Supplementary Material for Like Father, Like Son: Social Network Externalities and Parent-Child Correlation in Behavior

Antoni Calvó-Armengol and Matthew O. Jackson

This version: March 21, 2008

1 Fitting the Threshold Model to European Data

We fit the threshold model from Section 4 to data on parent-child education levels in European countries. We use data from the European Community Household Panel (ECHP), that contains information on the level of human capital of representative households in various European member countries. These data allow us to infer the education transition matrices for combinations of parents and children.¹ However, this data does not span more than two consecutive generations and we cannot build an identification strategy based on Proposition ??.

To eliminate degrees of freedom, we fit a further simplified version of the threshold model such that $p_L = 1 - p_H$ and $p_H \ge 1/2$.

For this exercise, a human capital of 0 indicates that an individual pursued education to a point no further than high school graduation, and 1 indicates that education was pursued beyond high school.² Given the threshold model, any (n, τ, p_H) implies steady state probabilities of the four possible parent-child education combinations: 00, 01, 10, 11. So given the observed frequency distribution in the data, we find the parameters (n, τ, p_H) that lead to predictions that most closely match those observed frequencies.

Table 1 shows the calibrated values of p_H and τ for various European countries and for all parent-child gender combinations when n = 50.

¹We are grateful to Simona Comi for providing us with the underlying data corresponding to wave 5 (1998) of the ECHP. Comi (2003) presents an exhaustive analysis of European social mobility patterns with the ECHP database.

²Education beyond high school (tertiary education) is measured by Comi as still being in school at 20 years of age. It need not indicate that any higher degrees were earned.

	Father	Daugh		Father	Son		Mother	Daugh		Mother	Son	
Country	Cor	p_H	τ	Cor	p_H	τ	Cor	p_H	τ	Cor	p_H	τ
Austria	.123	.95	26	.057	.96	26	002	.97	30	.016	.96	29
Belgium	.027	.62	27	.174	.68	26	.014	.70	30	.100	.62	26
Denmark	.047	.73	35	.071	.77	34	.004	.75	35	.008	.74	21
Finland	128	.82	33	036	.85	32	061	.82	34	.014	.78	33
France	.119	.61	39	.221	.73	26	.093	.70	35	.176	.63	27
Germany	.107	.79	27	.111	.81	27	.067	.86	27	.045	.85	17
Greece	.003	.81	28	.070	.86	26	.011	.88	33	.001	.83	27
Ireland	.211	.82	26	.189	.84	26	.190	.85	26	.146	.83	26
Italy	.131	.94	26	.141	.95	26	.091	.96	26	.130	.95	26
Luxemburg	.289	.79	26	.083	.78	27	.145	.80	34	.070	.77	33
The Netherlands	.043	.89	31	.082	.87	31	021	.93	30	.005	.93	30
Portugal	.098	.94	26	.228	.96	26	.095	.96	26	.187	.94	16
Spain	.111	.81	26	.122	.84	26	.036	.86	32	.053	.82	32
United Kingdom	.045	.52	1	.070	.61	24	.023	.61	27	.095	.58	26

TABLE 1. ECHP intergenerational correlation in education vs. estimated investment probability in the threshold model.³

The full collection of observed matrices, together with the estimated ones, the estimated p_H 's and τ 's and an estimation error ε are all presented below in Tables 2 through 5.⁴ We also estimate the model for n = 25 and find almost no differences in the fits (see Tables 2 to 5 below). To get a feeling for these numbers, we first present and discuss a couple of examples in Table 1b.

		data		estir	nate	ed three	shold n	ıodel
	AU	0	1			0	1	
Ì	0	.903	.033		0	.900	.048	
	1	.054	.008		1	.048	.005	
					p_H	=96,7=20	$\delta, \varepsilon = .017$	
1	DE	0	1			0	1	
	BF	0	1			0	1	
	0	.357	.295		0	.356	.237	
	1	.181	.167		1	.237	.170	
					$p_H =$	=.62,τ=2	$7, \varepsilon = .080$	

TABLE 1B. FATHER/DAUGHTER.

³For each parent-child gender combination (father/daughter, father/son, mother/daughter, mother/son), the first column, *Cor*, reports the intergenerational correlation in education levels for the education transition matrices from wage 5 (1998) of the ECHP. We distinguish two education levels: (i) nor more than high school graduation, and (ii) past high school education. The second column, p_H , reports the estimated value for the investment probability in the threshold investment model when n = 50. The corresponding estimated values for τ and the error ε are reported in the appendix, together with estimations for p_H, τ, ε when n = 25. Data and estimations are reported for fourteen countries.

⁴Given a value of n (here, n = 25, 50), our algorithm searches through a grid of admissible values for τ and p_H . The size of the grid is chosen in increments of .01 for p_H . The error ε is the Euclidean distance between the estimated and actual four-vectors. The first column reports the education transition matrices for father/daughter from wave 5 (1998) of the ECHP, from Comi. 0 stands for nor more than high school graduation; 1 stands for past high school education. AU=Austria, BE=Belgium, The corresponding parameters p_H, τ for the estimated threshold investment model are reported below the matrices. The error ε is equal to the Euclidean distance between the estimated and the actual distributions.

It is important to stress that the implied parameters of the model give us more information than the intergenerational correlations. The parameters of the model give all the investment probabilities. Instead, the intergenerational correlation coincides with the variance of these investment probabilities.

For instance, Denmark and the United Kingdom exhibit very similar father-daughter correlations (.045 and .047) and similar father-son correlations. Yet, the calibrated values of p_H and τ differ drastically between both countries, in both the case of daughter and son behavior: p_H is .52 for daughters and .61 for sons for the U.K. versus .73 and .77 for Denmark.⁵ Although similar in terms of correlation levels, the threshold model would suggest, instead, that the influence of the social setting on education decisions (as measured through p_H) is much higher in Denmark than in the U.K. This is not captured through the correlation, but is inferred by the model and is implicitly is identified by the average investment rates.⁶

⁵The estimated value of $\tau = 1$ in the daughter case for the U.K. is essentially irrelevant as a p_H close to 1 /2 implies that the investment is essentially independent of the state, and that is why the threshold is not tied down. The comparison of father-son for the two countries leads to a situation where the τ is tied down for the U.K.

⁶When data that spans at least three successive generations is available, as pointed out in Proposition ??, and a proper identification strategy can be implemented. Again, the calibration exercise is meant here to be only an illustrative exercise rather than a proper test of the model.

	data		est	imatio	n		thresh	nold me	odel
AU	0	1	n = 25	0	1		n = 50	0	1
0	.903	.033	0	.902	.048	ĺ	0	.900	.048
1	.054	.008	1	.048	.003		1	.048	.005
L	1		$p_H = .95$	$,\tau=14,\varepsilon$	=.017	J	p _H =96	,τ=26,ε=	=.017
BE	0	1	n = 25	0	1]	n = 50	0	1
0	.357	.295	0	.357	.237		0	.356	.237
1	.181	.167	1	.237	.168		1	.237	.170
			$p_H = .63$,τ=14,ε=	=.080		$p_{H} = .62$	$2, \tau = 27, \varepsilon$	=080
DK	0	1	n = 25	0	1		n = 50	0	1
0	.534	.061	0	.533	.197		0	.533	.197
1	.350	.054	1	.197	.073		1	.197	.073
			$p_H = .73$	$\tau = 21, \varepsilon$	=.205		$p_H = .73$,τ=35,ε=	=.205
FI	0	1	n = 25	0	1		n = 50	0	1
0	.672	.053	0	.664	.151		0	.664	.151
1	.274	.002	1	.151	.034		1	.151	.034
·			$p_H = .82$	$,\tau=20,\varepsilon$	=.161	,	$p_H = .82$,τ=33,ε=	=.161
FR	0	1	n = 25	0	1		n = 50	0	1
0	.366	.416	0	.368	.239	1	0	.366	.239
1	.071	.148	1	.239	.155		1	.239	.156
			$p_H = .61$	$,\tau=16,\varepsilon$	=.244	,	p _H =61	,τ=39,ε=	=.244
GE	0	1	n = 25	0	1]	n = 50	0	1
0	.624	.063	0	.622	.163		0	.621	.166
1	.261	.052	1	.163	.052		1	.166	.047
	1		$p_H = .80$	$,\tau=14,\varepsilon$	=.140	J	$p_H = .79$	$,\tau=27,\varepsilon$	=.141
GR	0	1	n = 25	0	1]	n = 50	0	1
0	.646	.192	0	.648	.157	1	0	.648	.157
1	.124	.038	1	.157	.038		1	.157	.038
L	1		$p_H = .81$	$,\tau=15,\varepsilon$	=.048	J	p _H =.81	$,\tau=28,\varepsilon=$	=.048

TABLE 2. FATHER/DAUGHTER.

The first column reports the education transition matrices for father/daughter from wage 5 (1998) of the ECHP, from Comi. 0 stands for nor more than high school graduation; 1 stands for past high school education. Data is reported for seven countries: AU=Austria, BE=Belgium, DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece. Columns 2 and 3 report the estimated values for the education transition matrices for n = 25, 50. The corresponding parameters p_H, τ for the estimated threshold investment model are reported below the matrices. The error ε is equal to the Euclidean distance between the estimated and the actual distributions.

	data		est	imatio	n		threshold model			
IR	0	1	n = 25	0	1]	n = 50	0	1	
0	.645	.220	0	.648	.154	1	0	.643	.148	
1	.063	.072	1	.154	.044		1	.148	.062	
			$p_H = .81$	$,\tau=14,\varepsilon$	=.116	,	$p_H = .82$	$,\tau=26,\varepsilon$	=.112	
IT	0	1	n = 25	0	1]	n = 50	0	1	
0	.876	.056	0	.874	.061	1	0	.880	.056	
1	.055	.013	1	.061	.005		1	.056	.007	
			$p_H = .9$	$_{4,\tau=14,\epsilon}$.012	p _H =94	$, \tau = 26, \varepsilon =$	=.007		
LX	0	1	n = 25	0	1]	n = 50	0	1	
0	.580	.268	0	.577	.141	1	0	.576	.169	
1	.045	.107	1	.141	.141		1	.169	.086	
<u></u>	1		$p_H = .83$	$,\tau=13,\varepsilon$	=.163	,	$p_{H} = .79$	$,\tau=26,\varepsilon$	=.160	
NL	0	1	n = 25	0	1]	n = 50	0	1	
0	.791	.015	0	.792	.098		0	.792	.098	
1	.188	.007	1	.098	.012		1	.098	.012	
<u>.</u>			$p_H = .89$	$\tau = 18, \varepsilon$	=.122	,	$p_H = .89$,τ=31,ε=	=.122	
PO	0	1	n = 25	0	1]	n = 50	0	1	
0	.865	.081	0	.865	.065]	0	.870	.061	
1	.043	.011	1	.065	.005		1	.061	.008	
			$p_H = .93$	$\tau = 14, \varepsilon$	=.028	-	$p_H = .94$,τ=26,ε=	=.028	
SP	0	1	n = 25	0	1]	n = 50	0	1	
0	.623	.216	0	.622	.163	1	0	.624	.154	
1	.098	.063	1	.163	.052		1	.154	.068	
			$p_H = .80$	$,\tau=14,\varepsilon$	=.085	J	$p_H = .81$	$,\tau=26,\varepsilon=$	=.084	
UK	0	1	n = 25	0	1]	n = 50	0	1	
0	.246	.223	0	.230	.250		0	.230	.250	
1	.254	.278	1	.250	.270		1	.250	.270	
			$p_H = .52$	$,\tau=25,\varepsilon$	=.032	·	$p_{H} = .52$	$2, \tau = 1, \varepsilon =$	032	

TABLE 2 (FATHER/DAUGHTER) (Contd.)

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy, LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.

	data			est	imatio	n		thresh	nold me	odel		
AU	0	1	n	= 25	0	1]	n = 50	0	1		
0	.919	.018		0	.922	.038	ĺ	0	.920	.038		
1	.060	.003		1	.038	.002		1	.038	.003		
	1			$p_H = .96$	$,\tau=14,\varepsilon$	=.030	J	$p_H = .96, \tau = 26, \varepsilon = .030$				
BE	0	1	n	= 25	0	1		n = 50	0	1		
0	.405	.227		0	.407	.200		0	.397	.218		
1	.170	.198		1	.200	.194	ļ	1	.218	.167		
				$p_{H} = .73$,τ=13,ε=	=.040	$p_{H} = .68$,τ=26,ε=	=.058			
DK	0	1	n	= 25	0	1]	n = 50	0	1		
0	.587	.027		0	.585	.180		0	.585	.180		
1	.356	.030		1	.180	.055	ļ	1	.180	.055		
				$p_{H} = .77$,τ=21,ε=	=.234	$p_{H} = .77$,τ=34,ε=	=.234			
FI	0	1	n	= 25	0	1		n = 50	0	1		
0	.724	.032		0	.723	.128		0	.723	.128		
1	.237	.006		1	.128	.023		1	.128	.023		
				$p_{H} = .85$,τ=19,ε=	=.146	,	$p_H = .85$,τ=32,ε=	=.146		
FR	0	1	n	= 25	0	1		n = 50	0	1		
0	.481	.332		0	.477	.207	1	0	.478	.197		
1	.058	.129		1	.207	.108		1	.197	.128		
				$p_{H} = .71$,τ=14,ε=	=.196		$p_{H} = .73$,τ=26,ε=	=.194		
GE	0	1	n	= 25	0	1		n = 50	0	1		
0	.653	.053		0	.657	.151		0	.654	.154		
1	.251	.043		1	.151	.041		1	.154	.038		
			$p_H = .82, \tau = 14, \varepsilon = .140$ $p_H = .81, \tau = 27, \varepsilon = .140$						=.140			
GR	0	1	n	= 25	0	1]	n = 50	0	1		
0	.726	.131		0	.728	.124		0	.721	.120		
1	.111	.033		1	.124	.024		1	.120	.038		
		,		$p_{H} = .86$,τ=14,ε=	=.017		$p_{H} = .86$,τ=26,ε=	=.016		

TABLE 3 (FATHER/SON)

The first column reports the education transition matrices for father/son from wage 5 (1998) of the ECHP, from Comi. Data and estimations are reported for seven countries: AU=Austria, BE=Belgium, DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece.

	data		est	imation	n		thresh	nold me	odel		
IR	0	1	n = 25	0	1]	n = 50	0	1		
0	.686	.196	0	.692	.138	ĺ	0	.682	.134		
1	.062	.056	1	.138	.032		1	.134	.049		
			$p_H = .84$,τ=14,ε=	=.099	J	$p_H = .84, \tau = 26, \varepsilon = .96$				
IT	0	1	n = 25	0	1		n = 50	0	1		
0	.886	.047	0	.893	.052		0	.890	.052		
1	.055	.012	1	.052	.003		1	.052	.006		
			$p_H = .95$,τ=14,ε=	=.013		$p_{H} = .95$,τ=26,ε=	=.009		
LX	0	1	n = 25	0	1]	n = 50	0	1		
0	.601	.266	0	.605	.169		0	.605	.172		
1	.077	.056	1	.169	.057		1	.172	.052		
			$p_H = .79$,τ=14,ε=	=.134		$p_H = .78$	$,\tau=27,\varepsilon=$	=.134		
NL	0	1	n = 25	0	1		n = 50	0	1		
0	.757	.011	0	.757	.113		0	.757	.113		
1	.222	.010	1	.113	.017		1	.113	.017		
			$p_H = .87$,τ=18,ε=	=.149	,	$p_{H} = .87$,τ=31,ε=	=.149		
PO	0	1	n = 25	0	1		n = 50	0	1		
0	.919	.038	0	.922	.038	1	0	.920	.038		
1	.031	.012	1	.038	.002		1	.038	.003		
			$p_H = .96$,τ=14,ε=	=.013	,	$p_H = .96$,τ=26,ε=	=.012		
SP	0	1	n = 25	0	1		n = 50	0	1		
0	.683	.156	0	.683	.141		0	.682	.134		
1	.109	.051	1	.141	.035		1	.134	.049		
			$p_H = .83$,τ=14,ε=	=.039	,	$p_H = .84$,τ=26,ε=	=.034		
UK	0	1	n = 25	0	1]	n = 50	0	1		
0	.226	.237	0	.217	.235		0	.210	.241		
1	.224	.312	1	.235	.314		1	.241	.309		
			$p_{H} = .65$	$,\tau = 12,\varepsilon$	=.014	-	$p_{H} = .61$	$,\tau = 24,\varepsilon$	=.023		

TABLE 3 (FATHER/SON) (Contd.)

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy, LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.

	data		est	imation	ı		thresh	nold me	odel		
AU	0	1	n = 25	0	1]	n = 50	0	1		
0	.992	.037	0	.992	.038	1	0	.992	.038		
1	.039	.001	1	.038	.002		1	.038	.002		
	1		$p_H = .96$	$,\tau=17,\varepsilon$	=.001	J	$p_H = .96, \tau = 30, \varepsilon = .001$				
BE	0	1	n = 25	0	1]	n = 50	0	1		
0	.374	.314	0	.374	.238		0	.374	.238		
1	.165	.147	1	.238	.151		1	.238	.151		
			$p_H = .62, \tau = 16, \varepsilon = .106$				$p_H = .62$,τ=30,ε=	=.106		
DK	0	1	n = 25	0	1]	n = 50	0	1		
0	.538	.068	0	.540	.195		0	.540	.195		
1	.350	.045	1	.195	.070		1	.195	.070		
			$p_H = .74$,τ=20,ε=	=.202	-	$p_{H} = .74$,τ=35,ε=	=.202		
FI	0	1	n = 25	0	1]	n = 50	0	1		
0	.606	.043	0	.600	.175	1	0	.600	.175		
1	.338	.013	1	.175	.050		1	.175	.050		
			$p_H = .78$	$,\tau=21,\varepsilon$	=.213		$p_H = .78$,τ=34,ε=	=.213		
FR	0	1	n = 25	0	1]	n = 50	0	1		
0	.381	.455	0	.391	.235]	0	.390	.234		
1	.055	.110	1	.235	.141		1	.234	.141		
			$p_H = .63$	$\tau = 17, \varepsilon$	=.287		$p_H = .63$,τ=35,ε=	=.287		
GE	0	1	n = 25	0	1]	n = 50	0	1		
0	.714	.079	0	.710	.131]	0	.713	.131		
1	.176	.031	1	.131	.028		1	.131	.025		
			$p_H = .85, \tau = 14, \varepsilon = .069$ $p_H = .85, \tau = 27, \varepsilon = .069$						=.069		
GR	0	1	n = 25	0	1]	n = 50	0	1		
0	.693	.202	0	.689	.141		0	.689	.141		
1	.080	.025	1	.141	.029		1	.141	.029		
		,	$p_H = .83$	$,\tau=20,\varepsilon$	=.087	-	$p_{H} = .83$,τ=33,ε=	=.087		

TABLE 4 (MOTHER/DAUGHTER)

The first column reports the education transition matrices for mother/daughter from wage 5 (1998) of the ECHP, from Comi. Data and estimations are reported for seven countries: AU=Austria, BE=Belgium, DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece.

	data			est	imation	ı		threshold model				
IR	0	1	1	n = 25	0	1]	n = 50	0	1		
0	.663	.235		0	.666	.148	ĺ	0	.662	.141		
1	.046	.056		1	.148	.039		1	.141	.055		
				$p_H = .82, \tau = 14, \varepsilon = .135$				$p_H = .83, \tau = 26, \varepsilon = .134$				
IT	0	1		n = 25	0	1		n = 50	0	1		
0	.891	.061		0	.893	.052		0	.890	.052		
1	.040	.008		1	.052	.003		1	.052	.006		
				$p_{H} = .95$,τ=14,ε=	=.016		$p_{H} = .95$,τ=26,ε=	=.015		
LX	0	1	1	n = 25	0	1		n = 25	0	1		
0	.596	.330		0	.593	.177		0	.593	.177		
1	.028	.046		1	.177	.053		1	.177	.053		
				$p_{H} = .77$,τ=20,ε=	=.214		$p_{H} = .77$,τ=34,ε=	=.214		
NL	0	1	1	n = 25	0	1		n = 25	0	1		
0	.856	.021		0	.856	.069	1	0	.856	.069		
1	.126	.002		1	.069	.006		1	.069	.006		
	1			$p_{H} = .93$,τ=18,ε=	=.072	J	p _H =.93	$,\tau=30,\varepsilon$	=.072		
PO	0	1		n = 25	0	1		n = 50	0	1		
0	.866	.082		0	.865	.065	ĺ	0	.870	.061		
1	.041	.011		1	.065	.005		1	.061	.008		
				<i>p_H</i> =.93	,τ=14,ε=	=.030	,	p _H =.94	$,\tau=26,\varepsilon$	=.030		
SP	0	1	1	n = 25	0	1]	n = 25	0	1		
0	.666	.254		0	.664	.151		0	.664	.151		
1	.056	.028		1	.151	.034		1	.151	.034		
				$p_{H} = .82$,τ=19,ε=	=.140	,	$p_H = .82$	$,\tau=32,\varepsilon$	=.140		
UK	0	1	1	n = 25	0	1]	n = 50	0	1		
0	.302	.302		0	.301	.248		0	.302	.247		
1	.189	.208		1	.248	.203		1	.247	.205		
				$p_{H} = .55$	$,\tau=17,\varepsilon=$	=.080	,	$p_{H} = .58$	$,\tau=27,\varepsilon$	=.080		

TABLE 4 (MOTHER/DAUGHTER) (Contd.)

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy, LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.

	data		est	timation	ı		thresh	nold me	odel			
AU	0	1	n = 25	0	1		n = 50	0	1			
0	.944	.019	0	.940	.029		0	.940	.029			
1	.036	.001	1	.029	.001		1	.029	.001			
L	1]	$p_H = .9'$	7,τ=19,ε=	=.013		p _H =.97	,τ=29,ε=	=.013			
BE	0	1	n = 25	0	1		n = 50	0	1			
0	.427	.282	0	.422	.222		0	.428	.210			
1	.143	.147	1	.222	.135		1	.210	.152			
			$p_H = .68$	$p_H = .68, \tau = 14, \varepsilon = .100$				$p_H = .70, \tau = 26, \varepsilon = .099$				
DK	0	1	n = 25	0	1		n = 50	0	1			
0	.560	.035	0	.563	.188		0	.563	.188			
1	.379	.026	1	.188	.063		1	.188	.063			
			$p_H = .75$	5,τ=21,ε=	=.248		$p_H = .75$,τ=21,ε=	=.248			
FI	0	1	n = 25	0	1		n = 50	0	1			
0	.677	.024	0	.672	.148		0	.672	.148			
1	.287	.012	1	.148	.032		1	.148	.032			
			$p_H = .82$	$2, \tau = 19, \varepsilon$	=.188		$p_H = .82$,τ=33,ε=	=.188			
FR	0	1	n = 25	0	1		n = 50	0	1			
0	.474	.356	0	.477	.207		0	.469	.212			
1	.057	.112	1	.207	.108		1	.212	.107			
		,	$p_H = .7$	1,τ=14,ε=	=.212		$p_H = .70$,τ=27,ε=	=.212			
GE	0	1	n = 25	0	1		n = 50	0	1			
0	.732	.073	0	.731	.124		0	.730	.124			
1	.171	.024	1	.124	.021		1	.124	.022			
			$p_H=.80$	δ,τ=15,ε=	=.070		$p_H = .86$,τ=17,ε=	=.070			
GR	0	1	n = 25	0	1		n = 50	0	1			
0	.771	.151	0	.772	.106		0	.774	.106			
1	.065	.013	1	.106	.016		1	.106	.015			
			$p_{H} = .88$	$8, \tau = 14, \varepsilon$	=.061		$p_{H} = .88$	$, \tau = 27, \varepsilon$	=.061			

TABLE 5 (MOTHER/SON)

The first column reports the education transition matrices for mother/son from wage 5 (1998) of the ECHP, from Comi. Data and estimations are reported for seven countries: AU=Austria, BE=Belgium, DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece.

	data		est	imatio	n		thresh	nold me	odel		
IR	0	1	n = 25	0	1]	n = 50	0	1		
0	.697	.214	0	.701	.134	1	0	.692	.131		
1	.049	.041	1	.134	.030		1	.131	.046		
			$p_{H} = .84$,τ=14,ε=	=.117	J	$p_H = .85, \tau = 26, \varepsilon = .117$				
IT	0	1	n = 25	0	1]	n = 50	0	1		
0	.906	.051	0	.912	.043		0	.910	.043		
1	.034	.009	1	.043	.002		1	.043	.004		
			$p_{H} = .96$,τ=14,ε=	=.015	,	$p_{H} = .090$	$5, \tau = 26, \varepsilon$	=.013		
LX	0	1	n = 25	0	1		n = 25	0	1		
0	.642	.292	0	.640	.160		0	.640	.160		
1	.036	.029	1	.160	.040		1	.160	.040		
			$p_H = .80$,τ=20,ε=	=.181		$p_{H} = .80$,τ=33,ε=	=.181		
NL	0	1	n = 25	0	1]	n = 25	0	1		
0	.858	.019	0	.856	.069		0	.856	.069		
1	.120	.003	1	.069	.006		1	.069	.006		
			$p_H = .93$,τ=17,ε=	=.072		$p_{H} = .93$,τ=30,ε	=.072		
PO	0	1	n = 25	0	1]	n = 25	0	1		
0	.912	.038	0	.912	.043]	0	.912	.043		
1	.039	.011	1	.043	.002		1	.043	.004		
			$p_H = .96$,τ=14,ε=	=.011	,	$p_H = .96$	$\tau = 16, \varepsilon$	=.010		
SP	0	1	n = 25	0	1]	n = 50	0	1		
0	.734	.188	0	.737	.120]	0	.731	.124		
1	.056	.022	1	.120	.023		1	.124	.021		
·			$p_H = .86$,τ=14,ε=	=.094	,	$p_H = .86$	$,\tau=32,\varepsilon$	=.094		
UK	0	1	n = 25	0	1]	n = 50	0	1		
0	.305	.328	0	.306	.237]	0	.304	.242		
1	.142	.226	1	.237	.219		1	.242	.213		
			$p_H = .64$,τ=13,ε=	=.133		$p_H = .61$	$,\tau=26,\varepsilon$	=.134		

TABLE 5 (MOTHER/SON) (Contd.)

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy, LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.