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SI Text

In this appendix, we show how a simple process of independent
decisions about whether to send a chain letter, along with two
forms of bias introduced by observation, can give rise to the local
and global behavior of the chain letter trees reconstructed by
Liben-Nowell and Kleinberg. The two forms of observation bias
are driven by the following phenomena: (7) Only some copies of a
chain letter are posted where they can be collected, and (ii) a
chain letter is considered to be “observed” only when the part
of it recovered through these observations is reasonably large.

The Process. Our process for generating trees can be described in
several steps.

First, we generate a “true” underlying tree (which may or may
not end up being observed, and then only partially) via a Galton—
Watson branching process with a binomial offspring distribution.
In particular, we begin with a root node and follow the following
procedure iteratively for each node. For some integer d > 0 and
scalar g € (0,1), the probability that a node has k children is

(Z)q"(l -q)~.

The scalar g represents the chance that a given node that has been
sent the letter decides to sign the letter and send it on. A node
that signs and forwards the letter then sends it to d other nodes
who have not received it before.* Each of those nodes then in-
dependently decides whether to sign and forward it. Thus, k is the
(random) number of recipients of a given sender’s letters who will
continue the chain. In our simulations, the first step is to generate
a random true tree T = (V/,E) by following this procedure.

The observed tree is not the same as the true one. To get the
observed tree, called 7’, we randomly sample nodes from the true
tree (corresponding to the type of Web search for chain letter in-
stances performed by Liben-Nowell and Kleinberg) at a sampling
rate s. That is, each node of the true tree is included in the
sampled set S with probability s, independently of other nodes.

Given that sample, we reconstruct as much of the true tree as
we can to get the “reconstructed” tree 7" = (V'.E') c T = (V.E),
which we also call an observed tree. Formally, given a sample S of
nodes from the true tree, we go through every node v € § and
include in the vertex set I of the observed tree all the nodes
w € V such that w is an ancestor of v in the true tree T, as well
as v itself. Then 77 is the graph induced on V’ by T. Intuitively,
this procedure corresponds to discovering the ancestors of each
observed node v € S by looking at the petition in the correspond-
ing instance of the chain letter and then reconstructing the tree as
best we can from that information.

Last, we condition on the reconstructed tree being of the right
size, as in the main analysis in the paper. That is, we throw away
T’ unless 2,442 < || < 3,250. The reconstructed trees in this
size range form the output from the simulation. We can then ex-
amine whether particular values of d and g generate observed
trees consistent with the actual observed chain letters.

Parameters. For a given true tree having n > 70 nodes, we choose
s =70/n. This is because, in the reconstructed tree that we
focus on [the 2,442-node National Public Radio (NPR) petition

*Here d and ¢ are the same across all nodes. We could enrich the model by allowing
different nodes to choose different numbers of nodes to forward the letter to.
Effectively, given the randomness in the number who subsequently pass it on, if this
was done in a binomial manner, it would simply result in a redundant parameter.
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component], there were 70 letters that were directly observed, as
opposed to being inferred. Thus, we set the sampling rate to gen-
erate about this number of sampled nodes.

We chose d = 30 and g = %/02‘442. The choice of d, the num-
ber of contacts to whom every activated node sends the petition,
is essentially arbitrary but seems to us a reasonable estimate of
the number of people to whom a typical sender would direct the
letter and ends up working well. The choice of g is determined by
a rough method of moments calculation. We know that in any tree
of n nodes, the expected number of children per node’ is
(n —1)/n. On the other hand, for this binomial process the ex-
pected number of children per node in the true tree (without
any observation bias) is gd. Thus, we chose g to satisfy

dg=n-1)/n forn=2442

which is the size of the observed tree that we focus on from the
Liben-Nowell and Kleinberg data. Our selection of these para-
meters is somewhat ad hoc: We did some experiments to explore
the parameter space and found, after a fairly short search, that
these worked well. However, this selection of parameters could
be motivated and performed more carefully—for example, by
using maximum-likelihood methods or a more precise method
of moments approach. Our purpose here is simply to demonstrate
that this type of process can match the data closely. Nevertheless,
it seems quite important that dg, the expected number of children
per node, be just a little below 1. If it is much below it, then it is
extremely rare to get trees of a large size, and if it is bigger than 1,
then the trees have the wrong shapes; additionally, their tendency
to grow infinite in this case makes simulating them a challenge.

Results. We generated 10,000 reconstructed trees by using the pro-
cedure outlined above with these parameters and studied their
properties as in the main paper. Histograms of median depth
and width are shown in Fig. S1. A two-dimensional density plot
is depicted in Fig. S2. These figures show that these global sta-
tistics of the simulated trees match the corresponding statistics of
the real trees fairly closely. A region of a typical observed tree
generated by the simulation is shown in Fig. S3.

In terms of local behavior, the simulated reconstructed trees
are also quite similar to those that were reconstructed in the
empirical exercise performed by Liben-Nowell and Kleinberg.
To explore this similarity more precisely, we computed the em-
pirical offspring distribution of each simulated tree and com-
pared it against the empirical offspring distribution of the
NPR tree with 2,442 nodes. The notion of distance we used
was the total variation norm, under which the distance between
two probability distributions z and o over a countable set X is

Iz = ol = 5 ¥ Ja(x) = o).
xeX

The set X here is the set of possible numbers of chil-
dren X = {0,1,2,...}.

The total variation distance between the offspring distribution
in the simulations and the offspring distribution of the 2,442-node
NPR tree was, on average, 0.0058. The standard deviation of this
statistic across the simulations was 0.0038. The maximum devia-

"That is, if a node is drawn from the tree uniformly at random.
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tion observed was 0.038. Thus, the offspring distributions in the
simulations closely matched the real one.

Discussion. This exercise shows that a simple process can give rise
to the global and local patterns observed in the data. It is worth
noting that the step of going from the true tree to the recon-
structed tree is crucial. Fig. S4 compares the offspring distribu-
tion in a typical simulated true tree (black bars) with that of the
tree reconstructed from it after sampling (white bars). The obser-
vation process introduces a heavy bias toward nodes with one
child. The reason for this bias is simple. There are some rare
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nodes in the true tree that produce many children—as many
as 8. However, such a node only ends up having many children
in the reconstructed tree if many of its children are either ob-
served directly or have descendants that are eventually observed;
both of these events are unlikely. So, even though nodes that have
many children are more likely to end up appearing in the recon-
structed tree than a node that truly has few children, they will still
tend to produce few branches from which anything is sampled
and so will tend to have a small number of visible children in
the reconstructed tree.
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Histograms of statistics from the simulated trees. The white circles correspond to the three observed components of the NPR chain letter data. (a)
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Fig. S2. The joint distribution of median node depth and width from the simulated trees. The white circles correspond to the three observed components of

the NPR chain letter data.
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Fig. $3. Part of a typical reconstructed tree generated by the simulation procedure.
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Fig. S4. A comparison of the offspring distribution of a typical true tree from one of the simulations (Black Bars) with that of the reconstructed tree that would
be observed (White Bars).
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