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Appendix A: Proofs

Proposition 2. The limit equilibrium is de�ned by equations (2.15)-(2.17).

Proof of Proposition 2. Recall that we have from equations (2.12) and (2.11), from
the First Order Conditions, that:
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We also use that:

x�i D ˛iXP.i/ (A.3)

s�i D ˛iSP.i/; (A.4)

for some XP.i/; SP.i/, which comes from the fact that
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are the same for all

agents within a party. Let P.i/ 2 ¹1; 2º be arbitrary.
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Using (A.3) in (2.12) implies:
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Multiplying both sides by X2
P.i/

yields:

cX2P.i/ D XP.i/ C S
2
P.i/; (A.5)

which is (2.17).
Let us now substitute (A.3) in (2.11):
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Note that for the �rst two terms, p.i/D p.j / because they are only summed when
j 2 P.i/. For the last, p.i/ ¤ p.j / as it is summed when j … P.i/.

Rewriting the above with this implies:
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Using that s�
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D ˛kSP.k/ leads to:
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Let us focus on the case of P.i/ D 1, as the other case is symmetric.
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Finally, we use that:X
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To �nalize the calculations, we use the simpli�cation above for the denominators
of the second and third terms.

Note that only j̨ is now a function of the summand j itself, in the main expression.
We also note that we can now use the indicators of j 2 P.i/ for the �rst two terms, and
j … P.i/ of the last term, within sums. These observations lead to the �nal equation:
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Proof of Proposition 3. Recall that an interior equilibrium is a solution to (2.15) to
(2.17).

So, rewriting these:
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Substituting (A.6) into (A.8) leads to
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(A.9)
There is a similar expression for S2;X2. Note that the right hand side of (A.9) lies

above the left hand side as we approach X1 D 0 (same for X2). To have an interior
solution, we need the right hand side to sometimes fall at or below the left hand side
for positive X1.

Suppose that the equilibrium (when it exists) is such that X1 � X2, and the other
case is analogous just reversing subscripts everywhere. Then the right hand side is less
than what we get by replacing X2 by X1, and so we want
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for some interior X1. Rewriting
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The right hand side is maximized either at S2
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Then (A.12) can be rewritten as
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1 : (A.13)

for some positive X1. Note that
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for some positive X1.
It is necessary and suf�cient to check that the left hand side and right hand side

are tangent at the point at which the slope of the right hand side is c. This happens at
X1 D
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2c3=2

3
p
3
� '1D: (A.16)

Having this hold also for the other case, leads to the claimed expression. �

Appendix B: Additional Aspects of the Theory

B.1. Best Response Dynamics

Best response dynamics are described as follows. Consider starting at some vectors
s0; x0. Then the best response dynamics are described by:

sti D x
t�1
i 'i

X
j¤i

mij .s
t�1/st�1j xt�1j ; (B.1)
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X
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t�1/st�1j xt�1j : (B.2)

It follows that if s0 D 0, then mij .st�1/ D 0 for all ij (recall Footnote 11) and
we get immediate convergence to sti D 0; x

t
i D

˛i
c

for all t . Otherwise, st ; xt will be
positive for all t .

To see how these best response dynamics work for a special case, let us consider
the situation in which there is some S0;X0 such that s0i D ˛iS

0 and x0i D ˛iX
0

(which has to eventually hold at any limit point) - i.e. when we can use Proposition 2.1

1. This is also useful in determining the instability of equilibria.
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In that case, working with the limiting or continuum case, in which the matching
function is symmetric within a party, and presuming that S t�1

k
> 0 for each party

(which happens after the �rst period if some s0j > 0 and otherwise the solution is
already described above), we end up with the following dynamics. For party k (letting
k0 denote the other party):
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where
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mkk0.S
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.1� p1/S1A1 C .1� p2/S2A2
:

B.2. Discussion of the Model

The extensive literature on network formation, starting from its early incarnation in
Jackson and Wolinsky (1996); Dutta and Mutuswami (1997); Bala and Goyal (2000);
Currarini and Morelli (2000); Jackson and Watts (2002); Jackson (2005); Herings,
Mauleon, and Vannetelbosch (2009), provides insight into how networks form, when
inef�cient networks form, and how that depends on the setting. More recently, the
literature has also begun to develop models that incorporate some heterogeneity
and are still tractable enough to allow for �tting the models to data, as in Leung
(2015); Sheng (2020); Chandrasekhar and Jackson (2016); Mele (2017); Graham
(2017); de Paula, Richards-Shubik, and Tamer (2018); Leung (2019); and some of that
literature also allows for homophily, such as Currarini, Jackson, and Pin (2009, 2010);
Banerjee, Chandrasekhar, Du�o, and Jackson (2018); Mele (2018). The models that are
tractable enough to �t to data require a structure that limits the multiplicity of stable
(equilibrium) networks, and such that those can be estimated with a practical number
of calculations.

We only have a handful of such estimable models that involve non-trivial
interaction effects; and generally those models are stylized in some way. For instance,
as shown in Sheng (2020), the choice of the speci�c model can be important since
models with indirect network effects (utility from friends-of-friends) lead to (i) a lack
of identi�cation (multiple con�gurations of parameters leading to the same outcomes)
and, (ii) computational intractability with as few as 20 players, due to a curse of
dimensionality. To make progress, she proposes a model with endogenous links that
have “dependence [that] has a particular structure such that conditional on some
network heterogeneity and individual heterogeneity, the links become independent.”
An alternative approach is that of Mele (2017). He proposes an empirical model of
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network formation that allows for homophily in network formation. Again, he shows
that there is a curse of dimensionality in using standard estimation methods unless
some strong asymptotic independence conditions are satis�ed. Other approaches are to
have certain subgraphs generate value and then model the formation of those subgraphs
directly (Chandrasekhar and Jackson 2016), or to have payoffs based on combinations
of individual characteristics, geography, or assortativity (e.g., Currarini et al. 2009;
Leung 2015; Graham 2017; Leung 2019).

Here we want a model in which the value to a given pairing depends on their
subsequent mutual (legislative) efforts, and so we need a model in which expected
values of links can be calculated conditional upon future efforts, and those efforts
can also be characterized as a function of the pairings. Using random meeting
probabilities to derive link formation does exactly this by reducing the dimension of
choices while allowing for rich interdependencies, homophily, and still yielding a clean
characterization of both types of efforts. The model we work with is the only one we
have found in the literature that �ts all of these criteria, and which are needed for this
application.

In summary, one has to be judicious in modeling network formation to obtain a
formulation that also allows for homophily, as well as choices that affect network
positions, and remains both well-identi�ed and estimable. Meanwhile, existing
empirical models of games on networks that are well-identi�ed (e.g., de Paula et al.
2019, advancing the work of Bramoullé et al. 2009) do not allow for endogenous
networks - they assume that the network is �xed and exogenous, and require a different
data set-up than ours.2

Thus one can see why models that incorporate both behavior and network
formation are few: Cabrales, Calvo-Armengol, and Zenou (2011); König, Tessone, and
Zenou (2009); Goldsmith-Pinkham and Imbens (2013); Hiller (2017); Badev (2017,
2020); Hsieh, Lee, and Boucher (2019); Hsieh, König, and Liu (2020). These models
necessarily sacri�ce some richness in order to incorporate both network formation and
endogenous behaviors and to allow for an interaction between them. Nonetheless, they
can still be quite rich and, as we show here, can still �t data well. Of this class, in order
to work with a tractable model that we can extend to have yet a third dimension of
group identity and homophily, and still take to (static) data, we build upon the model of
Cabrales, Calvo-Armengol, and Zenou (2011).3 This introduces another dimension to
the estimation, of group interaction rates, and thus requires that the model be tractable

2. For example, to recover an unobserved exogenous network as they set out to, de Paula et al. (2019)
assumes (i) an exogenous network that is suf�ciently sparse, (ii) the network does not change over time,
(iii) a panel data structure, with large enough time-series dimension, and (iv) a linear in means model. Our
set-up and data structure do not have any of these 4 properties, as alluded to previously. Furthermore, the
estimation of this set-up must involve shrinkage estimators and their resulting bias due to the size of the
parameter space (N2 parameters to recover from just the network itself).

3. Recent alternatives that accommodate all three dimensions include Badev (2020), Hsieh et al. (2019)
and Hsieh et al. (2020). While they constitute important advances to the literature, their solutions are not
applicable to our problem. For instance, all of them assume observable networks and unidimensional
actions (in the case of Badev 2020, actions are binary). In terms of estimation, we complement their
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enough to still solve with a third dimension of endogeneity. Finally, a close look at
the �t of the data provides support for our modeling choices.4 In Section 6.1, we
show that the predicted links from the model are highly correlated with measures
that use disaggregate data between Congress members (e.g. Fowler 2006), even if we
do not use the latter in estimation. Second, strategic outcomes on this network, such
as the probability of bill approval, are �t well within and across parties/politicians.
Third, homophily is quantitatively important: a model with homophily �ts the data
signi�cantly better than one without it. Fourth, our model is shown to outperform
alternative approaches to the characterization ofG in terms of in-sample mean squared
error.

B.3. Examples of Equilibrium G Across Parameter Configurations

In our model, ¹˛i ; c; 'i ; p1; p2º parametrize the incentives for social and legislative
effort. The network G is then generated by agents’ strategic decisions, taking those
incentives into account. Here, we showcase the rich class of equilibrium networks G
that can arise in as the parameters vary.

The parameter values are purposefully kept similar to those in Figure 1 for
comparability, although we set n1 D n2 D 2 to visualize G (a 4 x 4 matrix). For
convenience, we let politicians 1 and 2 be in Party 1, and politicians 3 and 4 in Party
2, so that the �rst two rows/columns of G below represent connections among Party
1 members. We set c D 2:25 and we keep 'i constant within parties. For Party 1, we
set '1 D 1. We set ˛i D 1 for one member in each party (politicians 1 and 3). Our
examples below vary the remaining �ve parameters ¹p1; p2; '2; ˛2; ˛4º.

Example 1: Complete Bipartisanship

Parameters: p1 D p2 D 0; ˛2 D ˛4 D 1; '2 D 1.

G D

2664
0 0:063 0:063 0:063

0:063 0 0:063 0:063

0:063 0:063 0 0:063

0:063 0:063 0:063 0

3775
There are no partisan biases in relative rates of meeting potential partners, and all

members end up equally connected. This is because all politicians are identical, have
high enough types for social interaction to occur, there is no homophily to bias social
interactions (p1 D p2 D 0), and there are no differential incentives to socialize by
party ('1 D '2). Here, all politicians exert the same social efforts si .

Bayesian methods with a frequentist approach which shows identi�cation of our parameters and provides
a less computationally intensive estimation procedure.

4. Most notably, we see the value of (i) a (biased) random socialization protocol, (ii) choices made on
effort levels, and (iii) mean-zero i.i.d. measurement errors on our observed proxies.
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Example 2: Bias in Mixing

Parameters: p1 D p2 D 0:5; ˛2 D ˛4 D 1; '2 D 1.

G D

2664
0 0:094 0:031 0:031

0:094 0 0:031 0:031

0:031 0:031 0 0:094

0:031 0:031 0:094 0

3775
Relative to Example 1, the introduction of partisanship (structural homophily

p1 D p2 D 0:5) biases social interactions along party lines, despite politicians having
identical types (˛i s) and identical party-level incentives to socialize ('s). In this
example, politicians all exert the same social efforts si .

Example 3: Full Partisanship

Parameters: p1 D 1; p2 D 0:5; ˛2 D ˛4 D 1; '2 D 1.

G D

2664
0 0:125 0 0

0:125 0 0 0

0 0 0 0:125

0 0 0:125 0

3775
Party 1 is fully partisan, so its members can never meet those in Party 2. This

induces full sorting along party lines. Even though party 2 would be willing to mix
with party 1, they do not manage to, given that party 1 does not mix.

Example 4: Nuanced Biased Socialization

Parameters: p1 D p2 D 0:5; ˛2 D ˛4 D 0:5; '2 D 1.

G D

2664
0 0:048 0:032 0:016

0:048 0 0:016 0:008

0:032 0:016 0 0:048

0:016 0:008 0:048 0

3775
We revisit Example 2, but decrease the type of one politician in each party (˛2 <

1;˛4 < 1/. As a result, socialization is still biased along parties, but in a heterogeneous
way. Politicians socialize more often within parties, but the higher type politicians
(politicians 1 and 3) have greater incentives to legislate, and that induces them to
socialize more, and they are more likely to meet across party lines than the low type
ones.

Example 5: Nuanced Biased Socialization II

Parameters: p1 D p2 D 0:5; ˛2 D ˛4 D 0:5; '2 D 1:3.
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G D

2664
0 0:046 0:039 0:019

0:046 0 0:019 0:010

0:039 0:019 0 0:075

0:019 0:010 0:075 0

3775
We now increase '2 relative to Example 4. This increases the incentives to socialize

for politicians in Party 2, yielding stronger equilibrium connections among them.
However, politicians in Party 1 understand this and increase their social efforts as
well. This allows them meet those Party 2 members more often (since the latter’s
externalities are now higher). Compared to Example 4, this yields stronger connections
between Politician 1 and those in the opposing party, but weaker connections within
Party 1 despite homophily.

Example 6: Reversal of Partisanship Despite Homophily

Parameters: p1 D 0:3; p2 D 0:5; ˛2 D 0:5; ˛4 D 1; '2 D 1:3.

G D

2664
0 0:045 0:051 0:051

0:045 0 0:026 0:026

0:051 0:026 0 0:160

0:051 0:026 0:160 0

3775
We now begin with the parameters in Example 5, and then decreasep1 and increase

˛4. The high type politician in Party 1 now has stronger connections with opposing
party politicians than with 1’s own party member, despite Party 2’s strong homophily.
Politicians in Party 1 internalize the stronger types and incentives to socialize in Party
2, and choose effort that is large enough to overcome such homophily.

B.4. Endogenous Partisanship

A natural extension of our model would be to endogenize the pi ’s. We comment here
on potential directions and issues that arise.

First, it is easy to see that if one simply endogenized the pi ’s within the current
model without introducing any costs of affecting pi , then the solutions would be
corner solutions. If a group can choose its pi without having any costs of selecting pi ,
then (generically in the parameters) one of the two groups would want to be entirely
partisan, since one of the two groups would �nd interacting with itself more bene�cial
than interacting across the aisle. Such a corner solution is clearly of little interest, and
is incompatible with our empirical estimates.

More generally, there are interactions, both within and across parties, that happen
naturally due to committee membership among other things and would be dif�cult to
prevent, and others that might be costly to encourage. This suggests that there would
minimum and maximum levels of partisanship that could be attained and also that one
would need to model a nonlinear cost of partisanship. Once one provided a nonlinear
cost to capture the high cost of going to either extreme of pi D 0 or pi D 1, one would
end up with an interior equilibrium. A challenge would be that this could be dependent
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upon the cost formulation, and so one would need to work with a �exible enough cost
function to allow the model to �t the data.

Having three endogenous choices for each of the two parties - partisanship, social
effort, and legislative effort - would then end up producing a model for which analytic
characterizations of the equilibrium would no longer be possible, and for which
the multiplicity of equilibria would more dif�cult to ascertain. There would be two
approaches. One would be to work entirely with numerical simulations. Since the
interest in endogenizing partisanship levels would presumably be to understand how
they interact with other variables and change incentives, this would require a very rich
and complex set of simulations, especially as they would be sensitive to the choice of
the cost function.

Another approach, and perhaps the most fruitful, would be to �x one of the other
effort variables and return to a model in which there are just two different action
variables that agents/parties are making. Given the importance of partisanship on the
endogeneity of the network, a starting point might be to �x the xi ’s and then work with
the other variables. This could be an interesting approach for further research. We chose
to work with endogenizing the network and legislative effort, holding partisanship
constant, as these seem to be the �rst-order questions, but understanding partisanship
is also a very interesting topic.

Appendix C: Formal Arguments for Identification

Recall that in our extension in Section 2.3, preferences are given by:

Qui .xi ; x�i / D ˛ixi C 'i
X
j

gijxixj �
1

2
cx2i �

1

2
s2i ; (C.1)

where ˛i is now interpreted as the heterogeneous marginal cost of legislative effort for
i and 'i � 
P.i/e���Vi;0.1� e���P.i//, where �P.i/ was the electoral return to passing
a bill (in the reelection equation), 
P.i/ was the scale parameter in the shock for passing
the bill, � was the parameter from the exponentially distributed reelection shock, and
Vi;0 is the winning margin for i in the previous election.

We now prove (point) identi�cation of the following parameters from this model:
¹¹˛iº

n
iD1; ��; ¹��P.i/ºP.i/D1;2; c;

QA1
1; QA2
2º. To prove identi�cation, we make use
of the equilibrium conditions of s�i and x�i derived from the �rst order conditions.
These are given in equations (2.7) and (2.8) in the main text. We also use equation
(2.4) on the probability of passing a bill. It will also prove useful to work with the
equation combining (2.8) into (2.7):

x�i D
1

c

 
˛i C

s�2i
x�i

!
(C.2)

Finally, recall that we impose a normalization to pin down the location of the
distribution of ˛i in the �rst Congress in the sample. Below, we simply assume that
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there is a legislator 0 with ˛0 known, although in the empirical speci�cations, we
simply omit the constant from ´i (which implies that we know ˛i for an i with
´i D 0) since we parametrize ˛i . Note that the arguments below do not rely on having
measurement errors or on the parametrization of ˛i . We drop the notation � as our
identi�cation arguments are valid within each Congress.5

Dividing both sides of (2.7) by x�i for an arbitrary politician i yields:

s�i
x�i
D 
P.i/.1� e

���P.i//e���Vi;0
X
j¤i

s�j mij .s
�/x�j : (C.3)

Now, dividing (C.3) by its analogue for a politician j in the same party as i for whom
Vj;0 ¤ Vi;0 yields:

s�i =x
�
i

s�j =x
�
j

D e���.Vi;0�Vj;0/; (C.4)

where we have used thatP.i/D P.j / and that QAP.i/ D
P
j¤i s

�
j mij .s

�/x�j is constant
across politicians. It follows that we identify the product ��.6

We can identify �P.i/ across parties by rewriting (2.4) using (2.7):

P.yi D 1/ D 
P.i/
X
j¤i

gij .s
�/x�i x

�
j

D 
P.i/s
�
i

X
j¤i

s�j mij .s
�/x�i x

�
j

D

P.i/

'i
s�2i

D
1

e���Vi;0.1� e���P.i//
s�2i : (C.6)

where the third line uses (2.7) and the last line uses the de�nition of 'i . The only
unknown in the last line is ��P.i/. When accounting for measurement error, it suf�ces
to note that log.P.yi D 1// D log

�
1

1�e
���P.i/

e��Vi;0s2i
�
C 2"i , where "i is mean 0.

Hence, ��P.i/ is identi�ed for both parties by the average probability of passing a bill
for politicians in P.i/ given their observed effort levels.

Now, let us return to (C.3). The product QAP.i/
P.i/ is the only unknown on the
right hand side, so it is identi�ed for the arbitrary party P.i/. As a result, the ratio

5. The normalization assumption can be imposed only in one Congress, as we can rely on the overlap of
politicians across Congresses to maintain the assumption in later periods.

6. For completeness, when s�
i
; x�
i

are observed with measurement error as in (5.1), we �nd that:

s�
i
=x�
i

s�
j
=x�
j

D
si=xi

sj =xj
e."i�"j /C.vj�vi /: (C.5)

Since the measurement errors are independent and mean 0, we can apply a log operator and then the
expectation operator on both sides of (C.5). Hence, �� is still identi�ed.
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QA1
1= QA2
2 can be identi�ed. The intuition is easily seen by dividing (C.3) for i and
k for different parties.

s�i =x
�
i

s�
k
=x�
k

D

QAP.i/
P.i/.1� e
���P.i//

QAP.k/
P.k/.1� e
���P.k//

e���.Vi;0�Vk;0/; (C.7)

so that this ratio is identi�ed by the systematic variation in relative choices of social
and legislative effort across members of opposite parties.

We now proceed with identi�cation of ˛i for all i . To do so, we rewrite (C.2) as:

x�i D
˛i

c �
�
'i
P
j¤i s

�
j mij .s

�/x�j

�2 (C.8)

Taking logs and using (5.1) implies7:

log.xi /C vi D log.˛i /� log.c � QA2P.i/'
2
i /

log.xi / D log.˛i /� log.c � QA2P.i/'
2
i /� vi

D log.˛i /� log
�
c � . QAP.i/
P.i/e

���Vi;0.1� e���P.i///2
�
� vi :

(C.9)

Recall that the term .. QAP.i/
P.i//e
���Vi;0.1� e���P.i///2 has already been identi�ed,

as each of its 3 components are identi�ed. Hence, (C.9) has only 2 unknowns: c and ˛i .
Since this equation is valid for every i , it is also valid for the normalizer politician “0"
whose type ˛0 is known by assumption. Hence, c is pinned down by equation (C.9) for
the normalizer, as c is the only unknown in that case and log.�/ is a strictly monotonic
function. With measurement error, we also use that vi is mean 0 and i.i.d.

Once c is pinned down, then ˛i is identi�ed for every i from equation (C.9) under
the analogous argument, as ˛i is the only unknown.

Appendix D: Rewriting the Model in terms of Moment conditions over i

In this Section, we provide the derivation for transforming the model’s equilibrium
outcomes to the moment equations described in Section 5. Let us begin with (C.3):

si

xi
e"i�vi D QAP.i/
P.i/.1� e

���P.i//e���Vi;0 :

We can rewrite this expression as:

log

�
si

xi

�
D log. QAP.i/
P.i//C log.1� e���P.i//� ��Vi;0 C .vi � "i /:

7. In the absence of measurement error, simply replace vi D 0 below and the same arguments stand.
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Applying expectations over the measurement errors (which are mean zero) on both
sides of the expression yields the �rst set of equations above. They are analogous
to moment conditions which coincide with the OLS estimator with party-speci�c
intercept parameters.8

For the second set of equations, we use the parametrization (5.3) in (C.9) to obtain:

log.xi / D ´0iˇ � log
�
c � . QAP.i/
P.i/e

���Vi;0.1� e���P.i///2
�
� vi :

Exploiting the orthogonality conditions on vi yields the second set of moment
conditions. We note that the location normalization is important here: otherwise, c
could not be separately identi�ed from the constant in ´0iˇ. In fact, the cost of legislative
effort c is pinned down by the average legislative behavior of politicians, conditional
on individual characteristics and electoral returns. But it could be increased if all types
are similarly increased.

For the �nal equation, we rewrite (C.6) using (5.1):

P.yi D 1/ D
1

e���Vi;0.1� e���P.i//
s2i e

2"i ;

which implies that:

log.P.yi D 1// D ��Vi;0 � log.1� e���P.i//C 2 log.si /C 2"i :

D.1. Details on Estimation

We now provide further details on how the estimation procedure was implemented,
including the starting values for the numerical solution to the GMM optimizer and
numerical details on the computation of standard errors.

D.1.1. OLS and plug-in Approach as Starting Values for Optimization. For the
starting values for GMM optimization, we use simple closed form estimates for most
parameters of interest, borne out of the separability of the moment equations. We then
use different starting points for the remaining parameter, c.

8. We note that log.1� e���P.i// can be split from the term log. QAP.i/
P.i// since it is identi�ed from
another equation.
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More precisely, recall that the estimating equations are the empirical counterparts
to equations (5.4)-(5.10) and are given by:

1

n

nX
iD1

�
log

�
si

xi

�
� log. QA1
1/� Q�1 C ��Vi;0

�
I¹i2P1º D 0 (D.1)

1

n

nX
iD1

�
log

�
si

xi

�
� log. QA2
2/� Q�2 C ��Vi;0

�
I¹i2P2º D 0 (D.2)

1

n

nX
iD1

�
log

�
si

xi

�
� log. QAP.i/
P.i//� Q�P.i/ C ��Vi;0

�
Vi;0 D 0 (D.3)

1

n

nX
iD1

.log.xi /� ´
0
iˇC log

�
c � . QAP.i/
P.i/e

���Vi e�P.i//2
�
/ D 0 (D.4)

1

n

nX
iD1

´i .log.xi /� ´
0
iˇC log

�
c � . QAP.i/
P.i/e

���Vi e
Q�P.i//2

�
/ D 0 (D.5)

1

n

nX
iD1

.log.P.yi D 1//� ��Vi;0 C Q�1 � 2 log.si //Ii2P1 D 0 (D.6)

1

n

nX
iD1

.log.P.yi D 1//� ��Vi;0 C Q�2 � 2 log.si //Ii2P2 D 0; (D.7)

Careful inspection of equations (D.1) - (D.7) shows how to come up with
appropriate starting points.

First, it is immediate that the only parameters in (D.1)-(D.3) are log. QA1
1/; log. QA2
2/
and ��. Furthermore, those three equations are exactly the moment conditions implied

by OLS estimation of log
�
si
xi

�
on Ii2P1 ; Ii2P2 ; Vi;0. The OLS coef�cients of this

regression set equations (D.1) - (D.3) to exactly 0. Hence, we use these OLS estimates
as starting values for log.A1
1/; log.A2
2/; ��. We use an analogous argument on
equations (D.6) and (D.7). In this second “regression", we use the OLS estimates
of the outcome log.P.yi D 1// � .��/startVi;0 � 2 log.si / on Ii2P1 ; Ii2P2 , where
.��/start are the starting values for ��. This second regression results in estimates
for . Q�1; Q�2/ D .log.1� e���1/; log.1� e���2// which set (D.6)-(D.7) to 0, which we
use as starting values. Finally, equations (D.4)-(D.5) also come from a separate OLS
regression where the outcome is log.xi /, the independent variables are a constant and
´i . The OLS coef�cients on ´i is the starting value for ˇ and set equations (D.5) to 0.
The normalization assumption - not including a constant in ´i - guarantees that only
one c satisi�es (D.4). Hence, the outlined procedure delivers us starting values (and
consistent estimators) for all parameters except c.

Our GMM estimator are the set of parameters that minimize the GMM objective
function given moments (D.1-(D.7), given starting values for all parameters except c
as described above, and across different starting values for c.
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D.1.2. Computation of Standard Errors. To compute the standard errors for our
GMM estimates, we use a consistent estimator based on its asymptotic value. Given
the model is exactly identi�ed, we can use the identity matrix as a weighting matrix.

As it is well known, the asymptotic variance matrix (of
p
n times) our parameters

of interest is then given by .� 0��1�/�1, where � D E@g.Qsi ; Qxi ;�/
@� 0

and � D

E.g.Qsi ; Qxi ; yi ; ´i ; �/g.Qsi ; Qxi ; yi ; ´i ; �/0/.
We compute � analytically, by taking derivatives of each moment equation in

relation to each parameter. We then replace the expectation by its empirical counterpart
(the mean across all politicians).

D.1.3. Finite Sample Corrections for the Standard Errors. In �nite samples, �
can be close to singular. This appears to be the case in some of the speci�cations in
our paper. To improve the �nite sample performance, we implement the correction
used in Cameron et al. (2011). This involves increasing the standard errors in � by
adding a small perturbation to its eigenvalues. This perturbation is suf�cient to remove
singularity.

Such a procedure uses the spectral decomposition of � D DƒD0, where ƒ is
a diagonal matrix of eigenvalues. We then add a small ı� > 0 to the diagonal of
Oƒ, therefore increasing the eigenvalues of O�. Since this procedure increases standard
errors, the new standard errors are still valid for our parameters.

In practice, we pick ı� D 0:00001, and use it on the eigenvalues that are smaller
than 10�7. This is typically 1 or 2 of the eigenvalues of our estimated �.
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Appendix E: Additional Tables and Figures

(a) More than 3 Directed Cosponsorships

(b) Committee Network

(c) Alumni Network

Figure E.1. Examples of Alternative Congress 110 Networks. We show illustrations of alternative
networks used in the literature that we use to compare our model against. A link in the committee
network exists if two legislators sit in one of the 7 main committees together (see the Data section). A
link in the alumni network exists if two legislators attended the same university within 8 years of one
another. While in the empirical speci�cation of equation (6.2) the cosponsorship network is taken as
the amount of directed cosponsorships, we illustrate it here by plotting the upper triangular matrix of
directed cosponsorships, with a link formed if a legislator cosponsors more than 3 bills by another.
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Table E.1. Main results, Speci�cation 2.

Congress
105 106 107 108 109 110

c 0.263 0.277 0.292 0.291 0.293 0.271
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Q�Dem 5.890 5.507 5.720 5.554 5.546 3.125
(0.160) (0.179) (0.174) (0.176) (0.174) (0.119)

Q�Rep 3.404 2.695 3.117 2.880 2.935 4.311
(0.178) (0.146) (0.170) (0.172) (0.158) (0.181)

�� 0.101 0.138 0.015 0.010 0.038 0.022
(0.072) (0.056) (0.068) (0.073) (0.080) (0.070)

Rep 0.078 0.143 0.212 0.098 0.108 0.047
(0.053) (0.049) (0.059) (0.062) (0.057) (0.084)

Ideology -0.387 -0.293 -0.368 -0.400 -0.382 -0.322
(0.053) (0.067) (0.065) (0.105) (0.112) (0.048)

Tenure 0.007 0.009 0.007 0.010 0.009 0.004
(0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

Appropriations -0.007 0.035 -0.041 -0.076 -0.046 -0.062
(0.042) (0.033) (0.038) (0.040) (0.044) (0.032)

Energy and Commerce -0.024 -0.011 -0.065 -0.143 0.016 -0.003
(0.039) (0.039) (0.046) (0.135) (0.046) (0.026)

Oversight 0.014 0.069 0.029 0.022 0.018 0.023
(0.034) (0.038) (0.058) (0.053) (0.051) (0.033)

Rules 0.122 0.128 0.098 0.160 0.210 0.149
(0.023) (0.025) (0.035) (0.041) (0.057) (0.020)

Leadership 0.124 0.110 0.140 0.123 0.280 0.109
(0.040) (0.034) (0.066) (0.108) (0.033) (0.117)

T ransportation -0.052 -0.020 0.011 -0.123 0.001 -0.002
(0.037) (0.047) (0.030) (0.106) (0.044) (0.025)

WaysAndMeans -0.087 -0.018 -0.015 -0.033 0.010 -0.023
(0.043) (0.036) (0.038) (0.049) (0.056) (0.037)

Ideology �Rep 0.541 0.419 0.409 0.622 0.610 0.591
(0.094) (0.095) (0.104) (0.131) (0.136) (0.120)

Tenure �Rep 0.010 0.008 0.006 0.008 0.004 0.005
(0.004) (0.004) (0.005) (0.005) (0.004) (0.005)

Appropriations �Rep 0.036 -0.044 -0.067 -0.002 -0.016 -0.127
(0.052) (0.042) (0.052) (0.056) (0.061) (0.075)

Energy and Commerce �Rep -0.023 -0.003 0.010 0.052 -0.064 -0.084
(0.053) (0.052) (0.060) (0.139) (0.061) (0.064)

Oversight �Rep 0.062 0.046 0.003 -0.007 0.048 -0.005
(0.047) (0.045) (0.066) (0.065) (0.063) (0.055)

Rules �Rep 0.021 -0.003 0.008 -0.050 -0.005 0.058
(0.045) (0.036) (0.044) (0.053) (0.069) (0.037)

Leadership �Rep 0.000 -0.111 -0.059 0.006 -0.207 0.059
(0.045) (0.057) (0.094) (0.128) (0.078) (0.146)

T ransportation �Rep 0.015 -0.012 -0.051 0.114 -0.015 -0.062
(0.049) (0.056) (0.043) (0.113) (0.057) (0.048)

WaysAndMeans �Rep 0.035 -0.011 0.016 0.008 -0.077 -0.157
(0.056) (0.055) (0.057) (0.062) (0.072) (0.075)


Dem [0.0001,0.0001] [0.0002,0.0002] [0.0002,0.0002] [0.0002,0.0002] [0.0002,0.0002] [0.0020,0.0020]


Rep [0.0011,0.0011] [0.0023,0.0023] [0.0015,0.0015] [0.0018,0.0019] [0.0018,0.0018] [0.0005,0.0005]

N 424 427 426 431 429 426

Notes: Standard errors in parentheses. The table presents the results from the GMM estimation under the second
speci�cation. That is, we replace the Grosewart measure by dummy variables for the most important committees.
The variable Leadership represents a dummy of whether the politician was the Speaker, the Majority or Minority
Leader, or the Majority or Minority Whip.Rep is a dummy variable for belonging to the Republican Party. The
estimates of 
Dem and 
Rep are their estimated sets. Standard errors are estimated as discussed in Appendix
D. All other notes follow those in Table 3.
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Appendix F: Additional Reduced Form Evidence on The Effect of Cosponsors
on Bill Passage

We begin by looking at speci�cations which show the correlation between cosponsors
of a bill and whether the bill is approved or not. In our model, cosponsorships can only
help bill approval through extending the (endogenously formed) network.

F.1. Data

We use data from the 93rd (1973-1975) to the 110th Congress (2007-2009), originally
from the Library of Congress, and used in Fowler (2006). The data includes all bills
(both House and Senate) in these periods, with data for the politicians in each Congress
(such as tenure, party, ideology measure), the cosponsoring decisions for each bill in
each Congress and Senate (i.e. who sponsored and cosponsored each one) and the
outcomes for each (passed house, passed Senate, was vetoed or not, and so forth).

With this data, it is possible to construct network variables such as: the number
of cosponsors for each bill, average number of cosponsors for a politician’s own bills,
a network graph using cosponsorship decisions as links. The focus is on House bills.
Table F.1 presents the summary statistics.

Table F.1. Summary statistics for Appendix F.

Variable Obs Mean Std. Dev. Min Max

Pass 139021 0.077 0.267 0 1
Party 138986 60.32% Democrat

39.37 % Republican
Ideology 137426 -0.069 0.388 -0.757 1.685
Tenure 138986 5.974 4.096 1 27
Number of cosponsors 139021 10.311 27.084 0 406
Avg. cosponsors of cosp. 139021 6.239 8.55 0 175

F.2. Empirical Specifications

A �rst approach to this problem is to test whether networks do impact bill approval in
Congress. To do so, we can check whether the number of cosponsors of a bill and the
extended network of those cosponsors are positively correlated with passing rates in
Congress (as in our structural model). To do so, consider the following regression:

passi;k D ˇ1cosponsorsi;k C ˇ2average cosponsors of cosponsorsi;k CX
0
i
 C "i;k

(F.1)
where cosponsors represents the number of cosponsors of bill k (proposed by
sponsor i ); and average cosponsors of cosponsors represents the average number of
cosponsors that cosponsors of this bill have (in their own bills). The latter captures the
in�uence, or additional order network effects of those agents. Xi represent a series of
politician level controls, such as the sponsor’s ideology, tenure, party.
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Equation (F.1) implies that having additional cosponsors (captured by ˇ1) and
those cosponsors being more in�uential/with larger networks (ˇ2) are associated with
the approval of legislation.

One may expect the OLS estimates of (F.1) to be inconsistent. First, it is possible
that certain sponsors/politicians are more politically able and/or have better bills,
and so would attract more cosponsors and better networks. In our model, higher
types/returns ˛i socialize more and have larger and more in�uential networks, and
hence would be observed to cosponsor more on average.

To control for that, consider the �xed effects regression:

passi;k D ˛i C ˇ1cosponsorsi;k C ˇ2average cosponsors of cosponsorsi;k C "i;k
(F.2)

where ˛i is a �xed effect for the politician who sponsors the bill. This effect
captures the above problem, and would use the following variation: different bills by
the same sponsor can have different number of cosponsors/extended network. The
differences in their outcomes in Congress would then be attributed to the different
(observed proxies for) networks.

A threat to identi�cation in (F.2) is that we are not controlling for bill quality. The
same sponsor can have some bills which are better than others, which by themselves
attract more cosponsors. To deal with this issue, one can increase the set of controls,
for instance focus on the speci�c characteristics of the Senate sponsor of the House
bill.

This is done using the following speci�cation:

passi;j;k D ˛i C 
j C ˇ1cosponsorsi;j;k (F.3)

C ˇ2average cosponsors of cosponsorsi;j;k C "i;j;k

where ˛i ; 
j represents a �xed effect for the House sponsor (i ) and Senate sponsor (j )
pair. The bills studied here are those present in both chambers.

Our preferred speci�cation further controls for bill type. Although the above
intuitively should do so, there is still a threat that part of the bill quality is not being
captured by having the same sponsors in both chambers.

For that reason, consider the within bill variation model:

passi;j;k;h D ık C ˇ1cosponsorsi;j;k;h (F.4)

C ˇ2average cosponsors of cosponsorsi;j;k;h C "i;j;k;h
passi;j;k;s D ık C ˇ1cosponsorsi;j;k;s (F.5)

C ˇ2average cosponsors of cosponsorsi;j;k;s C "i;j;k;s

In this version, we are using variation in outcomes for the identical bills across
chambers (h for House, s for Senate). We posit that the same bill, if it faces different
results in separate chambers, must have that due to differential (networks) supporting
it. It cannot be coming from bill quality, as it is the same bill in both scenarios. It cannot
be coming from different politician abilities, as these are spanned by ık . The difference
in outcomes is due to network effects.
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Identi�cation in (F.4)-(F.5) is due to the availability of bills that switch status across
chambers.

We also use the de�nitions of identical bills in the Senate, as de�ned by the Library
of Congress. This is done by checking for identical bills in the Senate (under related
bills) for all house bills in Congresses 93-110. Table F.2 shows that there are bills
that switch status across chambers, which is key to our identi�cation. These constitute
around 20% of the sample.

Table F.2. Bills with “Switching" outcomes.

(1) (2) (3)
Outcome �h�sBillpass Frequency Percent

Panel A: All identical bills

Pass Senate, Not Pass in House 1,073 8.30

Same Outcome in Both 10,473 81.02

Pass House, Not Pass in Senate 1,380 10.68

N : 12926

Panel B: Cosponsors > 0 in both

Pass Senate, Not Pass in House 524 8.13

Same Outcome in Both 5120 79.43

Pass House, Not Pass in Senate 802 12.44

N : 6446

Notes: Panel A: All bills with paired observations.
Panel B: Only those with number of cosponsors bigger than zero in both the House and Senate.

F.3. Results

Table F.3 presents the results across our various speci�cations (F.1), (F.2), (F.3) and
(F.4)-(F.5).

As can be seen, the estimates of ˇ1 and ˇ2 are positive and very signi�cant across
speci�cations (Linear, Linear with controls, House Sponsor Fixed Effects, House and
Senate Sponsor Fixed Effects and within bill variation). The number of cosponsors
is positively associated with the approval of bills, as is their in�uence along the
congressional network.

The estimate of ˇ1 is between 0.0003 and 0.0005. This represents that an additional
cosponsor correlates with a (directly) increased probability of approval by 0.05%.
This is a small, but non negligible amount, as bills usually have many cosponsors.
The coef�cient for ˇ2 ampli�es this effect, and is estimated to be around 3 times
as large as ˇ1 (in Columns (1)-(4)). This implies that adding a cosponsor who has
on average 10 cosponsors on his own bill, is associated with an average increase
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Table F.3. (Appendix F.) Main results.

(1) (2) (3) (4) (5)
Linear Linear w/ Controls House Sp. FE House & Sen. Sp. FE Within bills

Cosponsors 0.000589��� 0.000554��� 0.000594��� 0.000584��� 0.00107���

(0.0000540) (0.0000547) (0.0000527) (0.000107) (0.0000713)

Average 0.00275��� 0.00140��� 0.00227��� 0.00162��� 0.00104���

Cosp. of cosp. (0.000214) (0.000209) (0.000208) (0.000543) (0.000369)

Constant 0.0536��� -0.0742��� 0.0566��� 0.102��� 0.0854���

(0.00250) (0.00772) (0.00135) (0.0252) (0.00447)

N 137703 137426 137703 12852 12926
R2 0.015 0.035 0.010 0.044 0.014

Notes: Standard errors in parentheses, clustered at the House Sponsor level (�rst 4 columns) and Senate Sponsor
(Column (5), due to lack of data to cluster at the House sponsor). Individual controls in Column (2) include Tenure,
Party, Ideology and Congress.�p < :1, ��p < :05, ���p < :01. The �rst column is the OLS regression, the
second puts controls (described above), the third is �xed effects at the House Sponsor level, the fourth has �xed
effects of both House and Senate sponsor. Column (5) is the speci�cation with within bill variation.N for Column
(5) is the number of bills we have pairs of observations. It is larger than (4) because it does not use information
on the id code of the sponsor in the House.

of 0:000541 C 10 � 0:00162 D 0:0167, or a 1.67 point increase in the percentage
probability of approval.

Table F.4 allows for heterogeneity in the effects for the House and the Senate, for
the speci�cation of (F.4)-(F.5). The results con�rm the positive and signi�cant effects
in the House, and shows that the in�uence term ˇ2 is really important in the House,
although not so much from the Senate, which presents noisy estimates.

Our results indicate that it is seemingly advantageous to have additional
cosponsors. In the context of the structural model, this means there are gains in having
larger networks and more connections. We should hence, observe denser networks in
Congress. This seems to be the case in our structural model. It also seems to hold in
evidence in Fowler (2006) and Cho and Fowler (2010). This suggests that models with
sparse equilibrium interconnections would not provide a good �t for Congressional
activity.
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Table F.4. Effect heterogeneity.

(1) (2) (3) (4)
pass pass pass pass

House Outcome (Indicator) 0.0386��� 0.00273 0.0529��� -0.0323�

(0.00512) (0.00804) (0.00651) (0.0182)

Cosponsors 0.00111��� 0.00102��� 0.000971��� 0.000813���

(0.000112) (0.000136) (0.000124) (0.000152)

Average cosp. of cosp. 0.00204��� 0.000850� 0.00102 -0.00127
(0.000374) (0.000433) (0.000696) (0.000874)

Interaction: House � cosponsors 0.000126 0.000226
(0.000165) (0.000207)

Interaction: House � avg. cosp. of cosp. 0.00333��� 0.00478���

(0.000599) (0.00103)

Constant 0.0544��� 0.0717��� 0.0543��� 0.103���

(0.00543) (0.00620) (0.0133) (0.0168)

N 12926 12926 6446 6446
R2 0.021 0.025 0.021 0.026

Notes: Standard errors in parentheses, clustered at the senate sponsor level. Tests reject the hypothesis that the
coef�cients of the interactions are the same as those without. Columns (1) and (2) focus on all bills with paired
observations. Columns (3) and (4) only on bills with positive number of cosponsors in both the House and the
Senate.N is the number of bills (each bill has 2 observations).�p < :1, ��p < :05, ���p < :01.

References

Badev, Anton (2017). “Discrete Games in Endogenous Networks: Theory and Policy.” Mimeo,
University of Pennsylvania.

Badev, Anton (2020). “Nash equilibria on (un) stable networks.” arXiv preprint arXiv:1901.00373.
Bala, Venkatesh and Sanjeev Goyal (2000). “A noncooperative model of network formation.”

Econometrica, 68(5), 1181–1229.
Banerjee, Abhijit V., Arun G. Chandrasekhar, Esther Du�o, and Matthew O. Jackson (2018).

“Changes in Social Network Structure in Response to Exposure to Formal Credit Markets.” SSRN
paper 3245656.

Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin (2009). “Identi�cation of peer effects through
social networks.” Journal of Econometrics, 150(1), 41–55.

Cabrales, Antonio, Antoni Calvo-Armengol, and Yves Zenou (2011). “Social interactions and
spillovers.” Games and Economic Behavior, 72(2), 339–360.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2011). “Robust Inference With
Multiway Clustering.” Journal of Business & Economic Statistics, 29(2), 238–249.

Chandrasekhar, Arun G. and Matthew O. Jackson (2016). “A network formation model based on
subgraphs.” SSRN Working Paper.

Cho, Wendy K Tam and James H Fowler (2010). “Legislative success in a small world: Social network
analysis and the dynamics of congressional legislation.” The Journal of Politics, 72(01), 124–135.

Currarini, Sergio, Matthew O. Jackson, and Paolo Pin (2009). “An economic model of friendship:
Homophily, minorities, and segregation.” Econometrica, 77(4), 1003–1045.

Currarini, Sergio, Matthew O. Jackson, and Paolo Pin (2010). “Identifying the roles of race-based
choice and chance in high school friendship network formation.” Proceedings of the National
Academy of Sciences, 107(11), 4857–4861.

Journal of the European Economic Association
Preprint prepared on September 5, 2022 using jeea.cls v1.0.



Canen et al. Online Appendix: Social Interactions and Legislative Activity 24

Currarini, Sergio and Massimo Morelli (2000). “Network formation with sequential demands.”
Review of Economic Design, 5, 229 – 250.

Dutta, Bhaskar and Suresh Mutuswami (1997). “Stable networks.” Journal of Economic Theory, 76,
322 – 44.

Fowler, James H. (2006). “Connecting the Congress: A Study of Cosponsorship Networks.” Political
Analysis, 14(4), 456–487.

Goldsmith-Pinkham, Paul and Guido Imbens (2013). “Social Networks and the Identi�cation of Peer
Effects.” Journal of Business and Economic Statistics, 31:3, 253–264.

Graham, Bryan S (2017). “An econometric model of network formation with degree heterogeneity.”
Econometrica, 85(4), 1033–1063.

Herings, P Jean-Jacques, Ana Mauleon, and Vincent Vannetelbosch (2009). “Farsightedly stable
networks.” Games and Economic Behavior, 67(2), 526–541.

Hiller, Timo (2017). “Peer effects in endogenous networks.” Games and Economic Behavior, 105,
349–367.

Hsieh, Chih-Sheng, Michael D König, and Xiaodong Liu (2020). “A Structural Model for the
Coevolution of Networks and Behavior.” Working Paper.

Hsieh, Chih-Sheng, Lung-Fei Lee, and Vincent Boucher (2019). “Speci�cation and estimation of
network formation and network interaction models with the exponential probability distribution.”
Available at SSRN 2967867.

Jackson, Matthew O. (2005). “A Survey of Models of Network Formation: Stability and Ef�ciency.”
Group Formation in Economics; Networks, Clubs and Coalitions, ed. G Demange, M Wooders.
Cambridge, UK: Cambridge Univ. Press.

Jackson, Matthew O and Alison Watts (2002). “The evolution of social and economic networks.”
Journal of Economic Theory, 106(2), 265–295.

Jackson, Matthew O. and Asher Wolinsky (1996). “A Strategic Model of Social and Economic
Networks.” Journal of Economic Theory, 71(1), 44–74.

König, Michael, Claudio J Tessone, and Yves Zenou (2009). “A dynamic model of network formation
with strategic interactions.”

Leung, Michael P (2015). “Two-step estimation of network-formation models with incomplete
information.” Journal of Econometrics, 188(1), 182–195.

Leung, Michael P (2019). “A weak law for moments of pairwise stable networks.” Journal of
Econometrics.

Mele, Angelo (2017). “A Structural Model of Segregation in Social Networks.” Econometrica, 85
(3), 825–850.

Mele, Angelo (2018). “A structural model of homophily and clustering in social networks.” mimeo,
Johns Hopkins University.

de Paula, Á, Imran Rasul, and Pedro Souza (2019). “Recovering social networks from panel data:
identi�cation, simulations and an application.”

de Paula, Á, Seth Richards-Shubik, and Elie Tamer (2018). “Identifying preferences in networks with
bounded degree.” Econometrica, 86(1), 263–288.

Sheng, Shuyang (2020). “A structural econometric analysis of network formation games through
subnetworks.” Econometrica, 88(5), 1829–1858.

Journal of the European Economic Association
Preprint prepared on September 5, 2022 using jeea.cls v1.0.


	Proofs
	Additional Aspects of the Theory
	Best Response Dynamics
	Discussion of the Model
	Examples of Equilibrium G Across Parameter Configurations
	Endogenous Partisanship

	Formal Arguments for Identification
	Rewriting the Model in terms of Moment conditions over i
	Details on Estimation
	OLS and plug-in Approach as Starting Values for Optimization
	Computation of Standard Errors
	Finite Sample Corrections for the Standard Errors


	Additional Tables and Figures
	Additional Reduced Form Evidence on The Effect of Cosponsors on Bill Passage
	Data
	Empirical Specifications
	Results


