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We’ve seen two criteria for evaluating gambles (lotteries or risky assets). FOSD
and SOSD.

Next we study criteria for evaluating information structures.

1 Information Structures

1.1 Information Structure without Noise

• Let (Ω,O) be a measurable space of states of nature



• The prior information of an agent is represented by a probability measure
π on (Ω,O)

• For example, if the agent is buying a commondity, Ω = {ω1, ω2, ω3} can
be good, average and bad quality

• π (ω1) is the probability the agent assigns to the product being of good
quality

Definition 1 An information structure without noise consists of a space of
signals Y and a measurable function ϕ from the space of states to Y
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• The function ϕ defines a partition of Ω, the elements of which are given
by

Oi = ϕ−1 (yi) for yi ∈ Y.

• A decision maker wishes to maximize his objective function u (ω, a) with
respect to his action a ∈ A without knowing ω

• If he is rational, he maximizes expected utility

max
a∈A

∫
Ω
u (a, ω)π (ω) dπ (1)

• Let a∗0 be the solution to problem (1) .



• Let P1 = {O1 (y) , y ∈ Y1} be the partition generated by information
structure 1.

• EXAMPLE.

• Denote v (ω|y) the posterior probability distribution. If ω /∈ O1 (y) then
v (ω|y) = 0, otherwise

v (ω|y) =
π (ω)∫

O1(y) π (ω̃) dω̃
.

• Namely, the agent revises his beliefs using Bayes’Theorem.



• For each value of y the agent knows that he will solve the following problem

max
a∈A

∫
Ω
u (a, ω) v (ω|y) dω

=
∫

Ω
u (a∗1 (y) , ω) v (ω|y) dω = V (y).

• He can evaluate ex ante the value of having information structure P1

U (P1) =
∫
Y 1
V (y)π (y) dy

• where π (y) is the prior probability of having the signal y, that is

π (y) =
∫
O1(y)

π (ω) dω.



• We say that information structure 1 is better than information structure 2

for the agent if

U (P1, π, u) > U (P2, π, u) .

• Clearly, this comparision depends on the agent’s preferences u and prior
beliefs π.

• But can we compare information structures independently from these char-
acteristics?

Definition 2 We say that information structure 1 is finer than information
structure 2 if the partition generated by structure 1 is finer than the one gen-

erated by structure 2, that is ∀O2 ∈ P2 there is
{
O1
i

}k
i=1

: ∪ki=1O
1
i = O2.



Theorem 1 Information structure 1 is finer than information structure 2 if
and only if for any prior probability distribution π and for any utility function
u: U (P1, π, u) ≥ U (P2, π, u) .

Proof. if (1) is finer than (2), then ∀y2 and O2, there exists O1
1, .., O

1
k such

that ∪kj=1O
1
j . Fix a signal y2. Let a∗2 (y2) be the optimal action given signal

y2. Since information structure 1 is finer than information structure 2, then
there is a set of k signals y1

1, y
1
2, y

1
j , ..., y

1
k that I would have observed if info

struct 1 was in place. By definition we have given signal y1
j

max
a

∫
O1
j

u (a, ω) v
(
ω|y1

j

)
dω ≥

∫
O1
j

u
(
a∗2

(
y2
)
, ω
)
v
(
ω|y1

j

)
dω.



Let a∗1
(
y1
j

)
be the solution to the above problem for j = 1..., k. We have

k∑
j=1

π
(
y1
j

) ∫
O1
j

u
(
a∗1

(
y1
j

)
, ω
)
v
(
ω|y1

j

)
dω

≥
k∑
j=1

π
(
y1
j

) ∫
O1
j

u
(
a∗2 (y2) , ω

)
v
(
ω|y1

j

)
dω,

since this holds for any signal y2 /∈ Y 2 the result has been shown. To show
the converse result we must show that for any pair of partitions (P1,P2) such
that neither partition is finer than the other we can find a decision problem in
which P1 is preferred to P2 and vice versa. FIGURE.

• Prior information can be identified with an uninformative information struc-
ture P0

U (P0, π, u) = max
a∈A

∫
Ω
u (a, ω)π (ω) dπ.



• Every information structure is finer than P0. From Theorem 1 we conclude
that an information structure without noise is always valuable to an agent
and we can define the value of information structure by

V (P1, π, u) = U (P1, π, u)− U (P0, π, u) ≥ 0.

1.2 Information Structure with Noise

• Consists of a space of signals and a function from Ω to the state of prob-
ability measures over Y

• In other words it’s given by a conditional probability function f (y|ω) over
Y.



• For example, if y is normally distributed then f (y|ω) = 1√
2πσ

exp
(
−(y−ω)2

2σ2

)

• Given f (y|ω) beliefs are revised according to Bayes, as follows:

v (ω|y) =
f (y|ω)π (ω)∫

Ω f (y|ω̃)π (ω̃) dω̃
.

• The important point is that the decision maker knows f (.|.) , namely he
knows the probability the information system will make a mistake.

• Without information the decision maker solves

max
a∈A

∫
Ω
u (a, ω)π (ω) dπ



• which yields the optimal decision a∗0

• With information structure characterized f (y|ω) , for any value of y he
solves

max
a∈A

∫
Ω
u (a, ω) v (ω|y) dω

• which yields decision a∗ (y) . By definition of a∗ (y) we have∫
Ω
u (a∗ (y) , ω) v (ω|y) dω ≥

∫
Ω
u
(
a∗0, ω

)
v (ω|y) dω



• therefore ∫
Y

∫
Ω
u (a∗ (y) , ω) v (ω|y) dωπ (y) dy

≥
∫
Y

∫
Ω
u
(
a∗0, ω

)
v (ω|y) dωπ (y) dy

=
∫
Y

∫
Ω
u
(
a∗0, ω

)
f (y|ω) dyπ (ω) dω (By Bayes)

=
∫

Ω
u
(
a∗0, ω

)
π (ω) dω.

• Comparing information structures with Noise is more delicate and is the
subject of BlacKwell’s Theorem.

• Let

U [Y, f, π, u] =
∑
Y

π (y)
∫
u (a∗ (y) , ω) v (ω|y) dω.



Definition 3 Information structure
[
Y 1, f1

]
is more valuable than

[
Y 2, f2

]
iff

U
[
Y 1, f1, π, u

]
≥ U

[
Y 2, f2, π, u

]
, ∀u, π.

Theorem 2 Blackwell (1951,1953). Information structure
[
Y 1, f1

]
is more

valuable than
[
Y 2, f2

]
iff
[
Y 1, f1

]
is suffi cient for

[
Y 2, f2

]
,namely iff there

exists non negative numbers βy1
k,y

2
k′
such that

1. f2
(
y2
k′|ω

)
=
∑
y1
k∈Y1

βy1
k,y

2
k′
f
(
y1
k|ω

)
for all ω and y2

k′

2.
∑
y2
k′∈Y

2 βy1
k,y

2
k′

= 1 for all y1
k ∈ Y

1.



Proof. See Crémer (1982).

This (1) is a generalization of the following idea. Each time y1 is observed, it
is garbled by a stochastic mechanism independent of ω and transformed into a
vector of signals in Y 2 via the conditional distribution p (y2|y1) .

Example 1 When Y 1, Y 2,Ω have a finite number of elements say 2 elements
then

F 1 =

f1
(
y1

1|ω1

)
f1
(
y1

1|ω2

)
f1
(
y1

2|ω1

)
f1
(
y1

2|ω2

)

F 2 =

f2
(
y2

1|ω1

)
f2
(
y2

1|ω2

)
f2
(
y2

2|ω1

)
f2
(
y2

2|ω2

)



B =

βy2
1y

1
1
βy2

1y
1
2

βy2
2y

1
1
βy2

2y
1
2



• B is a Markov probability matrix (if we fix a column and sum across rows
we get 1). Condition 1 can be written as

F 2 = BF 1.

Example 2 Consider a perfect expert in the example when a good can be either
good or bad.

F 1 =

(
1 0
0 1

)
.



Now consider a Markov Matrix of the form

B =

(
1
4

1
2

3
4

1
2

)
.

Then

F 2 =

(
1
4

1
2

3
4

1
2

)(
1 0
0 1

)
=

(
1
4

1
2

3
4

1
2

)

So expert 2 is no longer perfect, he errs three out of four times when quality is
high and one out of two times when is bad.



1.3 Demski 1973 and the Impossibility of General Account-

ing Standards

• Demski (1973) asks whether there is an optimal accounting standard, de-
fined as a complete ranking of information systems based on (Blackwell)
informativeness. As we know from Blackwell (1951), the answer to Dem-
ski’s question is no.

• For example, we cannot say in general whether a system that provides
precise good news is better than another system that provides precise
bad news: it depends on the decision problem, or the decision maker
preferences.



• That does not mean there we cannot compare information systems. More
informative systems, in the sense of Blackwell, are always better. In par-
ticular, in single agent decision settings more information is always better.

1.4 Continuously Distributed Signals

• For continuously distributed signals, we say that a signal s is suffi cient for
signal s′ if there is a stochastic transformation g : S × S′ → R+, where∫
Y ′ g

(
y′, y

)
dy′ = 1 for any y ∈ Y. Assuming that g is integrable

f ′
(
y′|ω

)
=
∫
Y
g
(
y′, y

)
f (y|ω) dy.



Example 3 Suppose that ω˜U [−M,M ] and consider the family of signals
indexed by ε, where s = ω+Uniform[−ε, ε] . Show that these signals cannot
be ranked based on Blackwell criterion.

• When are normally distributed signals Blackwell more informative?

Assume ω ∼ N
(
µ, σ2

ω

)
and y|ω ∼ (ω, σ2

ε), that is

y = ω + ε

where ε ∼ N
(

0, σ2
ε

)
and cov(ε, ω) = 0.

• In general, y is more informative than y′ = ω + ε′ if and only if ε′ has
the same distribution as ε+ ξ where ε and ξ are independent. (So if ε′ is



normal, then both ε and ξ must be normal for y and y′ to be Blackwell
comparable (see Lehmann (1988)). This implies than only a normally
distributed signal can be Blackwell more informative than other normally
distributed signal.)

• It’s clear that y is more informative than y′ iff τε ≥ τε′ because y′ can be
obtained from y by adding noise.

1.4.1 Suffi cient Statistic (Digression)

The notion of Blacwkell suffi ciency should not be mistaken with that of a suf-
ficient statistic. Roughly, given a set X of independent identically distributed



data conditioned on an unknown parameter θ̃, a suffi cient statistic is a func-
tion T (X) whose value contains all the information needed to compute any
estimate of the parameter (e.g. a maximum likelihood estimate). Due to the
factorization theorem, for a suffi cient statistic T (X), the joint distribution can
be written as

p(X) = h(X)g(θ, T (X)),

From this factorization, it can easily be seen that the maximum likelihood
estimate of θ will interact with X only through T (X). Typically, the suffi cient
statistic is a simple function of the data, e.g. the sum of all the data points.



2 Integral Precision

Blackwell does not tell us how to identify empirically the informativeness of
an information system. In fact, checking Blackwell conditions is notoriously
diffi cult. Ganuza and Penalva (2010) provide a measure of informativeness
based on the dispersion of conditional expectations called integral precision.

• Let V be a random variable representing the state of nature, i.e., the firm
value. Let Yk be a signal (a random variable).

• For a given prior H (v) we compare a signal Y1 with another Y2 in terms
of information content. We say that Y1 is more precise than Y2 if E[V |Y1]

is more disperse than E[V |Y2]. We use the notion of dispersion that the
satistics literature refers to as the convex order.



Definition 4 X is greater than Z in the convex order if for all convex real
valued functions φ, E[φ (X)] ≥ E [φ (Z)] provided the expectation exists.

• If both X and Z have the same finite mean, then X ≥cx Z if and only if
X is a mean preserving increase in risk of Z.

Definition 5 Y1 is more integral precise than Y2 if E[V |Y1] is greater in the
convex order than E[V |Y2].

• Notice that signals are ordered for a given prior. The prior plays a crucial
role in the definition.

• Integral precision is a partial order, and it’s consistent with Blackwell in the
sense that if two signals are ordered according to Blackwell, they will be



equally ordered according to integral precision. But there are signals that
can be ranked according to integral precision but can’t be ranked according
to Blackwell.

The notion of integral precision implies that if we think of stock prices as
expectations conditioned on accounting information, then the informativeness
of accounting information could be measured by estimating the dispersion of
stock prices during earnings announcements. The problem is that we do not
know the priors. HOMEWORK.



3 Entropy

• Entropy is a measure of the average uncertainty in a random variable. It
was developed by Shannon (1948).

• Mathematically, it is defined as

H (x̃) = E[I (x̃)] = E [− lnP (x̃)]

• We can think of entropy as the average surprise of information.

Example 4 For example, if x̃ is a binomial r.v then

H (x̃) = −p0 ln p0 − (1− p0) ln (1− p0) .

Entropy is maximized when p0 = 1
2.



PLOT

• Information, according to entropy, must satisfy the following conditions:

1. I (p) ≥ 0

2. I (1) = 0

3. I (p1p2) = I (p1) + I (p2) if the two events are independent.

• The information of signal Y can be represented as

Eỹ [H (x̃)−H (x̃|ỹ)] .



4 Unraveling

The following notes are based on Milgrom (1981). The unraveling principle
was independently stated by Grossman (1981) and Milgrom (1981).

• Let Θ be the possible values of a random parameter θ̃

• The set of possible signals about θ̃ is X

• Let f (x|θ) denote the conditional density onX when θ̃ takes the particular
value θ.



Definition 6 A signal x is more favorable than another signal y if for every
non degenerate prior G for θ, the posterior distribution G (.|x) dominates the
posterior distribution G (.|y) in the sense of strict FOSD.

Proposition 1 x is more favorable than y if for every θ∗ > θ,

f (x|θ∗)
f (x|θ)

>
f (y|θ∗)
f (y|θ)

Proof. For suffi ciency, consider θ∗ > θ, then for all θ̃ > θ∗ we have that

f
(
x|θ̃

)
f (x|θ)

>
f
(
y|θ̃

)
f (y|θ)

.



Integrating for all θ̃ > θ∗∫
θ̃>θ∗ f

(
x|θ̃

)
dG

(
θ̃
)

f (x|θ)
>

∫
θ̃>θ∗ f

(
y|θ̃

)
dG

(
θ̃
)

f (y|θ)

or equivalently

f (x|θ)∫
θ̃>θ∗ f

(
x|θ̃

)
dG

(
θ̃
) < f (y|θ)∫

θ̃>θ∗ f
(
y|θ̃

)
dG

(
θ̃
).

Integrating over θ ≤ θ∗∫
θ<θ∗ f (x|θ) dG (θ)∫
θ̃>θ∗ f

(
x|θ̃

)
dG

(
θ̃
) < ∫

θ<θ∗ f (y|θ) dG (θ)∫
θ̃>θ∗ f

(
y|θ̃

)
dG

(
θ̃
).



By Bayes’rule we have g (θ|x) =
f(x|θ)g(θ)
f(x)

hence the above inequality boils
down to

G (θ∗|x)

1−G (θ∗|x)
<

G (θ∗|y)

1−G (θ∗|y)
.

which implies

G (θ∗|x) < G (θ∗|y) .

• MLRP takes its name from the fact that the likelihood ratio f(x|θ∗)
f(x|θ)

is
monotonic in x.

Proposition 2 Let x̃ be a random variable whose densities have the strict
MLRP. For any two intervals [a, b] and [c, d] with a ≥ c and b ≥ d, where



at least one inequality is strict, the signal {x̃ ∈ [a, b]} is more favorable than
{x̃ ∈ [c, d]} .

4.1 A Persuasion Game

• A commodity of unknown value θ̃ is to be exchanged for money.

• If the buyer purchases q units at price p his payoff is θ̃F (q) − pq where
F (·) is increasing, concave, and differentiable.

• CAPITAL MARKET INTERPRETATION.maxp−|
(
p− E(θ̃|r (x̃) = S)

)
|



• The seller payoff increases in q

• The seller has information about θ̃ represented by x̃.

• A report S is a closed subset of R

• The report S is an assertion by the seller that x̃ ∈ S.

• A reporting strategy is a function r (x) from R to the closed non empty
subsets of R with the property that x ∈ r (x)

• In other words the report must be truthful.



• IN WHICH ACCOUNTING CONTEXTS IS THIS A GOOD ASSUMP-
TION?

• It can be very precise as when r (x) = {x} or extremely vague as when
r (x) = R

• A purchasing strategy is denoted b (S)

• A pair (b, r) is a Nash equilibrium if holding r fixed, b is optimal for the
buyer and holding b fixed, r is optimal for the seller.

• Some Nash equilibrium are unnatural (for example No disclosure)



• We focus on sequential equilibrium (see Kreps and Wilson (1982)).

• Let c (S) be the conjecture of the market when the seller reports S. The
buyer concludes that x̃ ∈ c (S)

Definition 7 A sequential equilibrium is a triple (b, r, c) satisfying

1. For every S, b (S) solves maxqE
[
θ̃F (q)− pq|x̃ ∈ c (S)

]

2. For every x, r (x) solves maxS b (S) subject to x ∈ S

3. For every S in the range of r, c (S) = r−1 (S).



EXPLAIN.

• A strategy is called of full disclosure if r together with any optimal response
b satisfies b (r (x)) = b ({x}) . Consequently r is a full disclosure strategy
if E [θ|r (x̃) = r (x)] = E [θ|x̃ = x]

Proposition 3 At every sequential equilibrium, the seller uses a strategy of full
disclosure.

Proof. Let (b, r, c) be an equilibrium. From condition (ii) if follows that
b ({x}) ≤ b (r (x)) . Since c ({x}) = x, the inequality holds only ifE

[
θ̃|x̃ = x

]
≤

E
[
θ̃|r (x̃) = r (x)

]
. Since x is arbitrary, the inequality can be written as

E
[
θ̃|x̃

]
≤ E

[
θ̃|r (x̃)

]
. If the inequality was ever strict, we would have that



EE
[
θ̃|x̃

]
< EE

[
θ̃|r (x̃)

]
. But by the Law of Iterated ExpectationsEE

[
θ̃|x̃

]
=

EE
[
θ̃|r (x̃)

]
= E

(
θ̃
)
, hence E

[
θ̃|x̃ = x

]
= E

[
θ̃|r (x̃) = r (x)

]
therefore

r (x) is a strategy of full disclosure.

• Very general. x̃ ∈ Rn.

• Any vagueness is intepreted by the buyer in the most pessimistic possible
way by the buyer.

• Unrealistic. This does not seem to match our view of reality.

• We think of this theorem not as a real world prediction but as a conceptual
framework, similar to Modigliani Miller.



• Strong assumptions:

1. The seller always receives information

2. The buyer knows the seller has information

3. The seller cannot lie about his information

4. Common knowledge about everything

5. Disclosure is costless

6. Common priors about
(
θ̃, x̃

)
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