ^\wedge\} \\
 \text{Uncertain} & \text{otherwise}
\end{cases}
\]

Larry King Live

A: Was it a good ad?
B: It was a great ad.

\(\text{good} \sqsupseteq \text{great} \text{ (‘yes’)}\)
Examples

Definition (Synthetic logic)

\[
 P_Q R P_A \begin{cases}
 \text{Yes} & \text{if } R \in \{\equiv, \sqsubseteq\} \\
 \text{No} & \text{if } R \in \{\sqsubset, |, ^\wedge\} \\
 \text{Uncertain} & \text{otherwise}
 \end{cases}
\]

Lou Dobbs Tonight

A: Do you think that’s a good idea?
B: It’s a terrible idea.

\textit{good} | \textit{terrible} (‘no’)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\end{figure}
Examples

Definition (Synthetic logic)

\[
P_Q \; R \; P_A \begin{cases}
 \text{Yes} & \text{if } R \in \{\equiv, \sqsubseteq\} \\
 \text{No} & \text{if } R \in \{\sqsubseteq, |, ^\wedge\} \\
 \text{Uncertain} & \text{otherwise}
\end{cases}
\]

Late Edition

A: Does he have a good chance of making it?
B: The chances are fair, I’d say.

\textit{good} | \textit{fair} (‘no’)

<table>
<thead>
<tr>
<th>Rating</th>
<th>good (903,376 tokens)</th>
<th>fair (24,969 tokens)</th>
</tr>
</thead>
</table>
| ER: 0.01 | \begin{tabular}{c}
 0.12 \\
0.06 \\
0.08
\end{tabular} | \begin{tabular}{c}
0.13 \\
0.1 \\
0.06
\end{tabular} |

<table>
<thead>
<tr>
<th>Rating</th>
<th>good (903,376 tokens)</th>
<th>fair (24,969 tokens)</th>
</tr>
</thead>
</table>
| ER: 0.01 | \begin{tabular}{c}
0.12 \\
0.06 \\
0.08
\end{tabular} | \begin{tabular}{c}
0.13 \\
0.1 \\
0.06
\end{tabular} |

<table>
<thead>
<tr>
<th>Rating</th>
<th>good (903,376 tokens)</th>
<th>fair (24,969 tokens)</th>
</tr>
</thead>
</table>
| ER: 0.01 | \begin{tabular}{c}
0.12 \\
0.06 \\
0.08
\end{tabular} | \begin{tabular}{c}
0.13 \\
0.1 \\
0.06
\end{tabular} |

<table>
<thead>
<tr>
<th>Rating</th>
<th>good (903,376 tokens)</th>
<th>fair (24,969 tokens)</th>
</tr>
</thead>
</table>
| ER: 0.01 | \begin{tabular}{c}
0.12 \\
0.06 \\
0.08
\end{tabular} | \begin{tabular}{c}
0.13 \\
0.1 \\
0.06
\end{tabular} |

<table>
<thead>
<tr>
<th>Rating</th>
<th>good (903,376 tokens)</th>
<th>fair (24,969 tokens)</th>
</tr>
</thead>
</table>
| ER: 0.01 | \begin{tabular}{c}
0.12 \\
0.06 \\
0.08
\end{tabular} | \begin{tabular}{c}
0.13 \\
0.1 \\
0.06
\end{tabular} |
Examples

Definition (Synthetic logic)

<table>
<thead>
<tr>
<th>Definition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_Q R P_A$</td>
<td>Yes if $R \in {\equiv, \sqsubset}$</td>
</tr>
<tr>
<td></td>
<td>No if $R \in {\sqcap,</td>
</tr>
<tr>
<td></td>
<td>Uncertain otherwise</td>
</tr>
</tbody>
</table>

Negation

A: Was the movie awful?
B: The movie was not bad.

- **awful \sqsubset bad**
- **bad $|$ \overline{bad}**
- **awful $\sqsubset \overline{bad}$**

A graph showing the probability distribution of ratings for two conditions:
- **awful (50,259 tokens)**: ER: -2.5
- **bad (368,273 tokens)**: ER: -1.46
Results

<table>
<thead>
<tr>
<th>Modification in answer</th>
<th>Count</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other adjective</td>
<td>125</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Adverb - same adjective</td>
<td>55</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Negation - same adjective</td>
<td>21</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Omitted adjective</td>
<td>4</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table: Summary of precision and recall (%) by type.

<table>
<thead>
<tr>
<th>Response</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>87</td>
<td>76</td>
<td>81</td>
</tr>
<tr>
<td>No</td>
<td>57</td>
<td>71</td>
<td>63</td>
</tr>
</tbody>
</table>

Table: Precision, recall, and F1 (%) per response category. There were just two examples whose dominant response from the Turkers was ‘Uncertain’, so we have left that category out of the results.
Redefining the semantics using large corpora, focusing on

- Sentiment
- Veridicality
FactBank

Freely available from the LDC. Extends TimeBank 1.2 and a fragment of the AQUAINT TimeML Corpus.

- Veridicality annotations on events relative to each participant involved in the discourse
- 208 documents from newswire and broadcast news reports
- 9,472 event descriptions

Some experts now predict Anheuser’s entry into the fray means near-term earnings trouble for all the industry players.

1. Veridicality(means, experts) = PR+
2. Veridicality(means, author) = Uu

Recently, analysts have said Sun also is vulnerable to competition from International Business Machines Corp., which plans to introduce a group of workstations early next year, and Next Inc.

1. Veridicality(vulnerable, analysts) = CT+
2. Veridicality(vulnerable, author) = Uu
FactBank

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT+</td>
<td>According to the source, it is certainly the case that X</td>
<td>7,749 (57.6%)</td>
</tr>
<tr>
<td>PR+</td>
<td>According to the source, it is probably the case that X</td>
<td>363 (2.7%)</td>
</tr>
<tr>
<td>PS+</td>
<td>According to the source, it is possibly the case that X</td>
<td>226 (1.7%)</td>
</tr>
<tr>
<td>CT-</td>
<td>According to the source, it is certainly not the case that X</td>
<td>433 (3.2%)</td>
</tr>
<tr>
<td>PR-</td>
<td>According to the source it is probably not the case that X</td>
<td>56 (0.4%)</td>
</tr>
<tr>
<td>PS-</td>
<td>According to the source it is possibly not the case that X</td>
<td>14 (0.1%)</td>
</tr>
<tr>
<td>CTu</td>
<td>The source knows whether it is the case that X or that not X</td>
<td>12 (0.1%)</td>
</tr>
<tr>
<td>Uu</td>
<td>The source does not know what the factual status of the event is, or does not commit to it</td>
<td>4,607 (34.2%)</td>
</tr>
</tbody>
</table>

Table: FactBank annotation scheme.
When they claimed that Sam might pass the test, I was doubtful.

Denotations from the corpus

How do lexical items contribute to veridicality assessment?

Count\((w,t)\) def the number of times word \(w\) appears as clausemate to an event marked with tag \(t\) from a non-author perspective.

\[
P(w|t) \equiv \frac{\text{Count}(w,t)}{\sum_x P(x|t)}
\]

\[
P(t|w) \equiv \frac{P(w|T)}{\sum_{t \in T} P(w|t)}
\]
Expected veridicality

Definition (Tag structure)

\[T = \begin{cases} \begin{array}{c} \text{Uu} \\ \text{0} \end{array} \quad \Leftrightarrow \quad \begin{array}{c} \text{PS}^+ \Rightarrow \text{PR}^+ \Rightarrow \text{CT}^+ \\ \text{PS}^- \Rightarrow \text{PR}^- \Rightarrow \text{CT}^- \end{array} \end{cases} \]

Definition (Expected veridicality)

\[\text{EV}(w) \overset{\text{def}}{=} \sum_{t \in T} t \cdot \text{Pr}(t|w) \]

might

ER: 0.44

certain

ER: 1.09

claim

ER: 1.77

allege

ER: 1.9
Semantics (same as for the sentiment corpus)

Definition (Lexical meanings)

\[[\alpha] = \begin{cases} [\text{EV}(\alpha), +3] & \text{if } \text{EV}(\alpha) \geq 0 \\ [-3, \text{EV}(\alpha)] & \text{if } \text{EV}(\alpha) < 0 \end{cases} \]

Definition (Negation)

\[[\text{neg } \alpha] = \begin{cases} (\text{EV}(\alpha), +3] & \text{if } \text{EV}(\alpha) < 0 \\ [-3, \text{EV}(\alpha)) & \text{if } \text{EV}(\alpha) \geq 0 \end{cases} \]

Definition (Lexical relations)

- \(\alpha \equiv \beta \) iff \([\alpha] \approx [\beta] \)
- \(\alpha \sqsubseteq \beta \) iff \([\alpha] \subset [\beta] \)
- \(\alpha \sqsupset \beta \) iff \([\alpha] \supset [\beta] \)
- \(\alpha \mid \beta \) iff \([\alpha] \cap [\beta] = \emptyset \) \& \([\alpha] \cup [\beta] \neq [-4.5, +4.5] \)
- \(\alpha \wedge \beta \) iff \([\alpha] \cap [\beta] = \emptyset \) \& \([\alpha] \cup [\beta] = [-4.5, +4.5] \)
- \(\alpha \sim \beta \) iff \([\alpha] \cap [\beta] \neq \emptyset \) \& \([\alpha] \cup [\beta] = [-4.5, +4.5] \)
Examples

must

ER: 0.16

could

ER: 0.33

might

ER: 0.44

may

ER: 0.82

Figure: Modals ordered by ⊑. *must* anomalous?

say

ER: 0.63

believe

ER: 1.02

claim

ER: 1.77

allege

ER: 1.9

Figure: Attitude predicates ordered by ⊑.
Examples

Figure: Attitude predicates in |.

Figure: Attitude predicates in |.
Looking ahead: Semantic composition

- We concentrated on the lexicon throughout.
- MacCartney developed a full theory of semantic composition for natural language parse trees.
- We believe that the following rule is the right one for bringing composition and projectivity into our approach:
 \[
 \Gamma \vdash \varphi(x) R \psi(y) \quad \Gamma \vdash xS y \quad \Gamma \vdash a S b \\
 \Gamma \vdash \varphi(a) R \psi(b)
 \]
- Moving between types domains in this way poses worthwhile new logical and empirical challenges, especially when the semantic grounding is non-traditional.