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Social Networks in Action:

• Labor/Education: job referrals, peer effects, poverty traps
• Development:  social learning, diffusion, norms
• Organizations:  learning, team efficiency, culture
• Politics: voting, alliances, conflict, polarization
• Trade and Macro: shock propagation, innovation
• Finance: contagion, intermediation, regulation
• Public: corruption, crime



Note: Blue = More Upward Mobility, Red = Less Upward Mobility
Source: Chetty, Friedman, Hendren, Jones, Porter 2018

The Geography of Upward Mobility in the United States
Average Income at Age 35 for Children whose Parents Earned $27,000 (25th percentile)

>$55k$33k<$20k



Network Explanations?

• Examined various measures of social capital

• Economic connectedness - form of economic homophily

• Examine connections by income:
• What fraction of below median income person’s friends have 

above median income?
• Divide by .5,  so  no homophily would be 1



Economic Connectedness of Low-SES Individuals by County
Normalized Share of Above-Median Friends Among Below-Median People

Chetty, Jackson, Kuchler, Stroebel et al 2022  (www.socialcapital.org)

http://www.socialcapital.org/


Upward Mobility vs. Economic Connectedness, by County 200 Largest Counties

Cook County



V26 KeroRiceGo Banerjee, Chandresekhar, Duflo, Jackson (2013, 2019)

Blue Squares:  General Merit and Otherwise Backward Castes
Red Circles:  Scheduled Castes and Scheduled Tribes Figure Jackson 2014
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Network Formation Models
• Random graphs – Math, Sociology, Statistics, Physics, Economics, CS

• Static: Solomonoff-Rapoport 1951, Rapoport 1957, Erdos-Renyi 1959, 1960, Holland-
Laskey-Leinhardt 1983, Molloy-Reed 1995, Watts-Strogatz 1999, Chung-Lu 2002

• Dynamic: Price 1976, Barabasi-Albert 1999,  Adamic-Huberman 1999, Leskovec-
Kleinberg-Faloutsos 2005, Jackson-Rogers 2007, Snijders-Van de Bunt-Steglich 2010

• Strategic models – Economics, CS, Political Science
• Static: Jackson-Wolinsky 1996, Dutta-Jackson 2000, Jackson-van den Nouweland 2005, 

Calvo-Iklic 2004, Jackson-Rogers 2005, Bloch-Jackson 2006, 07, Olaizola-Valenciano 2021

• Dynamic: Aumann-Myerson 1987, Bala-Goyal 2000, Currarini-Morelli 2000, a.Watts
2001, Jackson-Watts 2002ab, Mauleon-Vannetelsoch 2004, Currarini-Jackson-Pin 2009,  
Christakis-Fowler-Imbens-Kalyanaraman 2020, Jackson-Nei-Snowberg-Yariv 2023



Statistical/Econometric Models
• Stochastic Block Models:     Holland-Laskey-Leinhardt (1983) …

• ERGMs  (Markov, p*, MRQAP):    Holland-Leinhardt (1981), Frank-
Strauss (1986), Krackhardt (1988), Butts (2009), Snijders etal (2006), …

• Spatial/Geometric/Latent:   Penrose (2003), Hoff etal (2002), Leung 
(2014), McCormick-Zheng (2015), Boucher Mourifie (2017), Graham 
(2017)

• Explicit strategic formation models:  Mele (2017,2022), Badev (2021), 
de Paula-RichardsShubik-Tamer (2018), Sheng (2020), Mele-Zhu (2023)



Example: Social Pressure

• Cross caste relationships

• Are they more likely to occur ``in private’’ with no 
friends in common

• Or occur with same frequency in embedded 
relationships?

C

A

B



ERGMs
Pr(g) =        exp[ β1 s1(g) + ... + βk sk(g) ]

∑g’ exp[ β1 s1(g’) + ... + βk sk(g’) ]

MCMC techniques for estimation (Snijders 2002, Handcock 
2003,...) have led to these becoming the standard



ERGMs
Bhamidi, Bresler, Sly (2008) (see also Chatterjee and Diaconis
(2011), Shalizi and Rinaldo (2012)):

For dense enough ERGMs, MCMC (Glauber dynamics - Gibbs 
sampling) estimates mix less than exponentially only if networks 
have approximately independent links. 

So, ERGMs that are interesting, cannot be estimated via 
techniques being used!

Simulations: also problems on sparse ones...  



ERGMs
Pr(g) =        exp[ β1 s1(g) + ... + βk sk(g) ]

∑g’ exp[ β1 s1(g’) + ... + βk sk(g’) ]

n=30 nodes give 2435 g’s  (less than 2258 atoms in the universe...)

Sampling g’s will not lead to accurate estimates (not just MCMC 
limitation)



Statistical/Econometric Models
• ERGMs impossible to estimate with rich structures and more than tiny 

number of nodes

• Spatial/Geometric/Latent:

• Links follow some spatial pattern

• But end up with too high density nearby in order to generate 
triangles or other richer patterns in networks

















Clustering
• Fraction of pairs of a node’s friends that are friends with 

each other 

C

A

B

Fraction of such instances 
where this link is present 



Recreate Networks (Favor, allow covariates)

Data Block 
Model ERGM Latent 

Space SUGM

Avg. Degree 7.1 7.8

Clustering .29 .05

Frac. Giant Comp. .95

First Eigvalue 10.1

Homophily .94
Avg Path Length 3.5



Recreate Networks (Favor, allow covariates)

Data Block 
Model ERGM Latent 

Space SUGM

Avg. Degree 7.1 7.8 16.6

Clustering .29 .05 .15

Frac. Giant Comp. .95

First Eigvalue 10.1

Homophily .94
Avg Path Length 3.5



Recreate Networks (Favor, allow covariates)

Data Block 
Model ERGM Latent 

Space SUGM

Avg. Degree 7.1 7.8 16.6 13.1

Clustering .29 .05 .15 .07

Frac. Giant Comp. .95

First Eigvalue 10.1

Homophily .94
Avg Path Length 3.5



Statistical/Econometric Models
• Spatial/Geometric/Latent:

• Links follow some spatial pattern

• But end up with too high density nearby in order to generate 
clustering

• Instead:  simply generate triangles and other subgraphs directly…
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SUGMs
• Subgraph Generation Models

• Subgraphs are generated, network is by-product 

people form links, triangles,…

could depend on Xis of the people involved



SUGMs

• N = {1, … , n}   nodes 

• Gk set of all subgraphs of type k   on  n nodes  (e.g., 
triangles that involve more than one caste,  triangles of 
same case) 

• β = (β1 … βK)   probabilities of subgraphs type k forming

• Subgraphs form independently



Example:



Example:



Links Form:  Incidental Triangle



We See:



Identification Challenge

Subgraphs are formed directly,  but only see the ending 
network

Was some subgraph generated directly, or incidentally as part 
of some other links/subgraphs



Theorem: Identification

Every SUGM is identified:   For any  G = (G1 … GK)  
if  β = (β1 … βK) ≠  β’ = (β’1 … β’K)     then   Prβ ( )  ≠  Prβ’ ( ).



Proof

e.g.,  links triangles:   

• Probability of network with just one link depends only on βL if 
those are the same,  then 

• Probability of some triangle  (and nothing else)   βT +  (1- βT) βL
3

increasing in βT

• General version – find subgraph with fewest links where β differs



Proposition: Identification

SL(g) =  # links in g,   ST(g) =  # triangles in g.

If (βL , βT)  ≠  (β’L , β’T)   then   Eβ [SL(g), ST(g)]  ≠  Eβ’ [SL(g), ST(g)].
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Estimation

• Many networks   (``easy’’,  standard – each network is an 
independent observation)

• One network   (harder,  links potentially all correlated) -- we use two 
approaches
• ``Direct count estimator’’   - sparse networks, count subgraphs 

(carefully – larger subgraphs first)
• Minimum distance estimator  - non-sparse case, show how to do 

it for  links, triangles;   raw counts



Direct Count Estimator

• Order Gks from largest to smallest (number of links).   

• Count subgraphs in G1,   S1(g),   then eliminate them.

• Iteratively,  on remaining network  count subgraphs in Gk,  Sk(g),  
then eliminate them.

• �βk =  Sk(g) / |Gk|



Sparse  Direct Count Estimation

𝑚𝑚𝑘𝑘 number nodes subgraph k 𝛽𝛽𝑘𝑘 = 𝑏𝑏𝑘𝑘
𝑛𝑛ℎ𝑘𝑘

ℎ𝑘𝑘 ∈ (𝑚𝑚𝑘𝑘 − 1,𝑚𝑚𝑘𝑘)

Subgraphs dense enough to appear in large numbers, but sparse



Sparse  Direct Count Estimation

Let 𝑉𝑉𝑛𝑛 = diag 𝑛𝑛2ℎ𝑘𝑘 𝛽𝛽𝑘𝑘
𝑛𝑛(1−𝛽𝛽𝑘𝑘

𝑛𝑛)
|𝐺𝐺𝑘𝑘|

and   ℎ𝑘𝑘 ∈ (𝑚𝑚𝑘𝑘 − 1,𝑚𝑚𝑘𝑘).

Then  𝑏𝑏𝐷𝐷𝐷𝐷 − 𝑏𝑏 →𝑃𝑃 0 and 𝑉𝑉𝑛𝑛
−1/2 𝑏𝑏𝐷𝐷𝐷𝐷 − 𝑏𝑏 ↝ 𝒩𝒩 0, 𝐼𝐼 .

( betas converge  too,  but all going to 0,  so state in bs )



Sparse: Few Incidental Triangles



Non-Sparse,  Links Triangles

𝑅𝑅 = diag 𝑛𝑛ℎ𝐿𝐿 ,𝑛𝑛ℎ𝑇𝑇
𝛽𝛽𝑀𝑀𝑀𝑀 ≔ argmin (𝑆𝑆(𝑔𝑔) − E𝛽𝛽 𝑆𝑆(𝑔𝑔) )′𝑅𝑅2(𝑆𝑆(𝑔𝑔) − E𝛽𝛽 𝑆𝑆(𝑔𝑔) )

If  ℎ𝐿𝐿 ∈ (2/3,2) and ℎ𝑇𝑇 ∈ [ℎ𝐿𝐿 + 1, 3ℎ𝐿𝐿], with ℎ𝑇𝑇 < 3

then  𝑏𝑏𝑀𝑀𝑀𝑀 − 𝑏𝑏 →𝑃𝑃 0 and 𝑉𝑉𝑛𝑛
−1/2 𝑏𝑏𝑀𝑀𝑀𝑀 − 𝑏𝑏 ↝ 𝒩𝒩 0, 𝐼𝐼 .



Proof?

• Show identification from direct statistics and that those vary 
nontrivially with parameters

• Key missing piece is to get normality

• Subgraph counts are sums of correlated random variables

• Correlation structure can be quite complex  (adjacent and non 
adjacent)



A New Central Limit Theorem

• In order to prove things we need a new Central Limit Theorem that 
handles correlated random variables

• Existing theorems usually use some time or spatial restrictions on 
correlation

• We don’t have that:  we need a new more flexible Central Limit 
Theorem that allows for arbitrary correlation patterns as long as 
total correlation is appropriately bounded



CLT – correlated RVs

Index set triangular array 𝛼𝛼 ∈ Λ𝑁𝑁

Affinity set:   𝒜𝒜 𝛼𝛼,𝑁𝑁 ⊂ Λ𝑁𝑁 such that 𝛼𝛼 ∈ 𝒜𝒜 𝛼𝛼,𝑁𝑁

𝑍𝑍𝛼𝛼 = 𝑋𝑋𝛼𝛼 − 𝐸𝐸[𝑋𝑋𝛼𝛼]

𝐸𝐸[|𝑍𝑍𝛼𝛼𝑁𝑁|3]/𝐸𝐸[(𝑍𝑍𝛼𝛼𝑁𝑁)2] ⁄3 2 is bounded above 



CLT – correlated RVs

index set triangular array 𝛼𝛼 ∈ Λ𝑁𝑁

Affinity set:   𝒜𝒜 𝛼𝛼,𝑁𝑁 ⊂ Λ𝑁𝑁 such that 𝛼𝛼 ∈ 𝒜𝒜 𝛼𝛼,𝑁𝑁

𝑍𝑍𝛼𝛼 = 𝑋𝑋𝛼𝛼 − 𝐸𝐸 𝑋𝑋𝛼𝛼

𝑎𝑎𝑁𝑁: = ∑
𝛼𝛼;𝜂𝜂∈𝒜𝒜(𝛼𝛼)

𝑐𝑐𝑐𝑐𝑐𝑐 𝑍𝑍𝛼𝛼 ,𝑍𝑍𝜂𝜂 𝐙𝐙−𝛼𝛼: = ∑
𝜂𝜂∉𝒜𝒜(𝛼𝛼)

𝑍𝑍𝜂𝜂



Three conditions

(i)   ∑
𝛼𝛼;𝜂𝜂,𝛾𝛾∈𝒜𝒜(𝛼𝛼)

𝐸𝐸 |𝑍𝑍𝛼𝛼|𝑍𝑍𝜂𝜂𝑍𝑍𝛾𝛾 = 𝑜𝑜 𝑎𝑎𝑁𝑁
⁄3 2

(ii)    ∑
𝛼𝛼,𝛼𝛼′,𝜂𝜂∈𝒜𝒜 𝛼𝛼 ,𝜂𝜂′∈𝒜𝒜 𝛼𝛼′

𝑐𝑐𝑐𝑐𝑐𝑐 𝑍𝑍𝛼𝛼𝑍𝑍𝜂𝜂 ,𝑍𝑍𝛼𝛼′𝑍𝑍𝜂𝜂′ = 𝑜𝑜 𝑎𝑎𝑁𝑁2

(iii) ∑
𝛼𝛼
𝐸𝐸 𝐸𝐸 𝑍𝑍𝛼𝛼𝐙𝐙−𝛼𝛼|𝐙𝐙−𝛼𝛼 = ∑

𝛼𝛼
𝐸𝐸 𝐙𝐙−𝛼𝛼𝐸𝐸 𝑍𝑍𝛼𝛼|𝐙𝐙−𝛼𝛼 = 𝑜𝑜 𝑎𝑎𝑁𝑁



CLT

Under (i)-(iii)   ∑
𝛼𝛼∈Λ𝑁𝑁

𝑍𝑍𝛼𝛼𝑁𝑁/ 𝑎𝑎𝑁𝑁 ↝ 𝒩𝒩(0,1).



CLT Corollaries

If  either E ZαZ−α|Z−α ≥ 0 and ∑
α,η

cov Zα2 , Zη2 = o aN2

or   Xα are Bernoulli with E[Xα] → 0 uniformly,  

and ∑
α≠η

cov(Zα, Zη) = o aN ,   then

∑
α∈ΛN

ZαN/ aN ↝ 𝒩𝒩(0,1).



Proof Technique, Extension of 
Stein’s Lemma 

Let       𝐙𝐙𝑁𝑁: = ∑
α

ZαN and    𝐙𝐙
𝑁𝑁

= 𝐙𝐙𝑁𝑁/𝑎𝑎𝑁𝑁
⁄1 2.

If  sup
{f:||f||,||f′′||≤2,||f′||≤ 2/π}

E[f ′(Z
N

) − Z
N

f(Z
N

)] → 0

then      𝐙𝐙
𝑁𝑁
↝ 𝒩𝒩(0,1)



Rest of Proof

Let    𝐙𝐙−𝛼𝛼: = ∑
η∉𝒜𝒜(α)

Zη/a ⁄1 2.    A Taylor series expansion around 

𝐙𝐙−𝛼𝛼 and some algebra,  using (i),  gives

E f ′(Z) − Zf(Z) ≤
||f ′′||
2a ⁄1 2 ∑α

E Zα Z − Z−α
2

+ E f ′(Z) 1 −
1

a ⁄1 2 ∑α
Zα(Z − Z−α) + o(1)

Then (ii) and (iii)  and more algebra bound the first two expressions.



Extensions

Chandrasekhar, Jackson, McCormick, Thiyageswaran
extend theorem to vectors and show nests many other CLTs and 
show other applications  (spillovers, diffusion,  …).
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Recreate Networks (Favor, allow covariates)

Data Block 
Model ERGM Latent 

Space SUGM

Avg. Degree 7.1 7.8 16.6 13.1

Clustering .29 .05 .15 .07

Frac. Giant Comp. .95

First Eigvalue 10.1

Homophily .94
Avg Path Length 3.5



Recreate Networks (Favor, allow covariates)

Data Block 
Model ERGM Latent 

Space SUGM

Avg. Degree 7.1 7.8 16.6 13.1 7.2

Clustering .29 .05 .15 .07 .19

Frac. Giant Comp. .95

First Eigvalue 10.1

Homophily .94
Avg Path Length 3.5



Recreate Networks (Favor, allow covariates)

Data Block 
Model ERGM Latent 

Space SUGM

Avg. Degree 7.1 7.8 16.6 13.1 7.2

Clustering .29 .05 .15 .07 .19

Frac. Giant Comp. .95 .995 .91 .87 .96

First Eigvalue 10.1 9.5 21.6 16.0 9.8

Homophily .94 0.73 .79 .91 .87
Avg Path Length 3.5 2.9 2.8 3.8 3.2



Example: Social Pressure

• Cross caste relationships

• Are they more likely to occur ``in private’’ with no 
friends in common

• Or occur with same frequency in embedded 
relationships?

C

A

B



Example: Social Pressure

• Examine relative probabilities of triangles diff/same  
compared to link probabilities diff/same

• Adjust by exponent  3/2…

C

A

B



Application: Social Pressure

Freq across caste triad   =   F(U(cross triad))3

Freq within caste triad         F(U(within triad))3

Freq across caste link   =   F(U(cross link))2

Freq within caste link        F(U(within link))2



Favor Links 
75 villages



Info Links 
75 villages



Summary
• Network formation important for welfare, policy EC

• Estimation problems ERGMs,   spatial and block models not up to 
task when triangles matter.

• Subgraphs directly:   identification, estimation

• Match observables,  test hypotheses…

• CLT for general correlation structure 



Thank You!

• Questions?
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