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1 Introduction

Correlations in the behavior and welfare of parents and their children have been widely

documented. For example, parents and children exhibit strong correlations in their political

affiliation, religion, education levels, substance use, language proficiency, income and wealth.1

There are many explanations for these, generally involving some sort of direct influence of

the parent on the child through channels ranging from genetics to household environment

to bequests. While we do not wish to dispute such channels here, we develop a model

that illustrates that one can derive quite strong parent-child correlations without any direct

relationship between them, but simply through the sensitivity of both a parent and child

decisions to an overlapping social environment.

To fix ideas, suppose that we find that conditional on a parent having pursued education

beyond high school there is an X percent chance that the child will have pursued educa-

tion beyond high school, while if the parent did not pursue education beyond high school

then there is a Y percent chance that the child will have pursued education beyond high

school, where Y<X. We might be tempted to conclude that this inequality in education

outcomes reflects parental or household influence, and the difference between X and Y could

be attributed to how the decisions of the parent or familial circumstances affect the deci-

sion of the child. We examine a different driver of the same phenomenon and show that

this difference in outcomes might alternatively be attributed, in part or in whole, to social

circumstances. That is, it might be that the child’s decision is based on how many other

people in the community are pursuing higher education. Given that the parent and child

live in the same community, there is a substantial overlap in the surroundings that have

influenced their decision, and what appears to be a parental influence, could in fact be an

indirect social influence. In fact, we show that these two different potential influence models

lead to exactly the same set of possible distributions over parent and child behavior.

Our purpose in this paper is to take the potential social influence seriously, to provide a

model to analyze it, and to see how changes in sensitivity to social surroundings translate

into changes in the observed parent-child behaviors.

The model that we propose is an overlapping-generations model. There are a number

of single-agent families or “dynasties” that form a community. At any point in time, the

agents representing these dynasties are taking actions. These are binary actions, which can

be seen as things like investing in education or not, smoking or not, etc. So, a description

of the state of the community is just a list of which dynasties are taking action 1 and which

1The hereditary transmission of political affiliation is discussed, for instance, in Thomson (1971) and
Abramanson (1973); and Piketty (1995) surveys this literature. Bisin and Verdier (2000) analyze the family
transmission of religious traits, and discuss numerous empirical works relating the religious affiliation of
children to their social environment, e.g., Hoge et al. (1982). The social determinants of substance use
(including alcohol and smoking, among others) are discussed thoroughly in the social epidemiology literature,
e.g., Berkman and Kawachi (2000) and Galea et al. (2004). See also Johnson (1996) for a survey of family
influence on the traits of children and social behavior.
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are taking action 0. In each period one person (“the parent”) is randomly selected out of

the community and replaced by another (“the child”). The child then makes a decision

of which action to take for their lifetime and their decision is dependent on the state of

the community. The decision exhibits complementarities, so that the higher the number

of agents in the community who have adopted action 1, the greater the propensity of the

child to choose action 1. This results in a Markov chain, and we can analyze its properties.

We show that the complementarities in decisions relative to the social state lead to positive

correlations between parent and child decisions. In particular, we show that the parent-child

correlation in behavior is exactly proportional to the variance in the child’s decision across

the social state. Thus, we can tie intergenerational correlation directly to the sensitivity of

the child’s decision to the social neighborhood. As we show, very different patterns of social

sensitivity can result in similar intergenerational correlations in behavior. By backing out

the social sensitivity from observed correlations, we see that seemingly similar correlations

come from very different social patterns.

Beyond comparative statics in social sensitivity, we also examine the efficiency of decision

making in the context of social influence. We outline an inefficiency that results in the

following sense. An individual with a relatively low cost for taking action 1 might not take

it if his or her neighbors are not taking the action, while at the same time another individual

with a higher cost for taking action 1 might take it because his or her neighbors are taking

the action. We show that as we increase the sensitivity to social circumstances, this effect

increases and the overall investment costs in the society increase. In a sense, the “wrong”

people are taking actions in that if we could rearrange who had which cost of taking action

1 in the society, the members of the society would be better off. We call this a “cost-

inefficiency,” and show that it is proportional to the social sensitivity of decisions in some

particular cases.

We also discuss how our Markov model can be applied more generally, and that it can

be seen as generalizing imitation investment models (e.g., Kirman (1993)).

As part of the analysis, we note that if one only looks at parent-child data, our social

indirect influence model is observationally equivalent to a direct parental influence model

without any role for the social setting. In other words, a direct parent-child interaction

cannot be distinguished from the social channel as a driver for intergenerational correlation

in behavior (and vice-versa), and so a system with both sources of interaction would not be

identified. In order to distinguish between the different influences, one needs to look beyond

parental and child outcomes. An obvious possibility is to use time series data about the social

surroundings to identify the social influence and distinguish it from direct parental influence.

We provide an alternative identification strategy that does not use information about the

community status, but instead uses time series data about dynasties’ history across two (or

more) generations.
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1.1 Related Literature

There are other papers that have tied intergenerational relations to social situation, e.g.,

Borjas (1992) and Bénabou (1996). However, in such models the social setting is something

that amplifies the parent-child interaction (e.g., in Borjas affecting the parent’s decision for

bequests); while in our model there is no parent-child interaction at all and correlations

derive entirely from the social channel. Also, our model is meant to be portable across a

variety of applications, and is not directly tailored with setting-specific assumptions.

In terms of the identification issue, the difficulty of distinguishing between direct parental

and social influences is certainly not new.2 Our model, nonetheless, makes this issue clear. It

is worth contrasting the identification that we note with the reflection problem described by

Manski (1993). In Manski’s formulation, the researcher posits that there are social effects,

but does not observe them directly and instead infers them based on the attributes of the

individual in question. Since the missing social effects are inferred from the individual’s

attributes, they end up simply “reflecting” back the individual’s attributes and not being

identified. Here we show that two very different models lead to exactly the same observed

patterns in parent-child relations. In particular, any specification of our social interaction

model, regardless of the specific formulation of how the decision probabilities vary with the

community is equivalent to some direct parent-child specification, and vice versa. This is

a different point from the reflection problem, which derives from either a linear in means

formulation or another form of separability.3 Regardless of specific differences in how the

identification problem noted here differs from the reflection problem (which has become a

canonical example of identification issues), the point that there can be multiple explanations

for the same data is obviously not new. Methods of overcoming this issue are standard: for

instance, finding instruments for, or direct observations of, the social drivers of individual

behavior. Beyond this our model provides some time series predictions that allow one to

distinguish it from direct effects without having an instrument or observation of the social

surroundings.

Section 2 presents the model of individual decisions with random over-lapping generations

and community influence. Section 3 contains the results on identification, and the compar-

ative statics of intergenerational correlation (and related investment costs) with respect to

the social sensitivity of behavior. Section 4 provides results on a special case of the model

that we call the threshold model.4 All proofs are relegated to an appendix.

2See, for instance, Corcoran et al. (1992).
3In Section 3 of Manski (1993), there is a more general formulation than the linear one, which makes

clear that the reflection problem arises from a separability of expectations based on social factors and other
factors.

4Supplementary material provides an exercise of fitting the threshold model to data from European
countries.
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2 The Model

2.1 Dynasties and Random Over-Lapping Generations

We analyze a given community or neighborhood of individuals. There are n dynasties in the

community indexed by i = 1, ..., n. Time evolves in discrete periods indexed by t = 1, 2, . . ..

Each generation of a given dynasty consists of one player. When there is no confusion, we

identify current generation players by their dynasty index i.

At the beginning of each period, one dynasty is randomly chosen and its member replaced

by a new player. This happens with equal probability across dynasties.5 We refer to the

new player as the child, and to the old player as the parent.

2.2 Individual Decisions and the Social Externality

New players choose between two actions, high (denoted 1) and low (denoted 0). Let kt−i ∈
{0, 1, . . . , n− 1} denote the number of high-action players other than i at time t, and kt be

the total number of high-action players in the community at time t.

π(0, k−i) and π(1, k−i) denote player i’s expected payoffs conditional on the current ac-

tions by the other players being k−i and conditional on i choosing 0 or 1, respectively. Given

the Markov properties of the model, this is the same function in any period. We normalize

π(0, k−i) = 0 for all k−i, and assume that π(1, k−i) is non-decreasing in k−i, which corre-

sponds to a complementarity in actions.6

Taking the high action is costly, and that new players are assigned a randomly drawn

cost c of taking this action, which is described by a cumulative distribution function F (c).

Because of this cost, we say that a player ”invests” in the high action.

Thus, a player i’s decision is characterized by a vector p = (p0, . . . , pn−1), where pk =

F (π(1, k)) is the probability that he or she invests in the high action when k other players

are high-action. Player i plays the low action 0 with complementary probability 1− pk. The

non-decreasing nature of π(1, ·) implies that pk is also non-decreasing in k.

This formulation assumes that the only relevant state variable is the state of other agents

actions, although one could enrich the model with state variables. It is worth noting that this

formulation avoids multiple equilibrium issues that plague games with complementarities.

It is avoided via two key assumptions. First, that only one agent moves at a time. Second,

an agent makes a choice based only on the current actions of the other agents, and does not

base the decision on beliefs about how future agents will act. With forward looking agents,

5Therefore, the expected life span of any generation in dynasty i is
∑∞
t=1 t

1
n (1 − 1

n )t−1 = n. Thus, the
length of a time period could be taken to be proportional to the expected lifetime of an individual divided
by n.

6We discuss this complementarity in more detail with regards to the application to education and human
capital investment. Complementarities arise from a very wide variety of sources including direct social
pressures, informational externalities, production complementarities, network externalities, improved job
contacts, etc. At this point we can be completely agnostic about the source of the complementarity.
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one could derive multiple equilibrium reactions to the same current state, which is precluded

in our formulation.

For most of the analysis that follows, one can work directly with the specification of p as

the primitive of the model. However, when we return to a discussion of the efficiency of the

model it will be useful to keep track of the costs and benefits to taking an action.

2.3 A Markov Process

The random overlapping generations model, together with the individual investment deci-

sions with idiosyncratic costs generates a Markov process. The state is the number of players

kt at the high action at the end of a period t, and transition probabilities can be derived

from the vector p = (p0, ..., pn−1). These Markov transition probabilities are:7

Pr{kt+1 = m+ 1 | kt = m} =
n−m
n

pm, for 0 ≤ m ≤ n− 1

Pr{kt+1 = m− 1 | kt = m} =
m

n
(1− pm−1) , for 1 ≤ m ≤ n

Pr{kt+1 = m | kt = m} =
n−m
n

(1− pm) +
m

n
pm−1, for 0 ≤ m ≤ n

Pr{kt+1 = m′ | kt = m} = 0, otherwise.

This is a finite-state irreducible and aperiodic Markov process. We characterize the

unique long-run steady-state distribution of this process.8

The steady-state of the Markov process can thus be described by µ = (µ0, . . . , µn), where

µk is the probability that k players take the high action. As the steady-state distribution

depends on the vector of investment probabilities, we write µ (p).

Given p, the average probability p that any given player takes the high action under the

steady-state distribution µ (p) is:

p =
n∑
k=0

µk
k

n
. (1)

The p and the induced µ(p), together with the dynastic birth and death process, also

induces a long-run distribution over the four possible parent-child action combinations,

7Note that the economic derivation of these probabilities gives one justification to them. One can also
provide alternative justifications for these probabilities simply directly appealing social pressure effects,
social-psychological effects, roles models, conformity, and so forth. The important aspect of our approach is
to examine how behavior varies over generations as these vary.

8For such a Markov process, it is well-known that it has a unique steady-state distribution that has several
nice features. First, the steady-state distribution represents the relative frequencies spent in each state over
long time horizons. Second, starting with a random draw from the steady-state distribution, the distribution
over the next period’s states is governed by the same distribution. Third, starting from any state, given a
long enough horizon, the probability that one will end up in any give state is approximately given by the
steady-state distribution.
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00, 01, 10 and 11:

Parent Action

Child Action

0 1

0
∑n

k=0 µk
n−k
n

(1− pk)
∑n

k=0 µk
n−k
n
pk

1
∑n

k=1 µk
k
n
(1− pk−1)

∑n
k=1 µk

k
n
pk−1

(2)

Given these probabilities, it is straightforward to compute the parent-child intergenera-

tional correlation in actions under the steady-state distribution, denoted Cor (p), which is

one of our objects of interest.

Note also that, although it is not obvious from (2), the long-run distribution over parent-

child actions is symmetric; that is, the probabilities assigned to the action combinations 01

and 10 are the same. Formally, it is easily checked that:

n∑
k=1

µk
k

n
(1− pk−1) =

n∑
k=0

µk
n− k
n

pk, for all p.

Indeed, the marginal probability to take the high action at steady state is the same for both

the parent and the child, and equal to p. Given that this marginal probability for the parent

(resp. the child) is the sum of the joint probabilities for the action combinations 10 and 11

(resp, 01 and 11), the symmetry follows.

3 Parent-child Correlation in Behavior

3.1 Monotonicity of the Steady-State Distribution of Actions

Consider a vector of investment probabilities p = (p0, ..., pn−1). We begin with an obvious

result that establishes monotonicity of the steady-state distribution of individual actions (in

the sense of first-order stochastic dominance) with respect to the investment vector p.

We write p′ ≥ p if p′k ≥ pk, for all k, and p′ > p if p′k > pk, for all k.

Proposition 1 Let µ and µ′ denote the steady-state distribution associated with p and p′,

respectively. If p′ ≥ p, then µ′ first-order stochastically dominates µ. When p′ > p, the

first-order stochastic dominance is strict.

A greater propensity to invest in the high action shifts the mass to higher realizations

at steady-state. This simple monotonicity result on µ (p), though, does not translate into

an increase in parent-child correlation. This is because a increase in p does not necessarily

increase the sensitivity of the investment decision to the community choices. We illustrate

this with a simple example.
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Example 1 (A Dyad: n = 2) Investment probabilities are p = (p0, p1). Figure 1 summa-

rizes the transition probabilities. A darkened (resp. empty) node represents a high-action

(resp. low-action) player. Arrows represent state transitions with their corresponding proba-

bilities. The probability with which the state does not change is indicated by the expression

near the dyad.
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Figure 1: A Two Dynasty Markov Process

The spread p1−p0 reflects the sensitivity of individual decisions to community choices. If

p0 is close to p1, then one player’s choice is largely independent of the other player’s choice.

If the gap between these probabilities is large, then the decisions are very sensitive to the

choice of the other player.

Direct calculations give the steady-state distribution µ (p0, p1) over actions, from which

we obtain the distribution over parent-child behavior. The corresponding parent-child cor-

relation in actions is:9

Cor (p) = (p1 − p0)
2.

Thus, the serial correlation is dependent directly on the sensitivity of behavior to the state

of the neighbor, as captured by p1 − p0.

We see here that an increase in the vector of investment probabilities, p′ ≥ p, will not

necessarily lead to an increase in parent-child correlation, unless the spread in p′ is larger

than the spread in p.

3.2 The Identification Issue: Equivalence to Direct Parent-Child

Influence

Our model shows that the social setting can be a driver for arbitrary parent-child correlations,

even without direct relationships between them. However, parent-child correlations could

also result from a direct parental influence on child’s behavior (including genetics, etc.). The

9The marginal long-run probability that an agent takes a high action is p = µ2+ 1
2µ1. The joint probability

with which two consecutive generation members of the same dynasty take a high action is η = p1µ2 + 1
2p0µ1.

The intergenerational correlation can then be computed as (η − p2)/p(1 − p). The expression follows from
simple algebra. Note that the intergenerational correlation involves the joint probability of a high action
for consecutive generations of a same dynasty, η. Instead, the cross-sectional correlation involves the joint
probability of a high action for contemporaneous generations, µ2.
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next result shows that a model that has child decisions directly dependent upon parental

influence is observationally equivalent to an indirect social influence model. This implies

that, given data on the parent-child distribution of actions (2), the indirect social channel

and the direct parental channel cannot be identified against each other.

The direct parent-child influence model is defined by a pair of probabilities (d0, d1). The

child’s investment probability is d1 if the parent’s state is 1 and d0 if the parent’s state is

0. Presuming that d1 ≥ d0, this generates all possible symmetric distributions over joint

parent-child outcomes such that intergenerational correlation is nonnegative.

Proposition 2 The direct parental influence model and the social influence model (even

with n = 2) generate exactly the same set of distributions over joint parent-child outcomes.

These are the distributions such that (a) correlation is nonnegative,10 and (b) the probability

that the parent state=1, child state=0 is the same as the probability that the parent state=0,

child state=1.

Proposition 2 implies that observing serial correlations in parent and child behaviors

cannot be attributed unambiguously to a direct parental influence, regardless of how strong

or weak that correlation is. It can also be explained by an indirect social model. That is,

a correlation in parent-child behavior is as consistent with social effects as it is with direct

parent-child influence. While reality is somewhere in between, Proposition 2 implies that

one needs to look beyond parental and child outcomes in order to distinguish between the

different influences.

While the proof is offered for the case of n = 2, it is not unique to that case. For instance,

with larger n one can still get a full spectrum of correlations, by increasing the sensitivity

of an individual’s choice to the social state. For example, a version of the model where

an individual’s decision depends on that of the majority of the neighbors can replicate the

behavior in the dyad case.

Because of the identification problem pointed at here, which is not about handling a

misspecified model but about observational equivalence, one can think about at least two

different ways to improve the prospects of identification.

The first and obvious possibility to distinguishing between the two drivers is to gather

information about the community status over time. However, rich enough data sets need

not always be available.11 Hence we mention another approach to distinguishing between

the models that builds on a deeper theoretical understanding of the workings of the direct

and the indirect channels in generating time series predictions.

In the direct parental influence model, conditional on the parent’s state, the child’s

state is independent of the previous history. That is, the child’s investment decision is

10The proposition extends to the case of negative correlations if we extend the direct parental influence
model to allow d1 < d0 and similarly we extend the social influence model to allow p1 < p0.

11An exception is a quantitative study of political dynasties in the United States Congress since 1789 in
Dal Bó et al. (2007).
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described by a Bernoulli process whose success probability d0 or d1 depends on the parent’s

state. The parent’s state specifies all the historical information relevant to description of the

future investment decision of the offspring. In contrast, in the social influence model, the

distribution over the child’s state is not independent of the history beyond the parent’s state.

That is, the investment decisions of two children with identical parents’ states are generally

described by two different random processes. With social influences, the past history of the

process beyond that of their parents has an impact on investment decisions by children. In

particular, longer strings of investment in a dynasty’s history are indirect indicators that the

neighbors’ have invested and so a history of investment makes it more likely that the child

will invest.

Proposition 3 In the direct parental influence model the probability that the Child’s state

is 1 conditional upon the Parent’s state being 1 and the Grandparent’s state being 1 is equal

to the probability that the Child’s state is 1 conditional upon the Parent’s state being 1. In

contrast, in the dyadic social influence model, if 1 > p1 > p0 > 0, then the probability that

the Child’s state is 1 conditional upon the Parent’s state being 1 and the Grandparent’s state

being 1 is greater than the probability that the Child’s state is 1 conditional upon the Parent’s

state being 1.

This result shows two different effects. First, the fact that a child’s grandparent is

invested makes it more likely that other people in the community will have invested and this

makes it more likely that the child will invest. Second, the fact that a child’s grandparent is

invested is raises the posterior probability of higher investment levels in the community at

the time the grandparent invested, and these then lead to higher probabilities of neighbors

being invested over time and a higher probability that the child will invest.

We note that this does not necessarily provide a sure technique for identification, as one

could also imagine direct effects from multiple generations (that is, grandparents directly

influencing children beyond parental influence). More generally, one could claim that the

span of direct influence across consecutive generations is bounded from above, but intergen-

erational effects never completely disappear from the social influence model. The ability to

distinguish this, or to know the upper bound on direct influence, might be limited, and so

the inclusion of variables that help identify social effects more directly is always useful.

3.3 Parent-Child Correlation and the Social Sensitivity of Behav-

ior

We now explore the relationship between the social sensitivity, as captured by p, and the

parent-child correlation in behavior, Cor (p). The former subsumes cross-sectional (con-

temporaneous) influences within members of the same group, while the latter reflects inter-

generational (serial) dependence in behavior across consecutive members of a same dynasty.

The analysis to follow shows how intergenerational correlation can arise purely as the result
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of (repeated) cross-sectional influences, and establishes a relationship between the size and

the sign of these two a priori orthogonal forms of covariation.

Recall that a player i’s decision is characterized by a vector p = (p0, . . . , pn−1), where pk
is the probability that he or she invests in the high action when k other players have selected

the high-action. Intuitively, increasing the spread in pk’s across k makes the investment

decision more sensitive to the community choices. That is, increasing pk for high levels k

and/or decreasing it for lower k leads investment to be more dependent on the state of the

community. In the example of the dyad, for instance, a measure of an increasing sensivity is

given by the spread p1 − p0. More generally, we capture this notion of increasing the spread

in pk’s through the variance in the probability that a given player adopts the high action.

We compute this variance as follows.

Given p and the associated steady-state distribution µ (p) over population choices, let

µ−i (p) =
(
µ−i0 , ..., µ

−i
n−1

)
be the long-run distribution for the action choices in the population

when some arbitrary player i is excluded from the group. So µ−ik is the steady-state probabil-

ity that k players other than some player i take the high action. Straightforward calculations

show that µ−i (p) can be written directly in terms of the steady state distribution µ (p) as

follows:12

µ−ik =
n− k
n

µk +
k + 1

n
µk+1, for k = 0, ..., n− 1.

Let V ar(p) denote the variance in investment probabilities. Given that player i makes his

or her investment decision with probability pk when there are exactly k other high actions in

the community, which is an event with long-run probability µ−ik , the variance of investment

probabilities is then

V ar(p) =
n−1∑
k=0

µ−ik p
2
k − (

n−1∑
k=0

µ−ik pk)
2. (3)

Differences in the coordinates of p reflect differences in investment choices accruing solely

from variations in social circumstances. The vector µ−i (p), precisely, quantifies the ocurrence

with which, in the long-run, the composition of the social milieu varies for different agents at

the time their investment decision is made. Then, V ar(p) accounts both for the variability in

social circumstances and for the dependence of investment choices to this fluctuating social

setting.

The next result states that increased social sensitivity or influences exerted within periods

and across dynasties induces higher correlation in behavior across periods and for members

of the same dynasty. More precisely, we provide a complete characterization of the rela-

tive ordering of intergenerational correlations as dependent on properties of the vector p of

contemporaneous social influences.

12The number of states with k high types, not counting i, is
(
n−1
k

)
. There are exactly

(
n
k+1

)
states with

k + 1 high types. The fraction of such states for which i is of high type is
(
n−1
k

)
/
(
n
k+1

)
= (k + 1)/n.

Also, there are
(
n
k

)
states with k high types, and the fraction of such states for which i is of low type is(

n−1
k

)
/
(
n
k

)
= (n− k)/n.
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Theorem 1 The parent-child correlation in behavior starting from the steady state is higher

under p′ than under p if and only if

V ar(p′)

p′(1− p′)
>

V ar(p)

p (1− p)
. (4)

A corollary of Theorem 1 is the following.

Corollary 1 The parent-child correlation starting from the steady state is higher under p′

than under p if V ar(p′) > V ar(p) and p = p′.

Keeping track of the variation in investment (V ar(p)) alone is not enough to tie down

the parent-child correlation, as it is this variance relative to the overall variation in a player’s

state that is important. This normalization is necessary since it is only relative variations

that matter in correlation comparisons, rather than absolute levels. The relevant normalizing

variation is the variance of any given player i’s action choice, which is simply p (1− p), where

p is the average investment probability defined in (1). If all players were facing identical social

circumstances, they would all invest in the high action with average probability p, leading

to a variance for investment decisions equal to p (1− p). Instead, the long-run variability

in social circumstances is a source of variability in investment probabilities subsumed by

V ar (p).

As outlined in the case of a dyad (Example 1), the intuition behind the theorem and corol-

lary is that increased direct (cross-sectional) correlation of both parent and child choices with

the state of the community at the time they each make their own investment decision leads

to higher indirect (serial) correlation between parent and child’s state. While this intuition

suggests that intergenerational correlation will vary with sensitivity to social circumstances,

the fact that the intergenerational correlation is always exactly directly proportional to the

variance of the investment probabilities is a bit unexpected. The proof takes some work,

which appears in the appendix.

3.4 Cost efficiency of behavior and social sensitivity

One of the reasons that we are interested in correlation in behavior across generations is

that it suggests that there are influences which distort behavior away from efficient levels.

For example, suppose that one player invests in the high action even though that player has

a high cost due to the fact that a large fraction of his or her community is taking the high

action, while another player does not invest despite a much lower cost due to the fact that

a low fraction of his or her community is taking the high action. This leads to more costly

investment than would be present in a world where the players were switched. In a perfect

world, where we could exchange these two players (and make some transfers) we would have

a Pareto improvement.

We use the term cost efficiency to emphasize that this analysis examines the costs only. It

does not represent a measure of Pareto efficiency unless the planner has the ability to make
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transfers and to move agents around based on their inherent costs. The idea is that a society

could generate more total welfare if individuals with lower costs were placed in settings with

higher investment by neighbors, and vice versa. Thus, a failure of cost efficiency is a weak

form of inefficiency, in that it is only inefficient when measured relative to strong assumptions

on transfers and ability to move agents. Nonetheless, it does clarify some specific aspects

of investment behavior that are present in socially sensitive societies: relatively untalented

individuals can end up investing while relatively talented individuals do not.

A rough measure that keeps track of this distortion is the total investment expenditure

to get a given average level of investment. That is, consider two different communities

whose investment decisions are described by p and p′. To keep a level playing field, compare

communities with the same average steady-state investment rates so that p = p′. We can then

compare their respective average costs of investment to see how their comparison depends

on the relationship between p and p′.

To do this, we derive the expected costs of investment in steady state. To get a closed-

form solution, we examine a case where any given player’s costs of investment are uniformly

distributed on [0, C]. Recall, that the model is one where the benefits depend on the com-

munity choices (k−i) and then the costs are simply individual-specific. In particular, recall

that pk = F (π(1, k)). That is, the probability that i chooses the high action when k players

are high-action is the probability that i’s cost of investment is below π(1, k), which is i’s

expected payoff from the high action.

Given that costs are uniformly distributed on [0, C], pk = π(1, k)/C. Conditional on

investing when k−i = k we then can conclude that the expected costs are π(1, k)/2. Thus,

these are Cpk/2. Then, the average cost per capita of choosing the high action can be written

as:

Cost(p) =
n−1∑
k=0

µ−ik pk
p

C

2
pk.

Here, µ−ik pk/p is the conditional probability that there were k other high-action players at

the time that i made his or her choice, conditional on i investing. We can then conclude the

following.

Proposition 4 If the steady-state average investment rates are the same, p′ = p, then

under the above formulation Cost(p′) > Cost(p) if and only if V ar(p′) > V ar(p).

For two processes p and p′ that have the same overall percentage of high-action players

p, the more sensitive one has a higher overall cost associated with it. It is thus less efficient

in terms of the costs of investment for the same average level of investment.

4 A Threshold Model

We now describe a specific case of our model that we call the “threshold” model. This is

useful as it is a very sparse model, and yet still gives rich dynamics and has a very natural
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interpretation.

More precisely, we say that there are threshold investment decisions if there exists 1 ≥
pH ≥ pL ≥ 0 and τ ∈ {1, ..., n − 1} such that pk = pH if k ≥ τ and pk = pL is k < τ .

The difference between the high and the low investment probability is pH − pL. Holding τ

fixed, when pH increases and/or pL decreases, individual investment decisions become more

sensitive to the state of the community. This is a generalization of the dyad example to an

arbitrary population size n.

The idea behind this is that there is some threshold number of neighbors such that

if at least that many neighbors have invested then investment becomes attractive for the

individual and below which it does not. Allowing the probabilities to differ from 0 and 1

means that decisions are not completely deterministic but also noisy and possibly influenced

by some idiosyncratic and exogenous factors.

The transition probabilities are depicted below.

-

k

6

◦

r
pk

τ

pH

pL

n− 10

For the threshold model, the steady-state distribution over action choices can be readily

computed and is equal to:

µk =

 µ0

(
n
k

) (
pL

1−pL

)k
, for k < τ, and

µ0

[
pL(1−pH)
pH(1−pL)

]τ (
n
k

) (
pH

1−pH

)k
, for k ≥ τ ,

where µ0 normalizes the sum to one.13

Despite this closed-form expression for the steady-state distribution µ for the aggregate

actions within the group, the resulting bivariate process (2) for the parent-child outcomes

is still harder to analyze than in the simple dyad case. In particular, simply increasing the

spread between pH and pL need not increase the steady-state intergenerational correlation

when n > 2, without an additional condition. Holding τ fixed, an increase in pH and a

decrease in pL that keep the average investment level p constant lead to an increase in

intergenerational correlation. Otherwise, it need not.

If (pH , pL) and (p′H , p
′
L) are such that p′H > pH , p

′
L < pL and p is the same under

(n, τ , pH , pL) than under (n, τ , p′H , p
′
L), we say that (p′H , p

′
L) is a p-preserving spread of

(pH , pL).

13The expressions for the steady-state probabilities follow from iterated application of (5) in the appendix.
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Proposition 5 In the threshold model, an p-preserving spread increases the (steady state)

intergenerational correlation in human capital investments.14

We prove Proposition 5 by applying Theorem 1 (in fact, Corollary 1) and showing that

an p-preserving spread leads to an increase in the variance.

4.1 Education and Social Mobility

Consider an application where the low and high actions correspond, respectively, to in-

vesting in low and high human capital levels. Let π(0, k−i) and π(1, k−i) be the expected

discounted stream of wages conditional on i being of human capital level 0 or 1, respectively.

Idiosyncratic investment costs encompass innate skills and abilities, as well as direct costs of

education. Note that this assumption completely abstracts from any correlation in costs of

education across generations. We do not do this because we believe that costs are indepen-

dent across generations, but rather because we wish to isolate the social setting as a driver

of social immobility.15,16

The critical property in applying our results from above is that the vector of investment

decisions pk is non-decreasing in k. Economists and sociologists have proposed and docu-

mented a variety of channels for this positive social externality, including role-model theory,

peer-pressure for conformity, heredity of cultural traits or skills.17 Given the direct modeling

14This refers to the correlation between parent and child investment states of any given dynasty at any
time, Cor (p), when the initial distribution is the steady state distribution µ.

15Intergenerational correlation in costs of education has been studied as a driver of social immobility, both
theoretically and empirically. See Bowles and Gintis (2002) and references therein. We deliberately isolate
social effects as a driver for observed social mobility patterns to work out their possible functioning and
sizeable impact. In particular, we abstract from any direct source of parent-child correlation, be it heredity
of cultural or genetic traits, or any other direct economic linkage mechanism across generations. Therefore,
our approach is complementary to the already existing theories of social mobility, such as: wealth transfers
in the form of bequests by altruistic parents or genetic inheritance of productive abilities (Becker and Tomes
1979), imperfect credit markets imposing borrowing constraints at the bottom of the earnings distribution
(Loury 1981), and segregation of individuals into homogeneous communities that spur positive spillover effect
(Bénabou 1993, 1996 and Durlauf 1996).

16Economists’ measure of social mobility is mostly based on parent-child correlation of (log) earnings and
income. Recent estimates of the intergenerational correlation of long-run log earnings lie in the range [.4, .6]
for the U.S. and the U.K., and [.2, .4] for Germany and Sweden (see, e.g. Björklund and Jännti 1999, Solon
2002, Piketty 2000 and references therein, in particular, Solon 1992, Zimmerman 1992, Björklund and Jännti
1997, Dearden et al. 1997, and Mulligan 1997. Sociologists’ analyses of intergenerational correlation focus
on mobility tables. Given a hierarchy of occupational classes (or social classes), mobility tables relate the
children-class destination to the parents-class origin. Odds ratios compute the relative likelihood of identical
versus different parent-child class. Estimated odds ratios vary from 1 and 15 depending on the occupational
class and for a large set of countries (see, e.g., Ganzenboom and Treiman (1996) and Erikson and Goldthorpe
1992, 2002).

17Role-model theories assert that children learn how to behave by observing the adults in their social net-
work (Jencks and Mayer 1990). Exogenous norm-enforcing mechanisms also induce conformism among peers
(Coleman 1990). A setting where preferences for conformity are endogenized appears in Calvó-Armengol

15



of the social interaction through the variation of pk as a function of k, the application to

social mobility of our model encompasses all such channels. Social networks, which are per-

vasively used in labor markets to disseminate job information, can also lead to substantial

complementarities in human capital investment decisions (see Calvó-Armengol and Jackson

2004,2007 for details).

All of our previous results apply. In particular, Theorem 1 relates the intergenerational

correlation in human capital to the strength of the social externality in education choices,

and vice-versa. Proposition 4 provides an efficiency assessment of observed levels of inter-

generational correlation.

For instance, suppose that a child pays attention to the social community with some

probability. More precisely, with probability q the child’s investment decision is governed

by pk, and with probability (1 − q) it is given by p. Note that changes in q do not modify

the average investment probability p, but do affect its sensitivity to the social situation.

Applying Theorem 1 (or its Corollary 1), we conclude the following.

Corollary 2 The parent-child correlation in human capital investments starting from the

steady state distribution, and the cost inefficiency, both increase with the probability that the

child invests as a function of the community, q.

To the extent that the overlap of the social universe across generations is higher for the

two-tails of the income distribution, this finding is consistent with the U−shaped intergen-

erational income correlation curve as a function of income levels documented by Cooper

et al. (1994).18 Beyond issues of equity and equality of opportunity, the previous result

also relates social mobility to economic efficiency in a way that echoes conclusions found

by modeling immobility due to other sources. For instance, inefficiencies are also present in

incomplete market models of social mobility (Loury 1981, and Banerjee and Newman 1991)

and assortative matching models (Becker 1973, Cole, Mailath, and Postlewaite 1994).

In Supplementary Material to this manuscript, we fit the threshold model to data on

parent-child education levels in European countries. In light of the identification issue ad-

dressed in Proposition 2, this exercise is meant to illustrate how the model can generate

behavior consistent with data, and as an alternative explanation to that of direct parent-

child influence. This is not meant as a test of the model.

and Jackson (2004,2007) for the case of “drop-out” decisions based on the state of one’s network contacts.
Heredity of preferences theory presumes that low-class children inherit preferences that discount future pay-
offs more than children from wealthier parents, and hence they invest less in human capital (Boudon 1973).
Heredity of cultural traits theories claims that high-class children inherit better suited attitudes and apti-
tudes for culture and education, and then correlation follows from a parental earnings bias in social capital
endowment for the child (Bourdieu and Passeron 1964).

18See Wright Mills (1945) for a seminal analysis of the social endogamy of the business elite in the U.S.
and Wilson (1987) and Jencks and Mayer (1990) for an analysis of the social and economic consequences of
living in the inner city in the U.S.
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5 Conclusion

We have provided a parsimonious model that shows how individual decisions depend on the

choices of the group, and how this leads to parent-child correlation. Increased sensitivity

of an individual’s decision to the choices in his or her social neighborhood corresponds to

increased parent-child correlation. We show how the social driver and the parental channel

are observationally equivalent, and describe a possible identification strategy. We provide

an application to educational decisions where social networks, which are pervasively used

in labor markets to disseminate job information, generate the sort of complementarities in

human capital investment decisions that are considered in our model. We also analyze a

special case of the model, the threshold investment model, for which the long-run steady-

state distribution is easily characterized.

5.1 Other Applications

Beyond the analysis of parent-child correlations, our model provides a general set up to

generate time series predictions from cross-sectional peer effects and, more generally, from

imitative behavior. Consider a finite number of agents that take a binary 0-1 decision. Time

is discrete and, each period, one randomly selected agent can revise his or her previous choice.

This agent then samples some individuals around and imitates the most popular decision in

this sample, possibly with some noise. Popularity can correspond to some measure of relative

payoff, or simply reflect the relative frequencies of both actions in the sample.19 Clearly, in

this set up where imitation spurs a within-periods and across-agents community positive ex-

ternality in individual decisions. Our analysis suggest that cross-sectional imitation induces

across-periods persistence in individual and aggregate behavior in the long-run.

A particular (simple) example of this imitative process is the following. With some small

probability ε, the revised choice follows a coin toss. With the complementary probability

1 − ε, instead, the agent who’s choice is to be revised is matched randomly with one other

agent, all matches being equally likely, and adopts the action of the matched partner. The

resulting probability of choosing 1 conditional on k of the other n− 1 people in the society

having chosen 1 is:

pk =
1

2
ε+ (1− ε) k

n− 1
.

Clearly, this process induces a vector of investment probabilities which are non-decreasing

in k, and fits our general model. This model is analyzed in Kirman (1993), in the context

of ant behavior, as a proxy for some sorts of investment behavior.20 He shows that the

continuous population limit of the steady-state distribution for this process is a Beta dis-

tribution, which corresponds to overcrowding in choices. Here, changes in ε do not change

19Sobel (2000) discusses the connections between these models of imitation and the literature on social
learning.

20For a related model, see also Ellison and Fudenberg (1995).
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the average probability to choose action 1, which is (roughly) one-half, but does affect the

sensitivity of the choice to the social state. From our results we can conclude that the time

series persistence of the overcrowded action starting from the steady state decreases with ε,

a result that corroborates a similar numerical observation in Kirman (1993).
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[24] Dal Bó, Ernesto, Dal Bó, Pedro and Jason Snyder. 2007. “Political Dynasties.”

manuscript, U.C. Berkeley.

[25] Dearden, Lorraine, Steve Machin, and Howard Reed. 1997. “Intergenerational Mobility

in Britain.” Economic Journal, 107: 47-66.

[26] Durlauf, Steven. 1996. “A Theory of Persistent Income Inequality.” Journal of Economic

Growth, 1(1): 75-93.

[27] Ellison, Glenn and Drew Fudenberg. 1995. “Word-of-Mouth Communication and Social

Learning.” Quarterly Journal of Economics, 110(1): 93-125.

[28] Erikson, Robert and John G. Goldthorpe. 1992. The Constant Flux: A Study of Class

Mobility in Industrial Societies, Oxford: Clarendon.

19



[29] Erikson, Robert and John G. Goldthorpe. 2002. “Intergenerational Inequality: A Soci-

ological Perspective.” Journal of Economic Perspectives 16(3): 31-44.

[30] Galea, Sandro, Arijit Nandi, and David Vlahov. 2004. “The Social Epidemiology of

Substance Use.” Epidemiologic Reviews, 26: 36-52.

[31] Ganzeboom, Harry and Donald Treiman. 1996. “Internationally Comparable Measures

of Occupational Status for the 1988 International Standard Classification of Occupa-

tions.” Social Science Research, 25(3): 201-239.

[32] Goux, Dominique and Eric Maurin. 1997. “Meritocracy and Social Heredity in France:

Some Aspects and Trends.” European Sociological Review, 13(2)159-178.

[33] Heckman, James J. and Alan B. Krueger. 2004. Inequality in America: What Role for

Human Capital Policies?, Cambridge: MIT Press.

[34] Hoge, Dean, Gregory Petrillo, and Ella Smith. 1982. “Transmission of Religious and

Social Values from Parents to Teenage Children.” Journal of Marriage and the Family,

44(3): 569-580.

[35] Ioannides, Yannis and Linda Datcher Loury. 2004. “Job Information Networks, Neigh-

borhood Effects and Inequality.” Journal of Economic Literature, 42(4): 1056–1093.

[36] Jencks, C. and S. Mayer. 1990. “The Social Consequences of Growing Up in a Poor

Neighborhood: A Review.” in Concentrated Urban Poverty in America, Washington:

National Academy.

[37] Johnson, D. 1996. “Fathers Presence Matters: A Review of the Literature.” National

Center on Fathers and Families, working paper.

[38] Kane, Thomas. 1994. “College Entry by Blacks Since 1970: The Role of College Costs,

Family Background, and the Returns to Education.” Journal of Political Economy,

102(5): 878-911.

[39] Kirman, Alan. 1993. “Ants, Rationality, and Recruitment.” Quarterly Journal of Eco-

nomics, 108(1): 137-156.

[40] Kling, Jeffery, Liebman, Jeffrey and Lawrence Katz. 2007. “Experimental Analysis of

Neighborhood Effects.” Econometrica, 75(1): 83-119.

[41] Loury, Glenn C. 1981. “Intergenerational Transfers and the Distribution of Earnings.”

Econometrica 49(4): 843-867.

[42] Mulligan, Casey. 1997. Parental Priorities and Economic Inequality, Chicago: University

of Chicago Press.

20



[43] Piketty, Thomas. 1995. “Social Mobility and Redistributive Politics.” Quarterly Journal

of Economics, 110(3), 551-584.

[44] Piketty, Thomas. 2000. “Theories of Persistent Inequality and Intergenerational Mobil-

ity.” in Handbook of Income Distribution, Vol. 1, Anthony B. Atkinson and François

Bourguignon, eds., Elsevier: Amsterdam.

[45] Sobel, Joel. 2000. “Economists’ Models of Learning.” Journal of Economic Theory,

94(2): 241-261.

[46] Solon, Gary. 1992. “Intergenerational Income Mobility in the United States.” American

Economic Review, 82(3): 393-408.

[47] Solon, Gary. (2002) “Cross-Country Differences in Intergenerational Earnings Mobility.”

Journal of Economic Perspectives, 16(3): 59-66.

[48] Thomson, Kenneth. 1971 “A Cross-National Analysis of Intergenerational Social Mo-

bility and Political Orientation.” Comparative Political Studies 4(3): 3-20.

[49] Wilson, William J. 1987. The Truly Disadvantaged: The Inner City, the Underclass,

and Public Policy, Chicago: University of Chicago Press.

[50] Wright Mills, C. 1945. “The American Business Elite: A Collective Portrait.” Journal

of Economic History 5: 20-44.

[51] Zimmerman, David J. 1992. “Regression Toward Mediocrity in Economic Stature.”

American Economic Review 82(3): 409-429.

Appendix

Proof of Proposition 1: We first show that µk+1 = akµk for all 0 ≤ k ≤ n− 1, where

ak =
n− k
k + 1

(
pk

1− pk

)
. (5)

Indeed, consider a state where exactly k players take the high action. At steady-state,

the inflow to and the outflow from this state exactly balance each other. This is written as

µ0p0 = µ1

1

n
(1− p0), for k = 0

µk−1

n− (k − 1)

n
pk−1 + µk+1

k + 1

n
(1− pk) = µk

k

n
(1− pk−1) + µk

n− k
n

pk, for 1 ≤ k ≤ n− 1

µn−1

1

n
pn−1 = µn(1− pn−1), for k = n,

and the identity (5) follows immediately.
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The fact that µk+1 = akµk, for all 0 ≤ k ≤ n− 1 implies that µi/µj = ajaj+1 · · · ai−1, for

all i > j. Noting that p′k ≥ pk implies a′k ≥ ak (with corresponding strict inequalities), it

follows that

µ′i/µ
′
j ≥ µi/µj

for all i > j, with strict inequality for some pairs when p′ 6= p. Given that
∑n

k=0 µ
′
k = 1 =∑n

k=0 µk, the result follows directly.

Proof of Proposition 2: Let n = 2 and consider the direct parental influence model

where investment probabilities are d = (d0, d1), where di is the investment probability when

parental status is i ∈ {0, 1}. Let 1 ≥ d1 ≥ d0 ≥ 0.

Let µ0 be the probability of any agent being a 0. The probability that a child is a 0 is

then µ0 = (1− d0)µ0 + (1− d1)(1− µ0), or:

µ0 =
1− d1

1− d1 + d0

.

Then we directly find the distribution ν ′ (d0, d1) over parent-child behavior:

0 1

0 (1−d1)(1−d0)
1+d0−d1

d0(1−d1)
1+d0−d1

1 d0(1−d1)
1+d0−d1

d0d1
1+d0−d1

Consider now the dyad model, defined by p = (p0, p1), with 1 ≥ p1 ≥ p0 ≥ 0. The

steady-state distribution ν (p0, p1) over parent-child behavior is now:

0 1

0 (1−p0)2(1−p1)+(1−p1)2p0
1+p0−p1

p0(1−p1)(1−p0+p1)
1+p0−p1

1 p0(1−p1)(1−p0+p1)
1+p0−p1

p0p21+p20(1−p1)

1+p0−p1

We proceed in two steps.

We first show that, given any bivariate distribution ν ′ (d0, d1) for the direct influence

model, there exists some p = (p0, p1), with 1 ≥ p1 ≥ p0 ≥ 0 that replicates it, that is, such

that ν (p0, p1) = ν ′ (d0, d1). Notice that:

ν ′11

ν ′10

=
d1

1− d1

and
ν ′00

ν ′10

=
1− d0

d0

Also,
ν11

ν10

=
p2

1 + p0(1− p1)

1− (p2
1 + p0(1− p1))

.

So, a first equation expressing (p0, p1) as a function of (d0, d1) is:

d1 = p2
1 + p0(1− p1) = p1 (p1 − p0) + p0. (6)
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From the expression of ν11 (p0, p1) and (6) we get:

ν11 =
p0d1

1 + p0 − p1

.

To simplify notations, let λ = d1/ν
′
11 ≥ 1. A second equation expressing (p0, p1) as a function

of (d0, d1) (and ν ′ (d0, d1)) is then:

p1 − p0 + λp0 = 1. (7)

We solve (6) and (7) with unknowns (p0, p1) such that 0 ≤ p0 ≤ p1 ≤ 1. Using the fact

that p1 − p0 = 1− λp0 from (7) we rewrite (6) as:

p1 + p0 − λp0p1 = d1.

So the system of two equations with two unknowns is:{
p1 − p0 + λp0 = 1

p1 + p0 − λp0p1 = d1

Solving for p0 in the first equation and plugging in the second one gives:{
p1 − p0 + λp0 = 1

λp2
1 − 2p1 + 1− (λ− 1) d1 = 0

(8)

We solve the second order equation in p1. The highest root of this second-order polynomial

is:

p∗1 =
1

λ

[
1 +

√
(λ− 1) (λd1 − 1)

]
.

p∗0 is then deduced from the first equation of (8):

p0 =
1

λ

[
1−

√
λd1 − 1

λ− 1

]
.

Clearly, v (p∗0, p
∗
1) = ν ′ (d0, d1). We check that 1 ≥ p∗1 ≥ p∗0 ≥ 0. First, 1 ≥ p∗1 is equivalent to

λ ≥ λd1, which is true because d1 ≤ 1. Second, p∗0 ≥ 0 is equivalent to λ ≥ λd1, which again

is true. Finally, simple algebra shows that p∗1 ≥ p∗0 also holds.

Second, we show that the set of bivariate distributions generated by the parental di-

rect influence model corresponds to all symmetric bivariate distributions with non-negative

correlation. We want to generate the following symmetric bivariate:

0 1

0 a 1−(a+b)
2

1 1−(a+b)
2

b

(9)

with the following transition probabilities (child in columns; parent in rows):
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[
1− d0 d0

1− d1 d1

]
.

Without any loss of generality, we can write d1 = 1− xd0. Let a, b ≥ 0, a+ b ≤ 1. We solve

for the bivariate distribution ν (d0, d1), and equate it with the bivariate distribution (9), that

is: {
a = x(1−d0)

1+x

b = 1−xd0
1+x

.

We have:

d∗0 = 1− a1 + x

x
,

and plugging into the second equation gives, after some algebra:

x∗ =
1 + a− b
1 + b− a

We need to check that 1 − x∗d∗0 ≥ 0, that is, x∗ ≤ (1 + a) / (1− a), which is true. We also

impose 1−x∗d∗0 = d∗1 ≥ d∗0, that is, 1 ≥ (1 + x∗) d∗0. Using the expressions for x∗ and d∗0, this

inequality becomes, after some algebra:

1 + 2ab ≥ (1− a)2 + (1− b)2

One can easily check that this is equivalent to requiring that the correlation corresponding

to (9) be non-negative.

Proof of Proposition 3: The proof is related to that of Proposition 3 in Calvó-Armengol

and Jackson (2004).

Consider a dyad and s ∈ {0, 1}2 a state representing the actions taken by the dyad

members. We denote random variables by capital letters, S, and realizations by small

letters, s. Let P be the two dynasty Markov process with transitions in Figure 1. So Pss′ is

the probability that St = s′ conditional on St−1 = s.

We introduce some useful definitions and notations.

Let µ and ν be two probability distributions on S. We say that µ dominates ν if Eµ (f) ≥
Eν (f) for all nondecreasing function f : R → {0, 1}2. We say that the domination is strict

when the inequality is strict for some f . Domination extends first-order stochastic dominance

to random vectors.

Let E = {E ⊂ {0, 1}2 : s ∈ E, s′ ≥ s⇒ s′ ∈ E}. The elements of E are called increasing

sets. Increasing sets are useful to handle coordinate-wise partial orderings, and to extend

dominance relationships on random variables to random vectors.

Lemma 1 Let µ and ν be two probability distributions on {0, 1}2. Then, µ dominates ν if

and only if µ (E) ≥ ν (E), for all E,E ′ ∈ E. The domination is strict if the inequality is

strict for at least one E.

24



Proof of Lemma 1: The result follows from Lemma 6, p. 444 in Calvó-Armengol and

Jackson (2004).21

Given a measure ξ on {0, 1}2, let ξP denote the measure induced by multiplying the

(1 × 4) vector ξ by the (4 × 4) transition matrix P . This is the distribution over states

induced by a starting distribution ξ multiplied by the transition probabilities P .

In what follows we assume that 1 > p1 > p0 > 0.

Lemma 2 Let µ and ν be two probability distributions on {0, 1}2. If µ dominates (resp.

strictly dominates) ν, then µP dominates (resp. strictly dominates) νP .

Proof of Lemma 2: This result corresponds to Lemma 9, p. 445 in Calvó-Armengol

and Jackson (2004). A crucial step in the proof uses the fact that Ps′E ≥ PsE, for all s′ ≥ s

and E ∈ E , with a strict inequality for at least one E when s′ 6= s.

We prove this. We establish the result for pairs of adjacent states, that is, s′ = (1, 1) and

s ∈ {(1, 0) , (0, 1)}, or s′ ∈ {(1, 0) , (0, 1)} and s = (0, 0). The more general statement then

follows from a chain of comparisons across such adjacents states.

Let s′ ≥ s adjacent, and suppose without loss of generality that s′1 > s1 and s′2 = s2.

Let Prs (S2,t) be the probability distribution on S2,t conditional on St−1 = s. If s = (0, 0)

and s′ = (1, 0), then Prs (S2,t) (resp. Prs′ (S2,t)) is a Bernoulli distribution with success

probability p0/2 (resp. p1/2). If s = (0, 1) and s′ = (1, 1), then Prs (S2,t) (resp. Prs′ (S2,t))

is a Bernoulli distribution with success probability (1 + p0) /2 (resp. (1 + p1)/2). Given

that p1 > p0, it follows that Prs′ (S2,t) strictly first-order stochastically dominates Prs (S2,t).

Then, given that s′1 > s1, it follows that Prs′ (St) strictly dominates Prs (St). Lemma 1 then

implies that Ps′E ≥ PsE, for all s′ ≥ s and E ∈ E , with a strict inequality for at least one E

when s′ 6= s.

For any t, let Et
i0 (resp. Et

i1) be the set of st such that si,t = 0 (resp. si,t = 1). For

instance, Et
20 = {(0, 0) , (1, 0)}. Let µ∗ be the steady-state distribution for the two dynasty

Markov process: 
µ∗11

µ∗01

µ∗10

µ∗00

 =
1

1 + p0 − p1


p0p1

p0(1− p1)

p0(1− p1)

(1− p0)(1− p1)

 .
We now state another useful result.

Lemma 3 µ∗ (. | Et
i1) strictly dominates µ∗ (. | Et

i0), for all i and t.

Proof of Lemma 3: By Lemma 1, it is enough to check that µ∗ (E | Et
i1) ≥ µ∗ (E | Et

i0),

for all E,E ′ ∈ E , with at least one strict inequality. In the next table, the rows correspond

21Variations of a more general version of this lemma appear in the statistics literature.
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to the elements of E , while the columns give the corresponding conditional probabilities for

i = 1;22 the case i = 2 is symmetric.

E µ∗ (. | Et
10) µ∗ (. | Et

11)

{(1, 1)} 0 µ∗11/ (µ∗10 + µ∗11)

{(1, 0) , (1, 1)} 0 1

{(0, 1) , (1, 1)} µ∗01/ (µ∗00 + µ∗01) µ∗11/ (µ∗10 + µ∗11)

{(0, 0) , (1, 1) , (1, 0) , (1, 1)} 1 1

To establish strict domination, we only need to check that µ∗11/ (µ∗10 + µ∗11) ≥ µ∗01/ (µ∗00 + µ∗01),

equivalent to p1 ≥ p0, which is true under our assumption that p1 > p0.

We are now ready to prove Proposition 3.

For any t > t′ ≥ 0 and any i = 1, 2, let ht
′,t
i1 be the event that Sit′ = Sit′+1 · · · = Sit−1 =

Sit = 1. Let ht
′,t
i0 be the event that Sit′ = 0 and Sit′+1 · · · = Sit−1 = Sit = 1. So, ht

′,t
i0 and ht

′,t
i1

differ only in i’s status at date t′.

Let t > t′ + 1. We want to show that:

P
(
Si,t+1 = 1|ht′ti1

)
> P

(
Si,t+1 = 1|ht

′+1,t
i1

)
. (10)

Since P
(
Si,t+1 = 1|ht

′+1,t
i1

)
is a weighted average of P

(
Si,t+1 = 1|ht′ti0

)
and P

(
Si,t+1 = 1|ht′ti1

)
,

(10) is equivalent to showing that

P
(
Si,t+1 = 1|ht′ti1

)
> P

(
Si,t+1 = 1|ht′ti0

)
. (11)

By Bayes’ rule,23

P
(
Si,t+1 = 1|ht′ti1

)
=

P
(
Si,t+1 = 1, ht

′t
i1

)
P
(
Si,t+1 = 1, ht

′t
i1

)
+ P

(
Si,t+1 = 0, ht

′t
i1

)
and

P
(
Si,t+1 = 1|ht′ti0

)
=

P
(
Si,t+1 = 1, ht

′t
i0

)
P
(
Si,t+1 = 1, ht

′t
i0

)
+ P

(
Si,t+1 = 0, ht

′t
i0

)
Using the two above equations to rewrite (11), and rearranging terms leads to:

P
(
Si,t+1 = 1, ht

′t
i1

)
P
(
Si,t+1 = 0, ht

′t
i0

)
> P

(
Si,t+1 = 1, ht

′t
i0

)
P
(
Si,t+1 = 0, ht

′t
i1

)
. (12)

Dividing each side of the above inequality by µ∗(Et′
i0)µ

∗(Et′
i1), we deduce that to establish

(12) it is enough to show that:

P
(
Si,t+1 = 1, ht

′t
i1

)
µ∗(Et′

i1)
>
P
(
Si,t+1 = 1, ht

′t
i0

)
µ∗(Et′

i0)
(13)

22We have Et10 = {(0, 0) , (0, 1)} and Et11 = {(1, 0) , (1, 1)}.
23Note that

(
Si,t+1 = 1, ht

′,t
i1

)
= ht

′,t+1
i1 .
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and
P
(
Si,t+1 = 0, ht

′t
i0

)
µ∗(Et′

i0)
>
P
(
Si,t+1 = 0, ht

′t
i1

)
µ∗(Et′

i1)
. (14)

Let us show (13), as the argument for (14) is analogous.

Then,

P
(
Si,t+1 = 1, ht

′t
i1

)
µ∗(Et′

i1)
=

∑
st′∈{0,1}2

∑
st′+1∈E

t′+1
i1

· · ·
∑

st+1∈Et+1
i1

µ∗(st′|Et′

i1)Pst′st′+1
· · ·Pstst+1 .

Similarly

P
(
Si,t+1 = 1, ht

′t
i0

)
µ∗(Et′

i0)
=

∑
st′∈{0,1}2

∑
st′+1∈E

t′+1
i1

· · ·
∑

st+1∈Et+1
i1

µ∗(st′|Et′

i0)Pst′st′+1
· · ·Pstst+1 .

By Lemma 3, µ∗ (· | Et
i1) strictly dominates µ∗ (· | Et

i0). Then, by the above equations,

and applying Lemma 2 iteratively, we derive the desired conclusion.24

Proof of Theorem 1: Let us consider any dynasty i. Consider any point in time (having

started at time 0 from the steady state distribution) where a given newborn in role i is faced

with the choice to invest. Let X be the number of other players who have chosen the high

action 1 at that point in time. We know that

µ−ik = Pr[X = k] =
n− k
n

µk +
k + 1

n
µk+1. (15)

Let Z be i’s parent’s action and Y be i’s choice. We can write the covariance of the parent

and child’s choices as

Cov = Pr[Z = Y = 1]− Pr[Z = 1] Pr[Y = 1].

We write this as

Cov =

(
n−1∑
k=0

Pr[Z = 1|X = k] Pr[X = k|Y = 1] Pr[Y = 1]

)
− Pr[Z = 1] Pr[Y = 1].

24The fact that µ∗ (· | Eti1) strictly dominates µ∗ (· | Eti0) only requires that p1 ≥ p0, as we already have a
strict inequality for the probabilities of the increasing set {(1, 0) , (11)}:

1 = µ∗
(
{(1, 0) , (11)} | Eti1

)
> µ∗

(
{(1, 0) , (11)} | Eti0

)
= 0

Lemma 2, instead, requires p1 > p0 to establish the strict dominance conclusion. To establish strict
inequality above, we need to check that a strict inequality holds for at least one increasing set contained in
Eτi1, for all t′ < τ ≤ t+ 1 and for all i = 1, 2. Take for instance Eτ21 = {(0, 1), (1, 1)} where agent 2 takes the
high action. Let s = (0, 1) and s′ = (1, 1). Then, the argument used in the proof of Lemma 2 for these two
adjacent states s′ ≥ s shows, precisely, that strict domination holds across the two probability distributions
conditional on them.
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By definition, Pr[Y = 1] = p > 0. It then follows that

Cov = p

(
n−1∑
k=0

Pr[Z = 1|X = k] Pr[X = k|Y = 1]

)
− pPr[Z = 1]

or

Cov = p

n−1∑
k=0

Pr[Z = 1|X = k] (Pr[X = k|Y = 1]− Pr[X = k]) . (16)

Note that Pr[Z = 1, X = k] (the probability that the parent is high-action and there are

k others high-actions) is equal to µk+1(k + 1)/n. Note also that

Pr[X = k|Y = 1] = Pr[Y = 1|X = k]
Pr[X = k]

Pr[Y = 1]
= pk

Pr[X = k]

p
.

Then, using (15), we rewrite (16) as

Cov = p
n−1∑
k=0

µk+1
k+1
n

µk
n−k
n

+ µk+1
k+1
n

(
Pr[X = k]

pk
p
− Pr[X = k]

)
. (17)

Using the fact that µk+1 = akµk as established in the proof Proposition 1, we rewrite

(16) as

Cov = p
n−1∑
k=0

ak
k+1
n

n−k
n

+ ak
k+1
n

(
Pr[X = k]

pk
p
− Pr[X = k]

)
,

which, using the expression for ak in (5) gives:

Cov =
n−1∑
k=0

pk Pr[X = k] (pk − p) . (18)

Normalizing, this implies that

Cor(p) =
n−1∑
k=0

pk
p

Pr[X = k]

(
pk − p
1− p

)
. (19)

We rewrite this as

Cor(p) =

∑n−1
k=0 pkµ

−i
k (pk − p)

p(1− p)
.

Thus,

Cor(p) =
V ar(p)

p(1− p)
,

and the Theorem follows directly.

Proof of Proposition 4: We write

Cost(p) =
C

2p

n−1∑
k=0

µ−ik pkpk, (20)
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which, by (19) we rewrite as

Cost(p) =
C

2
((1− p)Cor(p) + p) .

The result then follows from Theorem 1 and the fact that p′ = p.

Proof of Proposition 5: From the proof of Theorem 1, we can write

V ar(p) = p(1− p)Cor(p) =
n−1∑
k=0

Pr[X = k]pk (pk − p) .

Given the threshold model, we can rewrite this as

V ar(p) = pL (pL − p)
τ−1∑
k=0

Pr[X = k] + pH (pH − p)
n−1∑
k=τ

Pr[X = k]. (21)

Note that

p = pL

τ−1∑
k=0

Pr[X = k] + pH

n−1∑
k=τ

Pr[X = k]. (22)

Then, using (22) we rewrite (21) as

V ar(p) = p2
L

τ−1∑
k=0

Pr[X = k] + p2
H

n−1∑
k=τ

Pr[X = k]− p2 (23)

Consider a differential change (dpH , dpL) in (pH , pL) such that dpH > 0, dpL < 0, and

(pH + dpH , pL + dpL) is a p-preserving spread of (pH , pL), that is, dp = 0. In what follows,

we use the following notation:

σβα =

β∑
k=α

Pr[X = k], for α ≤ β.

Taking a differential of (23) under the constraint dp = 0 gives

dV ar(p) = 2pLσ
τ−1
0 dpL + 2pHσ

n−1
τ dpH + p2

Ldσ
τ−1
0 + p2

Hdσ
n−1
τ . (24)

Using (22), the condition dp = 0 becomes

στ−1
0 dpL + σn−1

τ dpH + pLdσ
τ−1
0 + pHdσ

n−1
τ = 0. (25)

Multiplying (25) by pH + pL and substracting it from (24) gives

dV ar(p) = (pH − pL)
[
σn−1
τ dpH − στ−1

0 dpL
]
− pLpH

[
dστ−1

0 + dσn−1
τ

]
. (26)

Note that στ−1
0 + σn−1

τ = 1 (this is a sum of probabilities), and thus dστ−1
0 + dσn−1

τ = 0. We

thus conclude that

dV ar(p) = (pH − pL)
[
σn−1
τ dpH − στ−1

0 dpL
]
> 0, when pH > pL.
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