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Recently, large datasets stored on the Internet have enabled the
analysis of processes, such as large-scale diffusions of information,
at new levels of detail. In a recent study, Liben-Nowell and
Kleinberg [(2008) Proc Natl Acad Sci USA 105:4633–4638] observed
that the flow of information on the Internet exhibits surprising
patterns whereby a chain letter reaches its typical recipient
through long paths of hundreds of intermediaries. We show that
a basic Galton–Watson epidemic model combined with the selec-
tion bias of observing only large diffusions suffices to explain these
patterns. Thus, selection biases of which data we observe can
radically change the estimation of classical diffusion processes.

diameter ∣ chain letters ∣ Galton–Watson process ∣ maximum likelihood
estimation ∣ social networks

As social network data become increasingly available in elec-
tronic form, researchers are developing more detailed and

accurate pictures of the patterns of social interactions. These
empirical investigations are of primary importance given the
multitude of ways in which social networks affect our lives (1).
However, such data come with their own idiosyncrasies. Most no-
tably, in the past most data on social networks were obtained via
questionnaires (2), interviews (3), experiments (4), or observa-
tions directly made by researchers (5), and so it was the researcher
who chose the data. More recently, the availability of electronic
data has made it more common for the data to choose the re-
searcher. That is, often large and interesting datasets become
available because of the electronic storage of various forms of in-
teraction occurring via the Internet, and these then become useful
test beds for theories of social networks. In this paper, we focus on
the explanatory power of one inherent selection bias that comes
along with many such datasets. Specifically, we examine a selec-
tion bias that arises from looking at unusually large instances of
diffusion processes—with a particular application to Internet
chain letters.

In a recent paper (6), Liben-Nowell and Kleinberg provided an
important and interesting examination of two chain letters that
had wide circulation on the Internet: a petition in support of pub-
lic radio and television that began circulating in 1995 and a peti-
tion against the eventual war in Iraq that circulated in 2002 and
2003. By obtaining many copies of the e-mails and tracing through
the ordered lists of names added to each petition, Liben-Nowell
and Kleinberg were able to reconstruct large portions of the trees
of dissemination of these chain letters. The remarkable aspect of
Liben-Nowell and Kleinberg’s findings is that these trees do not
exhibit the short distances between nodes that are characteristic of
many social networks (7, 8). Instead, these trees have very small
widths (i.e., many nodes have a single offspring), and the median
node receives the letter after it has been through hundreds of
intermediaries.

To understand why the paths of chain letter dissemination that
Liben-Nowell and Kleinberg reconstruct are puzzling, let us dis-
cuss what seems to be the most natural and simple model of how
such a process would operate. That model is the classical one of
Galton and Watson (9), which was developed in the 1870s to
study the longevity of family names in a patrilineal system. Galton

and Watson proposed a branching process where each node has a
random number of children, drawn independently according to
the same distribution. The process can also serve as a model
of an epidemic, where the number of children is the number
of others a given node infects. In this application, the number
of children of a given sender is the number of other people
who sign the petition immediately below that sender’s signature
in various versions of the letter that branch off as various recipi-
ents sign. It is well known (10) that the key quantity in character-
izing the asymptotic properties of this process is the expected
number of children per node. If this quantity is below the thresh-
old of unity, then the process is called subcritical and with prob-
ability one it will end in extinction after a finite number of steps. If
the expected number of children is more than one, then the pro-
cess is called supercritical and will continue forever with positive
probability. (We ignore the nongeneric borderline case in which
each node has exactly one child in expectation.)

The puzzle is that neither regime seems to explain the ob-
served data. The two datasets that Liben-Nowell and Kleinberg
study have more than 10,000 nodes each, whereas it is quite rare
for a subcritical branching process with reasonable parameters to
have more than a dozen nodes. Thus, the typical subcritical tree is
a poor match to the data on many dimensions. On the other hand,
if one tries to fit the data with a supercritical process, then the
trees that emerge have huge breadths, branch very frequently,
and do not have the long chains that are observed in the data.
In view of this, Liben-Nowell and Kleinberg developed a richer
network-based model of chain letter distribution with two impor-
tant features: asynchronous response times and group replies.
The realizations of their process that are as large as the observed
diffusions have the correct shapes.

We show that, despite their surprising appearances, the ob-
served trees have a global structure that corresponds to a basic
and classical process. In particular, the simple Galton–Watson
epidemic model suffices to generate trees reaching many nodes
yet having long chains as in the data. To show this, we first fit the
parameters of a Galton–Watson process by using maximum-
likelihood estimation on the basis of one of the trees inferred by
Liben-Nowell and Kleinberg. Then we simulate the process and
examine only the rare outcomes in which a chain letter with these
parameters spreads as widely as those that were observed. Most
realizations are very small and have virtually no chance of being
observed; we are interested in the properties of those rare ones
that are big enough to match the public radio and war petitions
described above. Simulated outcomes from this conditional
distribution match the real observations closely on global dimen-
sions such as tree depth, width, and the distribution of children
per node. The seeming obstacle discussed above—that neither of
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the regimes of the Galton–Watson process seems to fit when we
look at the unconditional distribution—is overcome by condition-
ing our subcritical process on the rare event of growing large, as
Liben-Nowell and Kleinberg also do in their model. The main
difference between their approach and ours is that we do not
explicitly model the network or detailed mechanics of the distri-
bution process. We focus only on the random variable describing
how many children each node has and on the selection bias.
Those two ingredients alone suffice to produce a conditional
distribution concentrated on trees with the right shapes.

Whereas the specifics of the model and analysis that follow are
particular to the Galton–Watson process, the broader point is
worth emphasizing. Large-scale network phenomena that we ob-
serve may not be typical instances of the processes that generated
them but instead exceptional realizations. Although implications
of selection bias are well understood in some settings, they have
not traditionally played a significant role at the dataset level in
social network analysis. Our study of the chain letters provides
a particularly stark example of how this perspective can, in a
simple model, explain a great deal about the observations. This
points to the need for a richer theoretical understanding of how
selection modifies the structure of important classical processes.

Model
We begin by stating our formal model of chain letter propagation
and discussing the fitting of its key parameters. Let X be a
Galton–Watson random tree generated by the branching process
starting at one root where the probability of any node having k
children is pðkÞ and the distribution is identical across nodes. This
distribution is the fundamental parameter in the model. It is a
simple matter to fit it by using maximum-likelihood estimation
given an observed tree. The key fact is that, because the number
of children is conditionally independent and identically distribu-
ted across nodes (given the past), this fitting goes through even
when there is a size selection bias in the trees that are observed.

Let Lðp; xÞ be the probability of observing a specific tree x
under the model—that is, the probability that X ¼ x. For any
rooted tree x, let f ðk; xÞ refer to the total number of nodes in
x with k children. It follows directly that Lðp; xÞ ¼ Q

kpðkÞf ðk;xÞ,
and so the log-likelihood function is

ℓðp; xÞ ¼ f ð0; xÞ log
�
1 −∑

k>0

pðkÞ
�
þ∑

k>0

f ðk; xÞ log pðkÞ:

Maximizing the log-likelihood with respect to p and denoting the
maximizer p̂, we see that if f ðk; xÞ ¼ 0, then p̂ðkÞ ¼ 0; otherwise,
setting the derivative with respect to pðkÞ to be equal to 0 implies
that, for every k,

f ðk; xÞ
f ð0; xÞ ¼

p̂ðkÞ
p̂ð0Þ

[noting that f ð0; xÞ > 0 for any finite tree]. Therefore, for every
k ≥ 1,

p̂ðkÞ ¼ f ðk; xÞ∕∑
k

f ðk; xÞ:

In other words, the estimated probability of having k children is
just the fraction of nodes with k children in the data. It is straight-
forward to verify that p̂ðkÞ yields a global maximum of the like-
lihood function. The same procedure can be carried out on many
trees at once.

It is worth noting that we did not explicitly model the observa-
tion process here—as Liben-Nowell and Kleinberg did—in which
some but not all nodes post the chain letter on the Internet where
it can then be found and its propagation traced back to the root. It
turns out that this aspect of the process can be omitted without
loss of generality. Formally, our approach corresponds to defin-

ing a node as an observable node—that is, a node that forwarded
the letter and one of whose descendants posted a later version. As
long as the number of children and the decision of whether to
post are independent of each other and identically distributed
across nodes, then the random variables describing how many
observable children each node has also satisfy the assumptions
of the simple Galton–Watson process, albeit with a different
distribution.

We also did not explicitly include a model of the network over
which the diffusion is happening. The reason is that the only thing
that matters for the Galton–Watson process is the number of
observable children that each node has, and our reduced-form
approach focuses on this process rather than on the network.
Although the network structure will certainly influence the off-
spring randomvariable, themechanismsof that can be complicated.
What kinds of network processes underlie p is an interesting ques-
tion whose analysis is the focus of Liben-Nowell and Kleinberg’s
work mentioned earlier. In the Discussion and SI Text, we propose
one micromodel that can generate our Galton–Watson process
with an offspring distribution matching the data.

Results
We applied this fitting procedure to an example from the
SI Appendix of ref. 6. Specifically, we used the National Public
Radio (NPR) petition, whose observed portion had three compo-
nents and used the function f for the component with 2,442
observed nodes. Of course, the real NPR dissemination tree pre-
sumably had only one component and the pieces in the recon-
struction arose from an inability to reconstruct the tree all the
way to its origin. We simply take one of the subtrees as a single
instance of the diffusion process.

The distribution p̂ that was estimated is reported in Table 1. Its
expectation is 2;441∕2;442 ≈ 0.9996. Indeed, it is immediate to
verify on the basis of the formulas above that the estimated dis-
tribution p̂ will have expectation ðn − 1Þ∕n in any tree of n nodes.
The implications of this rather simple fact deserve some com-
ment. It entails that maximum-likelihood estimation of the kind
we perform above, on the basis of a finite tree, will always infer
the process to be subcritical. The extent of subcriticality (the gap
between the expected number of children and 1) will depend on
the size of the observed tree. On the other hand, a confidence
interval for the expected number of children per node would
include values exceeding unity. In any case, this feature of the
estimator—always estimating ðn − 1Þ∕n as the expected number
of children—is an artifact of using a very simple time-homoge-
neous branching process. Including realistic features that limit
the spread of a chain letter once it reaches a large size would,
we conjecture, lead to a different maximum-likelihood estimator
of this quantity, which could exceed unity even for finite trees.

After estimating the distribution, we simulated the branching
process with this distribution and analyzed only realizations
whose sizes were between those of the largest and smallest
observed components in the NPR data—between 2,442 and
3,250 nodes. We generated 10,000 of these realizations. The most
relevant histograms from the analysis are shown in Fig. 1. The
statistics we compute for each tree are the median node depth
(distance from the origin) as well as the width (maximum number
of nodes at the same depth).

Table 1. The distribution of the number of children per node,
estimated from the data

k p̂ðkÞ
0 0.0246
1 0.9525
2 0.0217
3 0.0012
≥4 0
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The key fact in these histograms is that, whereas the median
depths and widths of the trees corresponding to the observed
petitions are in the tails of the unconditional distribution of trees,
they are centered within the distribution that conditions on con-
taining the appropriate number of nodes. Fig. 2 takes this point
further, showing that, after conditioning on having the appropri-
ate number of nodes, the observed trees are near the thickest part
of the joint distribution of median depth and width. A region of a
typical simulated tree is shown in Fig. 3.

The third statistic that Liben-Nowell and Kleinberg report
for the NPR data is the fraction of nodes with one child. In
our simulations, conditional on having the appropriate number
of nodes, this statistic was tightly clustered around 0.95 (mean
0.9527 and standard deviation 0.0040), exactly matching the data.
This correspondence is unsurprising, because p̂ð1Þ, the estimated
probability of having one child, was a parameter of the model that
was fitted on the basis of the data.

The conditional distribution is a small slice of the whole
distribution, but not too small. Out of 10,000 simulated trees,
654 (6.54%) met or exceeded the lower size bound and 110
(1.10%) fell within both the upper and lower bounds. These
statistics confirm the intuitive fact that wide dissemination is
unlikely (even for this barely subcritical chain letter) but not
impossible.

Why did we condition on both a lower and an upper size
bound? The former, as discussed above, is explained by the fact
that only sufficiently successful letters show up on researchers’
radar, at least with the methods used in ref. 6. The upper bound
is not important to the outcome of the analysis; when it is done
without the upper bound, the histograms have fatter right tails but

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

median depth

fr
ac

tio
n 

of
 s

im
ul

at
ed

 tr
ee

s

100 200 300 400 500 600 700 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

median depth

fr
ac

tio
n 

of
 s

im
ul

at
ed

 tr
ee

s

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

width

fr
ac

tio
n 

of
 s

im
ul

at
ed

 tr
ee

s
unconditional median depth

unconditional width

5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

width

fr
ac

tio
n 

of
 s

im
ul

at
ed

 tr
ee

s

conditional median depth

conditional width

A

C D

B

Fig. 1. Histograms of unconditional and conditional statistics from the simu-
lated trees. (A) and (B) Median node depths. (C) and (D) Tree widths. The fig-
ures on the left, (A and C), correspond to the unconditional distribution,
whereas the right ones, (B and D), come from the distribution conditional
on the bounds on the number of nodes. The white circles correspond to
the three observed components of the NPR chain letter data.
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Fig. 2. The joint distribution of median node depth and width conditional
on the size bounds. The white circles correspond to the three observed
components of the NPR chain letter data.

Fig. 3. A comparison of the real data and the simulations. (A) A piece of
the real NPR petition propagation tree as reconstructed by Liben-Nowell
and Kleinberg, and (B) a piece of typical tree from the conditional
distribution in our simulations.
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the conclusions of our analysis remain unchanged. Nevertheless,
we consider conditioning on an upper bound appropriate because
there are also forces that constrain the sizes of the (recon-
structed) trees from above and we wish to apply the appropriate
conditionals. These forces may include (i) noise introduced
into the recipient lists and the resulting limitations of the recon-
struction procedure and (ii) network-level filtering policies that
limit the spread of chain letters and other massively replicated
e-mail traffic.

The idea of selection sheds light on why we might expect chain
letters, in general, to be just barely subcritical when viewed as a
Galton–Watson process. A chain letter far below the critical
threshold has a truly negligible probability of reaching more
than a few people. On the other hand, a chain letter far above
it threatens the stability of e-mail servers. If it is possible to write
a sufficiently persuasive chain letter to surpass the critical thresh-
old, the continued operation of the Internet suggests that there
are effective mechanisms that detect and put an end to such traf-
fic. Thus, whereas we would be surprised by an almost-critical
chain letter in the absence of selection effects, these considera-
tions suggest that, in fact, almost-critical chain letters are essen-
tially the only ones that we should expect to see.

Discussion
Liben-Nowell and Kleinberg’s analysis of real-life network diffu-
sion at a very large scale yields some striking patterns that seem
difficult to explain within a simple model. Nevertheless, the
global patterns in the data can be matched with a basic Galton–
Watson process by conditioning on the process reaching a large
number of nodes. Our analysis works by estimating the local
behavior of the process (number of children per recipient) from
the data and conditioning on the number of nodes matching the
reconstructed trees in the data. These two inputs combined with
the dynamics of the branching process produce depths and widths
matching those observed in the data, as well as trees that look
very much like the real ones. It is worth noting that no aspect
of our selection explicitly constrained depth or width, and so
the fact that these come out at the right values in the simulations
supports the reasonableness of modeling the observed diffusion
as a Galton–Watson process with a size selection bias.

This approach is different from that of Liben-Nowell and
Kleinberg in that it encodes all the details of the emergence
and reconstruction of the observed chain letters into the key para-
meter of the Galton–Watson process, namely, the distribution of
how many children each node has, rather than modeling signing
behaviors explicitly. Those local details may be quite intricate, as
suggested by Liben-Nowell and Kleinberg.

Our contribution is to point out that, whereas the local features
of this process may be complicated substantively, its resulting
global patterns can be explained quite simply in analyzing it
statistically. This approach also focuses the explanatory burden

of a more detailed analysis of the process on describing how
the observed distribution of children comes to be that way, redu-
cing a global question about a complex stochastic process to one
that is essentially about local features. There are various possible
micromodels that would give rise to the correct distribution of
children per node, including that discussed by Liben-Nowell
and Kleinberg; given one of them, a basic global model explains
the data after selection is accounted for.

In the SI Text, we analyze a simple micromodel that generates
an offspring distribution and global behavior consistent with the
observations. In that model, if a node decides to forward the
chain letter, it sends it to d people and each of them indepen-
dently decides whether to sign and forward it with some activa-
tion probability q, whereupon the process continues. That
dynamic generates what we call the “true” dissemination tree.
In order to generate the “reconstructed” tree, we then sample
nodes randomly from the true tree so that we get about as many
as were collected in the empirical exercise of Liben-Nowell and
Kleinberg. Then we reconstruct as much of the true tree as can be
inferred from those samples. Finally, we condition on the recon-
struction being of the appropriate size (between 2,442 and 3,250
nodes). The resulting reconstructed trees look, both locally and
globally, like the ones that were reconstructed by Liben-Nowell
and Kleinberg. In this exercise, we used d ¼ 30 and chose the ac-
tivation probability q to generate a good fit. It is worth noting that
the true trees produced by this process look very different from
the ones that were observed; in particular, there are some nodes
with large numbers of children, in contrast to the reconstructed
trees. The key aspect in obtaining reconstructed trees similar to
the observed ones comes from the selection issue of observing
only a subset of nodes, which, the simulations show, heavily biases
the offspring distribution toward low numbers. Together with
conditioning on size, this sampling process allows us to match
the observations.

The features of the conditional realizations of the Galton–
Watson process are perhaps unexpected. Indeed, the analysis
points out how starkly selection at the level of an entire dataset
can influence the observed structure of a process, especially when
it is a complex, probabilistic, and dynamic one such as diffusion in
a large population. Despite their power, little is known about
these sorts of selection effects. To deal with such issues, a sophis-
ticated theoretical apparatus is needed to analyze conditional
distributions of classical processes, where the conditioning is
upon the selection that determined how or why that dataset
was observed.
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