
Recurring Bullies, Trembling and Learning1

Matthew Jackson and Ehud Kalai

Kellogg Graduate School of Management, Northwestern University, Evanston, IL 60208-

2009

Abstract. In a recurring game, a stage game is played consecutively by
di�erent groups of players, with each group receiving information about the
play of earlier groups. Starting with uncertainty about the distribution of
types in the population, late groups may learn to play a correct Bayesian
equilibrium, as if they know the type distribution.
This paper concentrates on Selten's Chain Store game and the Kreps,

Milgrom, Roberts, Wilson phenomenon, where a small perceived inaccuracy
about the type distribution can drastically alter the equilibrium behavior. It
presents su�cient conditions that prevent this phenomenon from persisting
in a recurring setting.

Keywords. Recurring Game, Social Learning, Chain Store Paradox

1 Introduction

In a recurring game, a stage game is sequentially played by di�erent groups
of players. Each group, before its turn, receives information about the social
history consisting of past plays of earlier groups. Game theorists have stud-
ied such recurring situations using various dynamics like �ctitious play, last
period best response, and random matching, since Nash in his dissertation
(1950).
Of interest here is a Bayesian version of a recurring game, where each

stage game player is uncertain about the types of his or her opponents. Ob-
served social histories are used by players to update beliefs about the un-
known distribution of types in the population. With time, players' behavior
converges to that of the Bayesian equilibrium of the stage game, as if the
true distribution of types in the population were known.

1The authors thank the California Institute of
Technology and the Sherman Fairchild Founda-
tion for their generous hospitality while doing
this research. They also thank Eric van Damme
for comments on an early draft and the National
Science Foundation for �nancial support under
grants SBR-9223156 and SBR-9223338.
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In a recent paper (Jackson and Kalai, 1995a) we present a general model of
recurring games and su�cient conditions that yield such social convergence.
Our purpose in this chapter is to apply this approach to Selten's (1978) chain-
store games and study the implications on the phenomenon illustrated by
Kreps and Wilson (1982) and Milgrom and Roberts (1982) (KMRW for short,
also sometimes called the \gang of four"). A speci�c question is whether
this phenomenon (described in more detail below) can persist in a recurring
setting. To better �t the recurring setting we replace Selten's chain-store
story with a strategically equivalent story about a bully terrorizing a �nite
group of individuals, the challengers. The rest of the introduction presents
a verbal description of our model and conclusions. A broader survey of the
related literature can be found in Jackson and Kalai (1995a).
The \challenge the bully" stage game (the bully game, for short) is played

by a bully and L challengers. It consists of L preordered episodes each played
by the bully and one challenger. In each episode the designated challenger
chooses whether to challenge the bully or not, and if challenged, the bully
chooses whether to �ght or not. The bully prefers not to be challenged, but
if challenged he would rather not �ght. The challenger prefers challenging a
non�ghting bully, but if the bully �ghts he would rather not challenge. (The
single episode payo�s are represented in Figure 1 of the next section.) Both
bully and challenger know the outcome of all previous episodes before making
their decisions.
Recall that Selten's paradox is that backward induction applied to this

game dictates that all challengers challenge and the bully never �ghts. Yet,
when L is large, common sense suggests that the bully may choose to �ght
in early episodes in order to build a reputation so that challengers will not
challenge.2 KMRW point out that the backward induction result depends on
the complete information assumption. The resolution o�ered by KMRW is
to replace the above game by a Harsanyi (1967{68) Bayesian game in which
there is a small commonly known prior probability that the bully is \irra-
tional," e.g., he prefers �ghting to any other episode outcome. In such a
modi�ed game the more reasonable behavior is obtained as the unique se-
quential equilibrium outcome, even when the realized bully is rational. Thus
the phenomenon illustrated by KMRW is that in a world with a rational
bully, a small uncertainty about the rationality of the bully can drastically
change the equilibrium outcomes, and in particular, induce the rational bully
to �ght.
It is not obvious whether this phenomenon will persist if this situation

recurs. In other words, if new bullies are always born rational, but challengers
are uncertain about this fact, would bullying behavior persist? On the one
hand, it seems that statistical updating will lead observers (i.e., players in

2There are, of course, Nash equilibria of this type; however, they do not survive back-
ward induction.
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later rounds) through backward induction to the recognition that the bullies
are rational and with it will come challenging and not �ghting. On the other
hand, a violation of a rational act by a bully that wishes to appear irrational,
is more convincing when done in view of such learning. Thus, one is left
with the question of whether such learning will lead the eventual discovery
of the rationality of the population and thus the unraveling of the KMRW
phenomenon, or whether the actions of the players will slow the learning so
that the rationality of the population is never learned.
To meaningfully address this question, we extend the KMRW game to a

\doubly Bayesian" recurring game with two \priors." One prior, � , is a �xed
probablity distribution according to which a bully{type is drawn before each
stage game. We assume, however, that this type{generating distribution is
not known to the players. They assume that it was selected before the start
of the entire recurring game according to a known probability distribution �
over a set of possible type generating distributions.3

This gives rise to what we call an uncertain recurring game whose exten-
sive form game can be described as follows. In period 0 nature randomly
selects a type generating probability distribution � from a set of possible
ones, according to the prior probabilities �(�). Players know that a selection
was made according to �, but no information is given about the realized � .
For period 1, one bully and L challengers are selected. The bully is randomly
assigned a type according to the �xed (unknown) type{generating distribu-
tion � . Only the bully is informed of its realized type and the L+ 1 players
proceed to play the L episodes of the bully game. Their realized play path
becomes publicly known. The game recurs, following the same procedure. In
each period t > 1 a new set of challengers and a bully are selected. Again,
the bully is privately assigned its type according to the same unknown � and
the players proceed to play the L episodes of the bully game, with the play
path publicly revealed.
To study the recurring version of the KMRW phenomenon we will focus

the above described game, with a realiztion of � that selects rational bullies
with probability one, indicating a world in which bullies are really rational.
Note that the above separation to two distributions is necessary since

a restriction to a single prior � , representing both actual type-generation
and social beliefs, will force one of the following misrepresentations of the

3This approach may be viewed as the multi{arm{bandit \payo�" learning model
adapted to the Bayesian repeated game \type" learning literature. [See Aumann and
Maschler (1967) and followers, and the more closely related Jordan (1991).] The utility
maximizing bandit player starts with a prior distribution over his set of possible payo�
generating distributions. Ours is a multi{person version, with uncertainty over the distri-
bution generating types, modeled through a prior over a set of possible distributions. A
major di�erence between our model of learning in recurring games and the literature on
learning in repeated games is that in our setting players are attempting to learn about
the distribution of types that they will face in their stage game, while in a repeated game
players learn about the actual opponents they repeatedly face.
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phenomenon. If the single � assigns probability one to a rational bully, then
there would be no social uncertainty about it. On the other hand, if the single
� assigns positive probability to irrational bully types, then in the recurring
setting with probability one some irrational types will be realized, leading to
the KMRW equilibrium, but in a world which truly has irrational bullies. In
either situation, there would be no social learning. That is, observing past
stage games would tell a player nothing new about the distribution of types
in the population.
Our recuring game de�nition of a type is also signi�cantly generalized.

A type's preferences can depend on the entire social history and not just on
his own stage game. So, for example, we can model a \macho bully" whose
utility of �ghting increases after social histories with many earlier �ghting
bullies. Or in a multi-generational setting, a bully may prefer to behave like
his ancestors.
We refer to the Nash equilibria of the above uncertain recurring game as

uncertain Bayesian equilibria. In playing an uncertain Bayesian equilibrium,
expected utility maximizers perform Bayesian updating of the prior � to
obtain updated posteriors over the set of type generating distributions. As
a result, the strategies of each stage game constitute a Bayesian equilibrium
of the stage game relative to the perceived distribution over types induced
by the updated prior, but not necessarily relative to the true (realized) type
generating distribution.
This discrepancy partly disappears however, after long social histories.

First, as a consequence of the martingale convergence theorem, the updated
prior will converge (almost everywhere). This means that players' learning
disappears in the limit. Second, the updated distribution will be empirically
correct in the limit. This means that players' learning induced predictions
concerning the play path will match the distribution over play paths induced
by the true (realized) distribution over types. This second result can be ob-
tained almost directly from a learning result in Kalai and Lehrer (1993). It
means that in late games, any discrepancy between the true and the learning
induced type generating distributions cannot be detected, even with sophis-
ticated statistical tests.
The fact that players learn to predict the play path with arbitrary pre-

cision, does not necessarily imply that they have learned the true type gen-
erating distribution � or the true distribution of strategies (including o� the
equilibrium path behavior).4 We present an example of challengers who never
challenge, because their initial beliefs assign high probability to �ghting bul-
lies, even though the realized bullies would never �ght if challenged. No
learning occurs because no challenging ever occurs. Moreover, in the exam-

4This phenomenon also arises in non-recurring situations, such as those where players
play a long extensive form or a repeated game. For detailed analyses of this in such
settings, see Battigalli, Gilli and Molinari (1992), Fudenberg and Kreps (1988), Fudenberg
and Levine (1993), and Kalai and Lehrer (1993).
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ple a single tremble by a single challenger will reveal the non �ghting nature
of the bullies and would cause the entire equilibrium to collapse.
In order to overcome this di�culty, we introduce trembles �a la Selten

(1975, 1983). The e�ect of introducing the trembles is to ensure that the
social history leads to informative learning.5 For an exogenously given small
positive probability q, we assume that every player chooses strategies that
assign probabilities of at least q to each one of his or her actions at every
information set.
Assuming that players play an uncertain Bayesian equilibrium with trem-

bling, we obtain the following conclusions for the case where the realized dis-
tribution results in only rational bullies: With probability one, in late stage
games, the challengers always challenge, and the bullies never �ght. These
rules are followed with the exception of occasional trembles. This result is
obtained regardless of the initial beliefs of the society, provided those initial
beliefs assign some positive probability to the distribution which selects only
rational bullies.
Thus the introduction of the trembles in the recurring model leads one to

eventually play the trembling hand perfect equilibrium (de�ned with respect
to the agent normal form). It is important to remark, however, that the
trembles are not working directly (as in the de�nition of trembling hand
perfection), but rather indirectly through the learning that they ensure. This
is evident since in early stages, the equilibrium outcomes with trembles can
still be that rational bullies �ght and challengers not challenge.
We wish to remark that the general message of our results is not simply

the eventual decay of the KMRW equilibrium. For instance, if the realized
type generating distribution is truly selecting some \irrational" �ghting bul-
lies, then this would also eventually be learned and the eventual convergence
would be to the KMRW equilibrium { even if initial beliefs placed an arbi-
trarily high (but not exclusive) weight on rational bullies. Thus the more
general understanding of our results is that in a recurring game, given some
randomness to induce learning, equilibrium behavior will eventually converge
to that as if players were playing an equilibrium knowing the underlying type
generating distribution.6 If players are truly rational, and the game is an ex-
tensive form, then this will lead to eventual approximate play of a perfect
equilibrium.

2 The Recurring Bully Game

The stage game is a bully game consisting of one bully player, b, and L

5See the concluding remarks of Fudenberg and Kreps (1995) for the suggestion of a
similar approach to ensure learning and convergence to Nash equilibrium in a model with
myopic long lived players.

6See Jackson and Kalai (1995ab) for general results along these lines.
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challengers, (ci)i=1;:::;L. In sequential episodes i = 1; : : : ; L, challenger ci
decides whether to challenge (C) the bully or refrain (R) from doing so. If the
challenger does challenge, then the bully has to decide whether to acquiesce
(A) or �ght (F). The corresponding episode payo�s, to the challenger and
bully, are given by the extensive form game pictured in Figure 1.

Figure 1

Each player is informed of the outcomes of earlier episodes before making a
decision. The payo�s of challengers are determined according to their episode
payo�s while the payo� to the bully is the sum of his or her L episode payo�s.
Formally, a play path of such a bully game is described by a vector

p = (X1; : : : ; XL) with each Xi, being in the set f(R); (C;A); (C;F )g, de-
scribing the outcome of the ith episode. A partial play path is such a vector
(X1; : : : ; Xl), but with 0 � l < L. A (behavioral) strategy �i of challenger
ci consists of a probability distribution over the actions R and C for every
i � 1 long partial play path (X1; : : : ; Xi�1). A bully strategy, �, chooses a
probability distribution over the actions A and F for every partial play path
of every length. A vector of strategies ((�i); �) induces a probability distrib-
ution over the set of play paths and de�nes expected payo�s for all players
in the obvious unique way.
The recurring bully game is played in periods t = 1; 2; : : :. In each period

t a new group of players (bully and challengers) are selected to play the stage
game. Moreover, before choosing their strategies, they are informed of the
play paths of all earlier groups.
A social history h of length t is a vector of play paths h = (p1; : : : ; pt).

The empty history ; is the only history of length 0, and H denotes the set of
all �nite length histories. The players of the recurring bully game are denoted
by bh and chi , where for every �xed h, b

h and chi describe the bully and the
challenger to play the i-th episode of the stage bully game after history of
h. Thus, as the notation suggests, the players bh and chi know the social
history h that led up to their game. Strategies in the recurring bully game
are denoted by �h and �hi , with the obvious interpretations.

3 Games with Unknown Bully Types

Alternative bully types describe di�erent utility functions that a bully may
have in playing a bully game. There is a countable set � of possible bully
types. For each type � 2 � there is a function u�(h; p) describing the payo�
to bully bh of the play path p, when he or she is of type �.
An example of a type is the one already de�ned whose payo� from any
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path (regardless of the social history) is the sum of the episode payo�s de-
scribed earlier (in Figure 1). We refer to these payo�s as the \rational" ones
and to this type as the rational type, denoted by r.
An example of an \irrational" bully, motivated by KMRW, is one with

payo� k > 0 for every \strong path" p in which he or she never acquiesces, and
�k for weak paths p, exhibiting some acquiescing actions. We keep the terms
\rational" and \irrational" in quotes, since \irrational" bullies are supposed
to be maximizing their expected payo�s. It is simply that the \irrational"
payo�s do not match those of the game in Figure 1. Of course, this is simply
a modeling convenience as any behvior can always be made to be expected
utility maximizing, if one can arbitrarily manipulate the payo� function.
More complex \irrational" types can condition their payo�s on the ob-

served social history. For example in the type just described we can replace k
by kh, taking on large values after social histories h consisting only of tough
play paths and small values for social histories h with weak bullies. This may
represent an ego maniac bully who compares himself to earlier ones.
Probability distributions over the countable set of possible bully types,

�, are referred to as type-generating distributions. Every such distribution
� de�nes a recurring Bayesian bully game as follows. After every social
history h, nature chooses a bully type �h, according to the distribution �
(independently of all earlier choices in the game). The bully bh is informed
of his or her realized type �h, before choosing his strategy. All other players
are only aware of the process and know the distribution � by which �h was
selected.
Strategies in the Bayesian recurring bully game are denoted by (�h� ) and

(�hi ), with �
h
� denoting the strategy of the bully b

h when he or she is of type
�, and �hi is a challenger strategy as before.
Notice that a Bayesian recurring bully game, with a type generating dis-

tribution � , induces after every history h a Bayesian bully game of reputation,
similar to KMRW, with bully types payo�s given by u�(p; h) and a prior �
on possible types �.
We wish to model, however, Bayesian recurring bully games with uncer-

tainty about the type generating distribution. It is such uncertainty that
introduces learning from the social history. An uncertain Bayesian recurring
bully game (uncertain recurring game for short) is played as follows. In a
0-time move, nature selects a type generating distribution � according to a
prior probability distribution �. Without being informed of the realized � ,
the players proceed to play the � Bayesian recurring bully game. We assume
that the exogenously given distribution � has a countable support (�(�) > 0
for at most countable many � 's) and that it and the structure of the game
are commonly known to all players.7 Players update � based on observed

7see Jackson and Kalai (1995a) for discussion of extensions to allow for players' prior
beliefs to be type dependent.
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histories and the strategies that they believe to be governing play. This up-
dated distribution induces a distribution over types, which is the basis for
the Bayesian stage game that they play.
Notice that an uncertain recurring bully game may be thought of as a

\doubly Bayesian" game since we use a prior to select a distribution that
serves as the priors of the stage games to come. The strategies of the un-
certain recurring game are the same as the ones of the Bayesian game since
the information transmitted and feasible actions are identical in both games.
However, as will be seen in the sequel, expected utility computations and
Bayesian updating are more substantial in the uncertain recurring game.
An uncertain Bayesian equilibrium is a vector of strategies ((�h� )); (�

h
i ))

which are best reply to each other in the extensive form description of the
uncertain recurring game de�ned by the prior �.

4 Social Learning

In this section, we consider a given uncertain Bayesian recurring bully game
with a prior � and �xed strategies ((�h� ); (�

h
i )). We �rst clarify some proba-

bilistic issues.
A fully described outcome of the uncertain recurring game is a sequence of

the type �; �1; p1; �2; p2; : : :. Such an outcome generates progressive socially-
observed histories h1; h2 : : : with ht = (p1; : : : ; pt). To describe the proba-
bility distribution on the set of all outcomes it su�ces to de�ne consistent
probabilities for all initial segments of outcomes. We do so inductively by
de�ning P (�) = �(�) and

P (�; �1; p1; : : : ; �t+1; pt+1) = P (�; �1; p1; : : : ; �t; pt)�(�t+1)�(pt+1)

where �(pt+1) is the probability of pt+1 under the strategies ((�h� ); (�
h
i )) with

h = ht and � = �t+1.
Players, observing only the buildup of histories h1; h2; : : :, do not know

the chosen type generating distribution � , but they can generate posterior
probability distribution over it using the initial distribution and conditioning
on current histories. Thus, their posteriors �0;�1; : : : ; are de�ned for every
type generating distribution �� by �0(��) = �(��) and �t(��) = P (�� j ht).
Each such distribution over type generating distributions induces a direct

distribution over types. Thus we have updated posterior distributions on the
next period type denoted by 
0; 
1; : : :, with 
t(�) =

P
�� ��(�)�

t(��). Although
we supress the notation, both �t and 
t are history dependent.
After every history ht the bully, bh

t

, and the challengers, (ch
t

i ), play a
Bayesian bully game. The bully knows his or her realized type, �t+1, and it
is commonly assumed that he or she was drawn according to the distribution

t. If the original strategies ((�h� ); (�

h
i )) constitute an uncertain Bayesian
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equilibrium of the recurring game, then ((�h� ); (�
h
i )) with h = ht and � = �t+1

constitute a Bayesian equilibrium of the stage Bayesian game with the prior

t.
Of course, the assumed prior, 
t, against which individual challenger op-

timal strategies are chosen, is \wrong", since the real prior, by which �t+1 is
chosen, is the unknown � . In Harsanyi's (1967{68) de�nition of a Bayesian
equilibrium this presents no problem. The strategies, with the commonly
known assumption that the prior is 
t, are formally a Bayesian equilibrium.
But in a recurring setting, when types are repeatedly drawn, a discrepancy
between a real prior and an assumed prior may lead to statistical contra-
dictions. These statistical discrepencies will disappear as players learn from
observed histories.
To describe the e�ects of learning we proceed in two steps. Our �rst

proposition states that players' updated distributions (over distributions)
converge almost surely. E�ectively, after some random time, players stop
learning.

Proposition 1 For almost every outcome, 
t(�) converges to a limit 
(�)
uniformly for all types � 2 �.

Proposition 1 follows from the martingale convergence theorem. We refer
readers to Jackson and Kalai (1995a) for a proof.
Our next proposition states that when players stop learning they have in

fact learned all that they could, and so they are arbitrarily correctly predict-
ing the play path after some random time. Proposition 2 can be proven using
Proposition 1, or can be seen more directly as a consequence of Theorem 3
in Kalai and Lehrer (1993).8

With the �xed stage game strategies, let � be the probability distribution
induced on the stage game play paths by the real prior, � , and let ~� be the one
induced by the assumed prior, 
t. If for every play path �(pt+1) = ~�(pt+1)
then no observable contradictions, even statistical ones can arise. We refer
to the strategies and the assumed prior 
t as an empirically correct Bayesian
equilibrium whenever � = ~�. If for some � > 0 we have j �(pt+1)�~�(pt+1) j� �
for all play paths pt+1, we refer to it as an empirically �-correct Bayesian
equilibrium.

Proposition 2 In an uncertain Bayesian equilibrium of an uncertain recur-
ring bully game, for almost every outcome and for every � > 0, there exists a
time T , such that 
t, together with the induced t+1 period strategies, consti-
tute an empirically �-correct Bayesian equilibrium of the stage game for all
t � T .

8Theorem 3 in Kalai and Lehrer (1993) states that Bayesian updating of beliefs con-
taining a \grain of truth" must eventually lead to correct predictions. The restriction in
the current model, to a countable set of type generating distributions, implies that for
almost every outcome �(�) > 0, which implies that the beliefs contain a grain of truth.
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The fact that late period stage-game players play an empirically �-correct
Bayesian equilibrium relative to their updated type generating distribution

t does not mean that they play a Bayesian equilibrium relative to the correct
distribution � . It only means that players' predictions concerning the play
path are approximately correct. Players may be mistaken concerning o� the
equilibrium path behavior. This is illustrated in the following example.

Example
Consider three types of a bully, r; f , and a, described by their episode

payo�s as follows. The rational type, r, has the original extensive game
payo�s described earlier. The �ghting type, f , has a payo� 1 for �ghting
and 0 for any other outcome (replacing the payo�s in Figure 1), while the
acquiescing type, a, has a payo� of 1 for acquiescing and 0 for any other
outcome. Let �;  and �, be the type generating distributions that select
respectively with probability one the types r; f and a.
Suppose the prior � assigns high probability to a world with �ghting bul-

lies, i.e., �( ) is high, and only a small probability to � and to �. Suppose
the real type generating distribution was selected to be �, i.e. only acquiesc-
ing bullies are generated. The strategies with all challengers refrain, a and
r type bullies always acquiesce, and f type bullies always �ght, constitute
an uncertain Bayesian equilibrium. This is so because the initial stage game
prior 
0 assigns high probability to a �ghting bully and to refrain from chal-
lenging is therefore rational. But since there is no challenge in the �rst period
the updated posterior on bully types remains unchanged, i.e. 
1 = 
0, the
same logic applies to the second period, and so on. Moreover, the induced
stage game Bayesian equilibria are empirically accurate. It is clear, however,
that these strategies do not induce a Bayesian equilibrium of the stage game
relative to the real prior �. In other words, if the challengers knew that their
bully is drawn with probability one to be of the a type, then they would
challenge.

5 Trembling Rational Players

The uncertain Bayesian equilibrium in the above example is highly unstable.
If at any time, in the in�nite play of the recurring game, a challenger trembles
and challenges, the whole equilibrium will collapse after observing that the
bully does not �ght. The equilibrium is able to survive only because society
never learns what bullies would do if challenged.
If a small amount of noise, in the form of trembles by players, is intro-

duced, then more learning will occur and equilibria such as the one in the
example above will eventually be overturned. In short, a small amount of
imperfection will lead players to learn behavior at all nodes in the tree. While
there are several ways to model such trembles, we follow Selten's (1975) ap-
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proach by restricting the set of strategies that a player can choose.
Let q be a positive small number describing the probability of minimal

trembles. The uncertain Bayesian recurring bully game with q-trembling is
obtained from the usual uncertain recurring bully game by restricting the
players to the choice of behavior strategies that assign probability greater or
equal to q to every action available in each information set.
Our next observation is that under q-trembling, if a Bayesian equilibrium

is empirically �-correct, then it must also be approximately correct for all
conditional probabilities in the game. For example, the probability that the
bully �ghts the ith challenger, conditional on the event that the ith chal-
lenger challenges, must be similar when computed by the learning induced
distribution 
 and by the true (realized) distribution � .
To see this point, let ~� be the distribution induced on play paths through

the learning induced distribution 
, and let � be the one obtained from the
true (realized) distribution � . The fact that j �(p) � ��(p) j� � for any play
path p implies that this can be made (by starting with a smaller �) true for
any event (i.e. a set of play paths) in the game. The q-trembling property
implies that there is a small positive number s such that the probability of
any non empty event in the game is at least s. The conditional probability of
event E1 given E2 is P (E1 and E2)=P (E2). Since we have all denominators
(over all possible E2's) being uniformly bounded from zero, by making �
su�ciently small we can make all such ratios when computed by � or by ~�
be within any given � of each other. Thus we obtain the following.
De�ne ~� to be strongly empirically �-correct if for any two events E1, and

E2 the conditional probabilities of E1 given E2, computed by � and by ~� are
within � of each other.

Lemma 3 Consider any Bayesian equilibrium ((��); (�i)) of a q-trembling
Bayesian bully game with an assumed type generating distribution 
 and a
true type generating distribution � . For every � > 0 there is a � > 0 such
that if the equilibrium is empirically �-correct it must be strongly empirically
�-correct.

Notice that by combining the result of Proposition 2 with the above
lemma, we can conclude that for almost every outcome of an uncertain
Bayesian equilibrium of the recurring game, after a su�ciently long time,
stage game players must be playing a strongly empirically �-correct Bayesian
equilibrium.
We consider now the special case, of an uncertain Bayesian equilibrium

of the recurring game, where the true (realized) type generating distribution,
�, generates the rational type r with probability one. The prior � over type
generating distributions can be arbitrary, as long as �(�) > 0.
For a game with q-trembling, a bully stage strategy � is essentially acqui-

escing if its probability of �ghting at every information set is the minimally
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possible level q, i.e. is only due to trembling. Similarly, a challenger i strat-
egy is essentially challenging if the probability of refraining is q. We can now
state the following result.

Proposition 4 Consider an uncertain Bayesian equilibrium of an uncertain
recurring bully game with q-trembles (q > 0). If the realized type generating
distribution places weight one on rational players, then for small enough q
(1=2 > q) and for almost every outcome there is a �nite time T such that the
t-period stage game strategies must be essentially acquiescing and essentially
challenging for all t � T .

Given the previous propositions and lemma, the conclusion of this propo-
sition is straightforward. For every � > 0 there is a su�ciently large T so
that all the later stage games are played by strongly empirically �-correct
Bayesian equilibrium. So all we have to observe is that for su�ciently small
�, a strongly empirically �-correct Bayesian equilibrium must consist of es-
sentially acquiescing and essentially challenging strategies. This is done by a
(backward) induction argument, outlined as follows.
In the last episode, following any play path, a rational bully must ac-

quiesce with the highest possible conditional probability given the (positive
probability) event that the last challenger challenges. Therefore the rational
bully must acquiesce with probability 1 � q in the last episode. Thus, after
time T (as de�ned in Lemma 3) the last episode challenger's assessed proba-
bility of the bully acquiescing in that episode is at least 1� q� �. Therefore,
for su�ciently small � and q < 1=2 the last challenger's unique best response
is to challenge, and so he or she challenges with probability 1�q. Since this is
true for any play path leading to the �nal episode, the assessed probability of
challenge in the �nal episode is at least 1� q� �, indepedent of the play path
leading to that episode. It follows that a rational bully in episode L� 1, will
have a unique best response of acquiescing in that episode. The L� 1 period
challenger, assessing this to be the case with probability at least 1 � q � �,
will essentially challenge, and so on.

6 Concluding Remarks

The KMRW phenomenon extends to a general folk theorem for �nitely re-
peated games with incomplete information, as shown by Fudenberg and
Maskin (1986). The failing of the phenomenon in a recurring setting has
parallel implications for this folk theorem. Jackson and Kalai (1995ab) con-
tains general results that have direct implications on this question. Again, we
should emphasize that our results imply that under certain conditions players
will learn to play as if they knew the realized type generating distribution.
To the extent that there exists a true diversity of types in the population,
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this is learned and players will play accordingly. Thus, the variety of equilib-
rium outcomes allowed for by the folk theorem can still be realized, but will
require a true diversity of types, rather than just a perceived one, in order
to survive in a recurring setting.
Stronger, and even more striking, versions of the KMRW phenomenon

might be possible in the manner described by Aumann (1992). This would
involve higher order misconceptions on the part of players. For example, re-
place the KMRW situation, where challengers are uncertain about whether
the bully is rational or �ght loving, by a situation where all challengers know
that the bully is rational, but are uncertain about whether other challengers
also know it. If, for instance, challengers believe that other challengers be-
lieve that there may be a �ghting bully, then the KMRW results might be
extended. This situation is incorporated into our model by using the type
space to allow an explicit description of the beliefs a player holds about the
beliefs of other players (and choosing � 's and � to re
ect this uncertainty).
Proposition 4 covers these cases and thus, if bullies are born rational, then
this extended version of the KMRW equilibrium would also unravel in a re-
curring setting.
Getting back to Selten's paradox, it seems to become more severe in the

recurring setting. A bully in later stages of the game who �ghts the �rst
challenger can be explained as having trembled, and thus is not perceived
as being irrational. Moreover, in the equilibrium play in late enough stages,
even a bully who �ghts the �rst few challengers will be explained as having
trembled several times, as this likelihood is larger than the alternative ex-
planation of the bully being irrational. Although in late enough play it is
relatively more likely that this behavior is due to trembles rather than irra-
tionality, both of these events were very unlikely to start with. Thus, it may
be that the challenger would prefer to doubt the model altogether (or believe
that the bully has done so), rather than to ascribe probabilities according to
it. Thus we are back at Selten's paradox.
Let us close with two comments relating to \technical" assumptions that

we have maintained in our analysis. The restriction in this chapter to count-
ably many types is convenient for mathematical exposition. The generaliza-
tion to an uncountably in�nite set (and an uncoutably in�nite set of possible
type generating distributions) requires additional conditions, in particular
to assure that Proposition 2 extends. Lehrer and Smorodinsky (1994) o�er
general conditions which are useful in this direction.
One strong assumption we have made is that players start from a com-

mon prior over priors. This is not necessary for the results. The content of
Propositions 1 and 2 can be applied to situations where each type of player
has their own beliefs. The equilibrium convergence result then needs to be
modi�ed, since players' beliefs may converge at di�erent rates. When these
convergence rates are not uniform, then the conclusions are stated relative
to a set of types which receives a probability arbitrarily close to one (under

13



the realized distribution).
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