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1 Expected Utility

In the XVII century, Blaise Pascal and Pierre Fermat thought that risky

prospects ought to be assessed based on their expected values. In 1713

Nicolas Bernoulli described the St. Petersburg paradox prompting his

cousin, Daniel, to propose expected utility theory as a solution. In 1728,

Gabriel Cramer, in a letter to Nicolas Bernoulli, wrote, ”the mathemati-

cians estimate money in proportion to its quantity, and men of good sense

in proportion to the usage that they may make of it.” In 1738, Daniel

Bernoulli, proposed that a mathematical function should be used to cor-

rect the expected value.



Information, from an economic perspective, has been studied traditionally

in the context of choice theory. Given a space of consequences X =

x1, x2, .., xn the set of lotteries is represented P = ∆ (X) . A lottery p ∈ P
is a vector of probabilities where pi is the probability of consequence xi.

Definition 1 A utility function U : P → R has an expected utility form if

there are numbers (u1, u2, ..., un) such that for very p ∈ P

U (p) =
n∑
i=1

piui.

Theorem 2 (VNM 1944) A complete and transitive preference relation on

P satisfies continuity and independence if and only if it admits an expected

utility representation U : P → R.



2 Comparing Risky Prospects

When can we say that a lottery pays more than another? This question

leads to the idea of First Order Stochastic Dominance.

Proposition 3 The distribution G first order stochastically dominates dis-

tribution F if for all x G (x) ≤ F (x) , or equivalently if for every non

decreasing function u,
∫
u (x) dG (x) ≥

∫
u (x) dF (x).

Proof. Homework.

• Two similar but logically distinct ideas: G is more likely to pay more

than F, and a decision maker will prefer G to F.



When can we say that a lottery is more risky than another?

• A comparison of variances is insufficient

• Here we develop a measure of risk based for comparing rv’s with the

same mean

• Without loss of generality consider a family of rv indexed by r on the

closed interval [0, 1]

• Let F (x, r) be the cdf of xr. We assume F is twice continuously

differentiable



• Intuitively we say that F (., r2) is more risky than F (., r1) if the dis-

tribution for r2 is obtained from the distribution for r1 by displacing

weight from the center to the tails, while keeping the mean constant.

FIGURE.

Formally F (., r2) MR F (., r1) if and only if

• 1. the two distributions have the same mean. This implies∫ 1

0
[F (y, r2)− F (y, r2) dy] = 0

2. F (., r2) is obtained from F (., r1) by a succession of displacements

of the type illustrated.



3. Clearly the previous two conditions imply that
∫ y
0 [F (x, r2)− F (x, r1)] dx ≥

0 ∀y ∈ [0, 1] .

• On the other hand, Rothschild and Stiglitz (1970) show that (3) and

(1) implies (2).

Proof. Homework.

• We thus arrive at the following definition.

Definition 4 An increase in r is a mean preserving increase in risk iff

1.
∫ 1
0
∂
∂rF (x, r) dx = 0



2.
∫ y
0
∂
∂rF (x, r) dx ≥ 0 ∀y ∈ [0, 1] .

• This definition induces a partial ordering over distributions with the

same mean.

• Rothschild and Stiglitz (1970) show that

xr2 MR xr1 ⇐⇒ Eu (xr2) ≤ Eu (xr1)

• for all concave u (·) . Moreover,

xr2 MR xr1 ⇐⇒ xr2 = xr1 + ε

• where ε is a noise such that E [ε|xr1] = 0.



Proposition 5 Consider two distributions with the same mean G and F.

The distribution G second order stochastically dominates distribution F if

for all x,
∫ x
−∞G (t) dt ≤

∫ x
−∞ F (t) dt or equivalently if for every concave

function u,
∫
udG ≥

∫
udF.

Proof. We only prove sufficiency. Integration by parts leads to∫
u (x) dG−

∫
u (x) dF (x) =

∫
u′ (x) [F (x)−G (x)] dx

Integrating by parts again, and using
∫

[F (x)−G (x)] dx = 0 (because

both distributions have the same mean) yields∫
u (x) dG (x)−

∫
u (x) dF (x) =

∫
u′′ (x)

[∫ x
−∞

G (t) dt−
∫ x
−∞

F (t) dt
]
dx ≥ 0



where the inequality follows from assumption u′′ ≤ 0 and the hypothesis[∫ x
−∞

G (t) dt−
∫ x
−∞

F (t) dt
]
≤ 0.

This shows that all risk averse decision makers prefer distribution G to F.
Homework: prove that if

∫ x
−∞G (t) dt ≤

∫ x
−∞ F (t) dt does not hold for all

x, then we can find a decision maker (characterized by a concave utility
function u) who prefers F to G.

Remark 6 To demonstrate that the variance is not a good measure of risk
we consider an example of two rv’s with the same mean x1 and x2, where
var (x1) < var (x2) yet Eu (x2) > Eu (x1) .

Example 7 x1 = 1 (resp 100) with probabilty .8 (resp .2) and x2 = 10
(resp 1090) with probability .1 (resp .99). One can check that E (xi) =
20.8, var (x1) = 1568, and var (x2) = 11547 and E log (x1) = .92 <
E log (x2) = 2.35.



3 Information Structures

3.1 Information Structure without Noise

• Let (Ω,O) be a measurable space of states of nature.

• The prior information of an agent is represented by a probability mea-

sure π on (Ω,O)

• For example Ω = {ω1, ω2, ω3} can be good, average and bad quality



• π (ω1) is the probability the agent assigns to the product being of

good quality

Definition 8 An information structure without noise consists of a space of

signals Y and a measurable function ϕ from the space of states to Y

INSERT FIGURE

• The function ϕ defines a partition of Ω, the elements of which are

given by

Oi = ϕ−1 (yi) for yi ∈ Y.

• A decision maker wishes to maximize his objective function u (ω, a)

with respect to his action a ∈ A without knowing ω.



• If he is rational, he maximizes expected utility

max
a∈A

∫
Ω
u (a, ω)π (ω) dπ (1)

• Let a∗0 be the solution to problem (1) .

• Let P1 = {O1 (y) , y ∈ Y1} be the partition generated by information

structure 1.

• EXAMPLE.

• Denote v (ω|y) the posterior probability distribution. If ω /∈ O1 (y)



then v (ω|y) = 0, otherwise

v (ω|y) =
π (ω)∫

O1(y) π (ω̃) dω̃
.

• Namely, the agent revises his beliefs using Bayes’ Theorem.

• For each value of y the agent knows that he will solve the following

problem

max
a∈A

∫
Ω
u (a, ω) v (ω|y) dω

=
∫

Ω
u (a∗1 (y) , ω) v (ω|y) dω = V (y).



• He can evaluate ex ante the value of having information structure P1

U (P1) =
∫
Y 1
V (y)π (y) dy

• where π (y) is the prior probabilty of having the signal y, that is

π (y) =
∫
O1(y)

π (ω) dω.

• We say that information structure 1 is better than information struc-

ture 2 for the agent if

U (P1, π, u) > U (P2, π, u) .

• Clearly, this comparision depends on the agent’s preferences u and his

prior beliefs π.



• But can we compare information structures independently from these

characteristics?

Definition 9 We say that information structure 1 is finer than information

structure 2 if the partition generated by structure 1 is finer than the one

generated by structure 2, that is ∀O2 ∈ P2 there is
{
O1
i

}k
i=1

: ∪ki=1O
1
i =

O2.

Theorem 10 Information structure 1 is finer than information structure 2

if and only if for any prior probability distribution π and for any utility

function u: U (P1, π, u) ≥ U (P2, π, u) .

Proof. if (1) is finer than (2), then ∀y2 andO2, there existsO1
1, .., O

1
k:∪kj=1O

1
j .

Let a∗2 (y2) be the optimal action given signal y2. By definition we have



that for all j

max
a

∫
O1
j

u (a, ω) v
(
ω|y1

j

)
dω ≥

∫
O1
j

u
(
a∗2

(
y2
)
, ω
)
v
(
ω|y1

j

)
dω.

Let a∗1 (j) be the solution to the above problem for j = 1..., k. We have

k∑
j=1

π
(
y1
j

) ∫
O1
j

u
(
a∗1 (j) , ω

)
v
(
ω|y1

j

)
dω

≥
k∑
j=1

π
(
y1
j

) ∫
O1
j

u
(
a∗2 (y2) , ω

)
v
(
ω|y1

j

)
dω,

since this holds for any signal y2 /∈ Y 2 the result has been shown. To
shown the converse result we must show that for any pair of partitions
(P1,P2) such that neither partition is finer than the other we can find a
decision problem in which P1 is preferred to P2 and vice versa. FIGURE.



• Prior information can be identified with an uninformative information
structure P0

U (P0, π, u) = max
a∈A

∫
Ω
u (a, ω)π (ω) dπ.

• Every information structure is finer than P0. From Theorem 10 we
conclude that an information structure without noise is always valuable
to an agent and we can define the value of information structure by

V (P1, π, u) = U (P1, π, u)− U (P0, π, u) ≥ 0.

3.2 Information Structure with Noise

• Consists of a space of signals and a function from Ω to the state of
probability measures over Y



• In other words it’s given by a conditional probability function f (y|ω)

over Y.

• For example, if y is normally distributed then f (y|ω) = 1√
2πσ

exp
(
−(y−ω)2

2σ2

)

• Given f (y|ω) beliefs are revised according to Bayes, as follows:

v (ω|y) =
f (y|ω)π (ω)∫

Ω f (y|ω̃)π (ω̃) dω̃
.

• The important point is that the decision maker knows f (.|.) , namely

he knows the probability the information system will make a mistake.



• Without information the decision maker solves

max
a∈A

∫
Ω
u (a, ω)π (ω) dπ

• which yields the optimal decision a0∗

• With information structure characterized f (y|ω) , for any value of y

he solves

max
a∈A

∫
Ω
u (a, ω) v (ω|y) dω

• which yields decision a∗ (y) . By definition of a∗ (y) we have∫
Ω
u (a∗ (y) , ω) v (ω|y) dω ≥

∫
Ω
u
(
a0∗, ω

)
v (ω|y) dω



• therefore ∫
Y

∫
Ω
u (a∗ (y) , ω) v (ω|y) dωπ (y) dy

≥
∫
Y

∫
Ω
u
(
a0∗, ω

)
v (ω|y) dωπ (y) dy

=
∫
Y

∫
Ω
u
(
a0∗, ω

)
f (y|ω) dyπ (ω) dω (By Bayes)

=
∫

Ω
u
(
a0∗, ω

)
π (ω) dω.

• Comparing information structures with Noise is more delicate and is

the subject of BlacKwell’s Theorem.

• Let

U [Y, f, π, u] =
∑
Y

π (y)
∫
u (a∗ (y) , ω) v (ω|y) dω.



Definition 11 Information structure
[
Y 1, f1

]
is more valuable than

[
Y 2, f2

]
iff

U
[
Y 1, f1, π, u

]
≥ U

[
Y 2, f2, π, u

]
, ∀u, π.

Theorem 12 Blackwell (1951). Information structure
[
Y 1, f1

]
is more

valuable than
[
Y 2, f2

]
iff

[
Y 1, f1

]
is sufficient for

[
Y 2, f2

]
,namely iff

there exists non negative numbers βy1
k,y

2
k′

such that

1. f2
(
y2
k′|ω

)
=
∑
y1
k∈Y1

βy1
k,y

2
k′
f
(
y1
k|ω

)
for all ω and y2

k′

2.
∑
y2
k′∈Y

2 βy1
k,y

2
k′

= 1 for all y1
k ∈ Y

1.



Proof. See Cremer 1982.

This (1) is a generalization of the following idea. Each time y1 is observed,

it is garbled by a stochastic mechanism independent of ω and transformed

into a vector of signals in Y 2 via the conditional distribution p (y2|y1) .

Example 13 When Y 1, Y 2,Ω have a finite number of elements say 2 ele-

ments then

F 1 =

f1
(
y1

1|ω1

)
f1
(
y1

1|ω2

)
f1
(
y1

2|ω1

)
f1
(
y1

2|ω2

)

F 2 =

f2
(
y2

1|ω1

)
f2
(
y2

1|ω2

)
f2
(
y2

2|ω1

)
f2
(
y2

2|ω2

)



B =

βy2
1y

1
1
βy2

1y
1
2

βy2
2y

1
1
βy2

2y
1
2



• B is a Markov probability matrix (if we fix a column and sum across

rows we get 1). Condition 1 can be written as

F 2 = BF 1.

Example 14 Consider a perfect expert in the example when a good can

be either good or bad.

F 1 =

(
1 0
0 1

)
.



Now consider a Markov Matrix of the form

B =

(
1
4

1
2

3
4

1
2

)
.

Then

F 2 =

(
1
4

1
2

3
4

1
2

)(
1 0
0 1

)
=

(
1
4

1
2

3
4

1
2

)

So expert 2 is no longer perfect, he errs three out of four times when

quality is high and one out of two times when is bad.



3.3 Demski 1973 and the Impossibility of General Account-

ing Standards

• Demski (1973) asks whether there is an optimal accounting standard

defined as a complete ranking of information systems based on (Black-

well) informativeness. As we know from Blackwell (1951), Blackwell’s

is an incomplete ordering, hence the answer to Demski’s question is

no.

• For example, we cannot say in general whether a system that provides

precise good news is better than one that provides precise bad news:

it depends on the decision problem.



• Of course, we know there is a normative criterion to partially ranks

information systems in single agent decision settings that holds for all

u and π and it’s called Blackwell.

3.4 Normally Distributed Signals

• For continuously distributed signals, we say that a signal s is sufficient

for signal s′ if there is a stochastic transformation g : S × S′ → R+,

where
∫
Y ′ g

(
y′, y

)
dy′ = 1 for any y ∈ Y. Assuming that g is integrable

f ′
(
y′|ω

)
=
∫
Y
g
(
y′, y

)
f (y|ω) dy.

For example assume ω ∼ N
(
µ, σ2

ω

)
and y|ω ∼ (ω, σ2

ε), that is

y = ω + ε



where ε ∼ N
(

0, σ2
ε

)
and cov(ε, ω) = 0.

• It’s clear that y is more informative than y′ iff τε ≥ τε′ because s′ can

be obtained from s by adding noise.

• In general, y is more informative than y if and only if ε′ has the same

distribution as ε+ ξ where ε and ξ are independent.

• So if ε′ is normal, then both ε and ξ must be normal for y and y′ to be

Blackwell comparable (see Lehmann (1988)). This implies than only

a normally distributed signal can be Blackwell more informative than

other normally distributed signal.

• UNIFORM EXAMPLE.



3.4.1 Sufficient Statistic

The notion of sufficiency should not be confused with the notion of suf-

ficient statistic. Roughly, given a set X of independent identically dis-

tributed data conditioned on an unknown parameter θ, a sufficient statis-

tic is a function T (X) whose value contains all the information needed to

compute any estimate of the parameter (e.g. a maximum likelihood esti-

mate). Due to the factorization theorem, for a sufficient statistic T (X),

the joint distribution can be written as

p(X) = h(X)g(θ, T (X)),

From this factorization, it can easily be seen that the maximum likelihood

estimate of θ will interact with X only through T (X). Typically, the

sufficient statistic is a simple function of the data, e.g. the sum of all the

data points. Wikipedia.



4 Integral Precision

Blackwell does not tell us how to recognize empirically the informative-

ness of an information system. In fact, checking Blackwell conditions is

notoriously difficult.

Ganuza and Penalva (2010) provide a measure of informativeness based

on the dispersion of conditional expectations called integral precision.

• Let V be a random variable representing the state of nature, i.e., the

firm value. Let Yk be a signal.

• For a given prior H (v) we compare a signal Y1 with another Y2 in

terms of information content. We say that Y1 is more precise than



Y2 if E[V |Y1] is more disperse than E[V |Y2]. We use the notion of

dispersion that the satistics literature refers to as the convex order.

Definition 15 X is greater than Z in the convex order if for all convex real

valued functions φ, E[φ (X)] ≥ E [φ (Z)] provided the expectation exists.

• If both X and Z have the same finite mean, then X ≥cx Z if and

only if X is a mean preserving increase in risk of Z.

Definition 16 Y1 is more integral precise than Y2 if E[V |Y1] is greater in

the convex order than E[V |Y2].

• Notice that signals are ordered for a given prior. The prior plays a

crucial role in the definition.



• Integral precision is a partial order, and it’s consistent with Blackwell

in the sense that if two signals are ordered according to Blackwell,

they will be equally ordered according to integral precision. There are

signals that can be ranked according to integral precision but can’t be

ranked according to Blackwell.

The notion of integral precision implies that if we think of stock prices

as expectations conditional on accounting information, then the informa-

tiveness of earnings announcements could be measured by estimating the

dispersion of stock prices during earnings announcements. HOMEWORK.



5 Entropy

• Entropy is a measure of the uncertainty behind a random variable. It

was developed by Claude Shannon in the 1948.

• Mathematically, it is defined as

H (X) = E[I (X)] = E [− lnP (X)]

• We can think of entropy as the average surprise of the information.

Example 17 For example, if X is a binomial r.v then

H (X) = −p0 ln p0 − (1− p0) ln (1− p0) .

Entropy is maximized when p0 = 1
2.



INSERT PLOT HERE

• Information, according to entropy, must satisfy the following condi-

tions:

1. I (p) ≥ 0

2. I (1) = 0

3. I (p1p2) = I (p1) + I (p2) if the two events are independent.

• The information of signal Y can be represented as

EY [H (X)−H (X|Y )] .



6 Information and Risk Sharing: The Hirshleiffer

1971 Effect
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