Ε

メロメ メ都 メメモメメ ヨメ

Self-Enforcing Voluntary Disclosures (Gigler '94)

Aneesh Raghunandan

February 9, 2015

Aneesh Raghunandan

Background

- \triangleright Previous literature suggests firms withhold private information in order to avoid proprietary costs (Verrecchia '83, Dye '85, etc.). Is this always the case?
- \triangleright This paper shows that proprietary costs can actually increase voluntary disclosure, when such disclosure generates credibility.
- \triangleright Does so by introducing tension in the form of a second (entrant) firm; the incumbent firm wishes to mislead the entrant downward while simultaneously misleading the market upward.
- \triangleright Model only has cheap-talk equilibria rather than exact disclosures, unlike most previous voluntary disclosure models.
	- \triangleright Extends Newman and Sansing, one such paper that did use cheap-talk equilibria, by allowing shareholders to sell their shares and by making the proprietary cost dependent upon the firm's private information. メロメ メ母メ メミメ メミメ Ε

Motivation

- \triangleright Previous voluntary-disclosure models assume that firms would truthfully disclose all private information in the absence of proprietary costs, i.e., that these costs are the friction preventing full (truthful) disclosure.
- \triangleright By contrast, in this setting firms wish to mislead the capital market to believe that profitability is higher than it actually is; since there is no cost of disclosure, any disclosure made by the firm in the absence of other tensions is unlikely to be credible ("cheap talk").
- \triangleright The friction leading to an equilibrium in this case is the second firm. Firms play a Cournot game in the final stage, and Firm 1 has the opportunity to mislead Firm 2 about the total market demand. As such, Firm 1 would like to send Firm 2 a negative signal about the market, so that Firm [2 u](#page-1-0)[nd](#page-3-0)[e](#page-1-0)[rpr](#page-2-0)[o](#page-3-0)[d](#page-0-0)[u](#page-1-0)[c](#page-2-0)[e](#page-3-0)[s.](#page-0-0) Ε

Model Setup

- \blacktriangleright Two firms and the market
- \blacktriangleright Firms compete in a Cournot fashion, with market demand parameter t ; i.e., the market demand function is given by

$$
P=t-q_1-q_2
$$

- \triangleright Firm 1 (the firm of interest) has a first-mover advantage in the sense that before firms make output decisions, it observes a private signal about t . After observing t , Firm 1 sends a signal $m(t)$, seen by both the market and the second firm.
- \triangleright Cournot profits are $\pi_1 = q_1(t q_1 q_2)$ and $\pi_2 = q_2(t - q_1 - q_2).$

Model Setup

Capital market pays K to buy a share α **of the firm. K is** assumed to be fixed, so that α is a function of K and the firm's expected terminal value. That is,

$$
\alpha \cdot \mathbb{E}[\pi_1(q_1, q_2, t) | m] = K
$$

 \triangleright Note that this doesn't affect the firm's output decision; by assumption that firm values its current owners and future shareholders equally, firm maximizes the following with respect to q_1 :

$$
(1-\alpha)\pi_1(m) + K = \pi_1(q_1, q_2(m), t)
$$

 \triangleright Other equilibrium conditions: firm 2 maximizes $\mathbb{E}[\pi_2(q_2,q_1(m,t),t)|m]$ and the market sets

$$
\alpha(m)=\frac{\mathcal{K}}{\mathbb{E}[\pi_1(q_1(m,t),q_2(m),t)|m]}\Big|_{s\;\mathbb{R}^m\times\;\mathbb{R}^m\times\;\mathbb{R}^m\times\;\mathbb{R}^m\times\mathbb{R}^n\times\mathbb{
$$

Aneesh Raghunandan

Key Assumption

At each period of time, firm only maximizes over *current* shareholders. So before selling equity, in stage 1 the firm maximizes $(1 - \alpha) \mathbb{E}[\pi_1|m]$. This means that when making its reporting decision, the firm maximizes

 $(1 - \alpha(m)) \mathbb{E}[\pi_1|m]$

for each t, given the following equilibrium beliefs by the other parties:

$$
f(t|m) = \frac{f(t)}{\int_{T(m)} f(\tau) d\tau}
$$
 for $m(t) = m$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 Ω

(and zero otherwise).

Aneesh Raghunandan

 $E = \Omega Q$

≮ロト ⊀個 ▶ ⊀ 君 ▶ ⊀ 君 ▶ ...

Second-Stage Equilibrium (Lemma 1)

Given a disclosure strategy $m(t)$, the stage-2 equilibrium in product and capital markets is given by

$$
q_2(m) = \frac{\mathbb{E}[t|m]}{3}
$$

\n
$$
q_1(m,t) = \frac{t - q_2(m)}{2} = \frac{3t - \mathbb{E}[t|m]}{6}
$$

\n
$$
\pi_1(q_1, q_2, t) = \frac{(t - q_2(m))^2}{4}
$$

\n
$$
\alpha(m) = \frac{36K}{4(\mathbb{E}[t|m])^2 + 9\text{Var}[t|m]}
$$

Aneesh Raghunandan

Supporting Result: Proposition 1

- \triangleright Proposition 1: there can be no information disclosed privately to either the competitor or the capital market in equilibrium.
- \triangleright Sketch of proof: show that if private disclosure to market, firm has incentive to inflate as much as possible (disclosure is costless) so market ignores the disclosure and uses its prior for α ; similarly, if privately disclosing to Firm 2, Firm 1 has incentive to deflate as much as possible and so Firm 2 also ignores any disclosure.

Supporting Results: Propositions 2 and 3

- \triangleright These propositions also exist to set up the main result of the paper.
- **Proposition 2:** Any equilibrium strategy $m(t)$ results in a nondecreasing outcome; i.e., if $t'' > t$ then $(\alpha(t''), q_2(t'')) \geq (\alpha(t'), q_2(t')).$
- \triangleright Follows from Lemmas 2 (game is a cheap-talk game) and 3 (set of equilibrium outcomes are completely ordered). Useful for Proposition 4 (the main result).
- \triangleright Proposition 3: There are no full disclosure intervals in a public disclosure equilibrium.

 Ω

Main Result: Partition Equilibria (Proposition 4)

 \triangleright Proposition 4: All public disclosure equilibria are partition equilibria. That is, equilibrium outcomes are characterized by

$$
q_2(t) = \frac{\mathbb{E}[t|t \in (t_i, t_{i+1})]}{3}
$$

\n
$$
\alpha(t) = \frac{36K}{4 \{\mathbb{E}[t|t \in (t_i, t_{i+1})]\}^2 + 9\text{Var}[t|t \in (t_i, t_{i+1})]}
$$

for all $t \in (t_i, t_{i+1})$.

 \triangleright The partition is defined implicitly by

$$
(1-\alpha(t'))\frac{(t_i-q_2(t'))^2}{4}=(1-\alpha(t''))\frac{(t_i-q_2(t''))^2}{4}
$$

for $t' \in (t_{i-1}, t_i)$, $t'' \in (t_i, t_{i+1})$, and $i = 1, ...N - 1$.

 \triangleright Corollary 2: The literal reporting strategy that supports the equ[i](#page-14-0)librium above is $m(t)=(t_i,t_{i+1})$ f[or](#page-8-0) a[ll](#page-10-0) $t\in (t_i,t_{i+1}).$ $t\in (t_i,t_{i+1}).$

Aneesh Raghunandan

重

 Ω

Proof of Proposition 4

- \triangleright Since any monotonic, bounded function is discontinuous at most countably many times, we can enumerate the points of discontinuity of $q_2(t)$.
- Gorollary 1 and Proposition 3: $q_2(t)$ cannot be strictly increasing on any interval \Rightarrow it can only be increasing at the points of discontinuity, i.e., it must be a step function
- \triangleright Now let m_i be a message inducing the equilibrium outcome on t_i, t_{i+1} and let $M(m_i)$ be the set of all messages which induce the same outcome as m_i . Since q_2 is monotonic,

 $m(t) \in M \Leftrightarrow t \in (t_i, t_{i+1})$

Eletting $g(m)$ be the marginal density of $f(t, m)$, since $q_2 \equiv \mathbb{E}[t|m]/3$ we have

$$
\int_M q_2(m)g(m)dm = \int_M \frac{\mathbb{E}[t|m]}{3}g(m)dm
$$

Aneesh Raghunandan

Proof of Proposition 4

- ► Since q_2 is locally constant on M, this gives $q_2 = \frac{\mathbb{E}[t|m \in M(m_i)]}{3}$ 3 for all $m \in M(m_i)$.
- ▶ This is equivalent to (since $m(t) \in M(m_i) \Leftrightarrow t \in (t_i, t_{i+1}))$

$$
q_2(t) = \frac{\mathbb{E}[t|t \in (t_i, t_{i+1})]}{3} \forall t \in (t_i, t_{i+1})
$$

 \triangleright Finally, to prove Eq. (14) (the cutoff equation) by contradiction, suppose there were strict inequality. Then by continuity we would have $\hat{t} \in (t_i,t_{i+1})$ such that the inequality is satisfied with t_i is replaced with \hat{t} ; but then $q_2(\hat{t})\neq q_2(t'').$

∍

Proposition 5 (Informative Equilibria)

- \triangleright Proposition 4 alone admits the possibility of unique noninformative equilibria. The goal of Proposition 5 is to establish when these equilibria are informative:
- \triangleright Proposition 5: There exists an informative disclosure equilibrium when K is neither too small nor too large. That is, whenever $K < K < \overline{K}$, there is an informative disclosure; further, K and \overline{K} are bounded above and below by K and \overline{K} , which in turn are bounded below by 0 and above by $\frac{4\mu^2+9\sigma^2}{36}$. K and \overline{K} are defined by

$$
\frac{K}{K} = \frac{(\mu - \underline{t})(5\underline{t} - \mu)}{3(\mu - \underline{t})(3\underline{t} + \mu) + 9\sigma^2} \frac{4\mu^2 + 9\sigma^2}{36}
$$
\n
$$
\overline{K} = \frac{(\mu - \overline{t})(5\overline{t} - \mu)}{3(\mu - \overline{t})(3\overline{t} + \mu) + 9\sigma^2} \frac{4\mu^2 + 9\sigma^2}{36}
$$

Aneesh Raghunandan

Proposition 5

- \triangleright Sketch of proof: Recall from Crawford and Sobel that if there is a partition equilibrium with *subintervals, then there is* also a partition equilibrium for each size $n = 1, 2, ...N$. Therefore, to find "informative" equilibria, it suffices to find two-element partition equilibria.
- Given this, compute expressions for $K(t)$ and $K(\bar{t})$ and derive conditions for t, \overline{t} such that $K(\overline{t}) > K(\underline{t})$; then apply the intermediate value theorem.

Proposition 5

- \triangleright Proposition 5 (and Corollary 3, for uniform distributions) generalize Proposition 1, in the sense that if K is sufficiently large, the capital market effect is too dominant whereas if K is sufficiently small, the product market effect is too dominant.
- \triangleright Considering the special case of the two-element equilibrium, as K increases, higher firm types disclose more precise information while lower tpyes make their disclosures noisier.
- \blacktriangleright Equivalently (again in the two-element equilibrium), as the relative level of proprietary costs increases, lower types disclose more precise information while higher types disclose less precise information.