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Social Networks in Action:

Labor/Education: job referrals, peer effects, poverty traps
Development: social learning, diffusion, norms
Organizations: learning, team efficiency, culture

Politics: voting, alliances, conflict, polarization

Trade and Macro: shock propagation, innovation

Finance: contagion, intermediation, regulation

Public: corruption, crime



The Geography of Upward Mobility in the United States
Average Income at Age 35 for Children whose Parents Earned $27,000 (25 percentile)

<$20k $33k >$55k
Note: Blue = More Upward Mobility, Red = Less Upward Mobility
Source: Chetty, Friedman, Hendren, Jones, Porter 2018




Network Explanations?

 Examined various measures of social capital

* Economic connectedness - form of economic homophily

 Examine connections by income:

* What fraction of below median income person’s friends have
above median income?

* Divide by .5, so no homophily would be 1



Economic Connectedness of Low-SES Individuals by County
Normalized Share of Above-Median Friends Among Below-Median People
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< 0.58

Chetty, Jackson, Kuchler, Stroebel et al 2022 (www.socialcapital.org)



http://www.socialcapital.org/

Upward Mobility vs. Economic Connectedness, by County 200 Largest Counties
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V26 KeroRiceGo Banerjee, Chandresekhar, Duflo, Jackson (2013, 2019)

Blue Squares: General Merit and Otherwise Backward Castes
Red Circles: Scheduled Castes and Scheduled Tribes Figure Jackson 2014
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Network Formation Models

 Random graphs — Math, Sociology, Statistics, Physics, Economics, CS

e Static: Solomonoff-Rapoport 1951, Rapoport 1957, Erdos-Renyi 1959, 1960, Holland-
Laskey-Leinhardt 1983, Molloy-Reed 1995, Watts-Strogatz 1999, Chung-Lu 2002

° Dynamic: Price 1976, Barabasi-Albert 1999, Adamic-Huberman 1999, Leskovec-
Kleinberg-Faloutsos 2005, Jackson-Rogers 2007, Snijders-Van de Bunt-Steglich 2010

e Strategic models — Economics, CS, Political Science

e Static: Jackson-Wolinsky 1996, Dutta-Jackson 2000, Jackson-van den Nouweland 2005,
Calvo-Iklic 2004, Jackson-Rogers 2005, Bloch-Jackson 2006, 07, Olaizola-Valenciano 2021

* Dynamic: Aumann-Myerson 1987, Bala-Goyal 2000, Currarini-Morelli 2000, a.Watts

2001, Jackson-Watts 2002ab, Mauleon-Vannetelsoch 2004, Currarini-Jackson-Pin 2009,
Christakis-Fowler-Imbens-Kalyanaraman 2020, Jackson-Nei-Snowberg-Yariv 2023



Statistical/Econometric Models

Stochastic Block Models: Holland-Laskey-Leinhardt (1983) ...

ERGMSs (Markov, p*, MRQAP): Holland-Leinhardt (1981), Frank-
Strauss (1986), Krackhardt (1988), Butts (2009), Snijders etal (2006), ...

Spatial/Geometric/Latent: Penrose (2003), Hoff etal (2002), Leung
(2014), McCormick-Zheng (2015), Boucher Mourifie (2017), Graham
(2017)

Explicit strategic formation models: Mele (2017,2022), Badev (2021),
de Paula-RichardsShubik-Tamer (2018), Sheng (2020), Mele-Zhu (2023)



Example: Social Pressure

* Cross caste relationships

* Are they more likely to occur 'in private” with no
friends in common

* Or occur with same frequency in embedded

relationships?
(A



ERGMs @
Pr(g) = exp[ B, s4(g) +... + B, s(9) ]

2q exp[B184(9) + ... + By s(Q) ]

MCMC techniques for estimation (Snijders 2002, Handcock
2003,...) have led to these becoming the standard



ERGMs

Bhamidi, Bresler, Sly (2008) (see also Chatterjee and Diaconis
(2011), Shalizi and Rinaldo (2012)):

For dense enough ERGMs, MCMC (Glauber dynamics - Gibbs
sampling) estimates mix less than exponentially only if networks
have approximately independent links.

So, ERGMs that are interesting, cannot be estimated via
techniques being used!

Simulations: also problems on sparse ones...



ERGMs

Pr(g) = exp[ By s4(9) + ... + By s¢(9) ]
2o expl[Bysq(g)+ ... +Bysk(g) ]

n=30 nodes give 243> g’s (less than 22°% atoms in the universe...)

Sampling g’s will not lead to accurate estimates (not just MCMC
limitation)



Statistical/Econometric Models

* ERGMs impossible to estimate with rich structures and more than ti
number of nodes

* Spatial/Geometric/Latent:

* Links follow some spatial pattern

* But end up with too high density nearby in order to generate
triangles or other richer patterns in networks
























Clustering @

* Fraction of pairs of a node’s friends that are friends with
each other

Fraction of such instances
where this link is present

o/
(O
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Statistical/Econometric Models

* Spatial/Geometric/Latent:

* Links follow some spatial pattern

* But end up with too high density nearby in order to generate
clustering

* Instead: simply generate triangles and other subgraphs directly...
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SUGMs @
e Subgraph Generation Models

* Subgraphs are generated, network is by-product
people form links, triangles,...

could depend on Xs of the people involved



SUGMs @

e N={1, ..., n} nodes

* G, setof all subgraphs of typek on nnodes (e.g.,
triangles that involve more than one caste, triangles of
same case)

* B =(B,...B¢) probabilities of subgraphs type k forming

* Subgraphs form independently



Example:







Links Form: Incidental Triangle







Identification Challenge @

Subgraphs are formed directly, but only see the ending
network

Was some subgraph generated directly, or incidentally as part
of some other links/subgraphs



Theorem: Identification @

Every SUGM is identified: Forany G = (G, ...G)
it B=(B;..8¢0% B =(B"y...B8°«) then Prg() # Prg ().




Proof

e.g., links triangles:

* Probability of network with just one link depends only on 3, if
those are the same, then

* Probability of some triangle (and nothing else) B;+ (1-B;) B>
increasing in B

* General version — find subgraph with fewest links where B differs



Proposition: Identification @

S/(g) = #linksing, S;(g)= #trianglesing.

If (B, By) # (B',,B'y) then Eg[S,(g), Si(g)] # Eg [S.(8), St(8)].
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Estimation

 Many networks ( ‘easy’”, standard — each network is an
independent observation)

* One network (harder, links potentially all correlated) -- we use two
approaches

* Direct count estimator”” - sparse networks, count subgraphs
(carefully — larger subgraphs first)

* Minimum distance estimator - non-sparse case, show how to do
it for links, triangles; raw counts



Direct Count Estimator

Order G,s from largest to smallest (number of links).
Count subgraphsin G,, S,(g), then eliminate them.

Iteratively, on remaining network count subgraphsin G,, S.(g),
then eliminate them.

N

B,= S (8)/ |Gl



Sparse Direct Count Estimation @

m, number nodes subgraph k B, = e

hk € (mk — 1, mk)

Subgraphs dense enough to appear in large numbers, but sparse



Sparse Direct Count Estimation @

2hy 1817(1(1_:817(1)
|G|

Let I/, = diag{n } and h;, € (m, — 1,my;).

Then |bP¢ —b| =P 0 and V. Y2(bPC — b) ~ N (0, ).

n

( betas converge too, but all going to 0, so state in bs)



Sparse: Few Incidental Triangles




Non-Sparse, Links Triangles @

R = diag{n"t, n"'1}
pMP = argmin (S(g) — Eg[S(@)D'R*(S(9) — EzlS(9)])

if h, € (2/3,2) and h; € [k, + 1, 3h,], with hy < 3

then |bMP — p| - 0 and Vn_l/z(bMD —b) ~» N (0,1).



Proof?

Show identification from direct statistics and that those vary
nontrivially with parameters

Key missing piece is to get normality

Subgraph counts are sums of correlated random variables

Correlation structure can be quite complex (adjacent and non
adjacent)



A New Central Limit Theorem

* |n order to prove things we need a new Central Limit Theorem that
handles correlated random variables

e Existing theorems usually use some time or spatial restrictions on
correlation

* We don’t have that: we need a new more flexible Central Limit
Theorem that allows for arbitrary correlation patterns as long as
total correlation is appropriately bounded



CLT — correlated RVs @

Index set triangular array a € AN

Affinity set: A(a,N) c AN  suchthat a € A(a, N)

Lo =Xq — E[Xa]

E[1ZN131/E[(ZY)?]3/% is bounded above



CLT — correlated RVs @

index set triangular array a € AY

Affinity set: A(a,N) c AN  suchthat a € A(a, N)
Lg = Xq — E[Xa]

ay:= ) cov(Za,Zn) Z_,:= ) Z
a;nNeEA(x) neA(a)



Three conditions @

. B 3/2
(i) am,ygﬂ(“)E“Z‘*‘Z’?ZV] = o (ay/?)

(ii) D cov(ZaZn,Za,Zn, = o(ay)
a,a' neA(a)n'eA(a’)

(iii) XENEIZoZ o|Z_g]l] = XE|Z_oE|Zo|Z-4]l] = o(ay)

a



>

Under (i)-(iii) ¥ ZN/Jay ~ N (0,1).

aeAN




CLT Corollaries @

If either E[ZoZ_«|Z_o] =0 and Y, cov(Zg,Z3) = o(ag )
o

or X, are Bernoulliwith E[X,] = 0 uniformly,

and ), cov(Zy,Zy) = o(ay), then

oM

Y. Za/\an ~ N(0,1).

aeAN



Proof Technique, Extension of
Stein’s Lemma

1/2
let ZN:=YZN and Z =1ZV/a}/?.
04

—N —N —N
f sup E[f'(Z )—Z f(Z )]‘ 50
(ERILIE |S2.1 || 2/m)

then Z ~N(0,1)



Rest of Proof @

let Z_,:= Y Z,/al/?. ATaylor series expansion around
B néA(a)

Z_, and some algebra, using (i), gives

_ £/ _ _
E[f"(Z) — Zf(Z)]| < lzlal/lzl %}E [IZal(Z — z_a)z] + ‘E lf’(Z) (1 — sza(z _a)>” +0(1)

Then (ii) and (iii) and more algebra bound the first two expressions.



Extensions

Chandrasekhar, Jackson, McCormick, Thiyageswaran

extend theorem to vectors and show nests many other CLTs and
show other applications (spillovers, diffusion, ...).
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Recreate Networks (Favor, allow covariates)

Data I\"j’l'sgzl ERGM zi)t::et SUGM
Avg. Degree 7.1 7.8 16.6 13.1 /.2
Clustering .29 .05 .15 .07 .19
Frac. Giant Comp. .95 995 91 37 .96
First Eigvalue 10.1 9.5 21.6 16.0 9.8
Homophily .94 0.73 .79 91 .87

Avg Path Length 3.5 2.9 2.8 3.8 3.2



Example: Social Pressure

* Cross caste relationships

* Are they more likely to occur 'in private” with no
friends in common

* Or occur with same frequency in embedded

relationships?
(A



Example: Social Pressure

* Examine relative probabilities of triangles diff/same
compared to link probabilities diff/same

* Adjust by exponent 3/2...



Application: Social Pressure

Freq across caste triad = F(U(cross triad))3

Freq within caste triad F(U(within triad))3

Freq across caste link = F(U(cross link))?

Freg within caste link F(U(within link))?
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Summary

Network formation important for welfare, policy EC

Estimation problems ERGMSs, spatial and block models not up to
task when triangles matter.

Subgraphs directly: identification, estimation

Match observables, test hypotheses...

CLT for general correlation structure



Thank You!

e Questions?
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