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lie in the deep uncovered set.
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1 Introduction

The formal theory of elections, originated by Hotelling (1929), Downs (1957),
and Black (1958), has developed despite a well-known and unresolved foun-
dational issue arising in the basic model: the existence of equilibrium in mul-
tidimensional policy spaces. Plott (1967) showed that a multidimensional
model typically does not admit a pure strategy equilibrium, and in most
cases it has remained unclear even whether mixed strategy equilibria exist.
As a consequence, much research has either been limited to unidimensional
policy spaces, or has been confined to special variations of the basic model
that circumvent the existence problems; such as probabilistic voting, policy-
motivated candidates, citizen-candidates, candidates who wish to maximize
vote share from a heterogeneous continuum of voters, and repeated elections.

Clearly multidimensional policy spaces are fundamental to the under-
standing of political interaction, and it is essential to be able to model them.
Moreover, it would be especially useful to incorporate multidimensional poli-
cies in classical models. The hurdle that such models face, and which makes
the existence questions so hard to answer, is that such models exhibit discon-
tinuities that could potentially preclude the existence of equilibrium (even
when mixed strategies are allowed). To see this, consider the most basic
Downsian model of competition between two candidates in a multidimen-
sional space. Kach candidate simultaneously chooses a policy from some
multi-dimensional space. Voters then vote for their most preferred candi-
date. A candidate receives a payoff of 1 if her policy position is preferred
by a majority of voters to the opposing candidate’s position and a payoff of
—1 if this situation is reversed (and a payoff of 0 otherwise). There are dis-
continuities in candidates’ payoffs, since when they choose the same policies
(or, more generally, any time they choose policies that render some voters
indifferent), the voter behavior changes from preferring one of the candidates
outright and voting for that candidate, to being indifferent. Thus, a candi-
date can have a majority of voters all along a sequence of policy choices, and
not have a majority in the limit; or vice versa. This means that standard
results on existence of mixed strategy equilibria do not apply. This problem
is not only endemic to Downsian models, but to a very wide variety of other
models as well.

In this paper, we establish existence of equilibria in a general class of



electoral games, including the Downsian model and others where such dis-
continuities are present. OQur starting point is the observation that the dis-
continuities of the classical Downsian game, as well as many other voting
games, arise from the implicitly fixed behavior of indifferent voters. It is
generally assumed that a voter who is indifferent between two candidates
flips a fair coin. The central observation that allows us to overcome these
difficulties is that by including the voters as players in the game, so that an
indifferent voter might flip a biased coin or simply vote for one candidate or
the other when indifferent, existence can be established in a very wide class
of games, including all of the classical models.

Our proof technique builds on an insightful theorem by Simon and Zame
(1990) which shows that existence of equilibrium in games with discontinu-
ities can be overcome if outcomes at discontinuity points can be properly
selected. We show that by including voters as players in the game, the neces-
sary selections of election outcomes can in fact be rationalized by equilibrium
play on the part of voters.!

Our results apply to a general electoral model, which includes complete
information as a special case, but also allows voters to have uncertain pref-
erences. Candidates can care about policies, or winning, or vote-shares, or
elaborate combinations of these outcomes. Similarly, voters can care about
who wins, or which policy is chosen, or some combination of the two. The
candidates strategies are general sets of campaign strategies, which we inter-
pret as campaign platforms. The strategy sets are sufficiently general that
a strategy could be a plan for running a campaign in the reduced form of
a highly complex election: we are not bound by the traditional assumption
of simultaneous chosen policy platforms. We eliminate dominated voting
strategies, but in contrast to the classical approach, we model the votes of
indifferent voters as endogenous. We prove the existence of equilibria in

'Tt remains an open question to what extent equilibria exist when voter behavior is
fixed (to say flipping fair coins when indifferent). Theorems on equilibrium existence in
discontinuous games have proved difficult to apply because they employ complex sufficient
conditions, e.g., Dasgupta and Maskin’s (1986) weak upper semicontinuity or, more gen-
erally, Reny’s (1999) better reply security. Duggan (2005) provides a sufficient condition
for better reply security and verifies that it holds in the classical Downsian model with
three voters, but his approach does not extend to multiple voters. Another approach from
the auctions literature (e.g., Lebrun (2007) and Jackson and Swinkels (2005)) that might
be fruitful is to prove existence with endogenous outcomes, and then show that ties never
occur and that changing voter behavior at ties would not matter.



the multicandidate model — indeed, we establish existence of Duvergerian
equilibria in which only two candidates receive votes.

Beyond the results on existence, we also show that candidates only choose
strategies that lie in a refinement of the top cycle of the majority voting rela-
tion. In particular, we show that the support of winning candidates’ strate-
gies lie in a variation of the uncovered set. This shows that results found to
hold in finite policy settings have proper analogs in continuous multidimen-
sional policy settings. In particular, Laffond, Laslier, and Le Breton (1993)
showed that if policies must be chosen from a finite set and there are no
majority indifferences, then the mixed strategy equilibrium of a Downsian
game is unique and that the support of the equilibrium strategy lies in the
uncovered set.? McKelvey (1986), in the context of the multidimensional
spatial model, conjectured that the support of equilibrium mixed strategies
- if any exist — must lie in the uncovered set, and this was confirmed by
Banks, Duggan, and Le Breton (2002). These results leave open the issue of
existence in the classical model, and also whether the equilibrium strategies
must have this property outside of a particular spatial model. Here we prove
existence and then also show that the support of equilibrium strategies is in
the uncovered set in a general class of elections.

The paper proceeds as follows. Section 2 presents an preview of the
general electoral model and the results of the paper. Section 3 provides a full
description of the setting and the details omitted in the overview. Section
4 contains equilibrium existence results that “black box” the behavior of
voters as a correspondence satisfying several technical properties. In Section
5, we apply these results to establish existence in the multicandidate complete
information model. In Section 6, we develop the deep uncovered set and show
that this set bounds the equilibrium outcomes of two-candidate Downsian
elections. Section 7 applies our results on endogenous voting equilibria to a
general probabilistic voting model. Our final section discusses an extension
to a world where public randomization is possible. The proofs appear in
an appendix, and another appendix contains an example illustrating the
tightness of our bounds on equilibrium strategies.

2In the presence of majority indifferences, the literature assumed that indifferent voters
randomize over candidates with equal probabilities. Assuming a finite policy space, Dutta
and Laslier (1999) show that supports of equilibrium strategies still lie in the uncovered
set.



2 A Preview of the Model and Results

In this section, we provide statements of special cases of our electoral model
and results. This section lacks the full generality of the model and results
that follow in later sections, but allows for a simpler presentation that covers
many of the standard cases from the literature and should be more easily
accessed by the non-specialist.

We consider an election among a set of candidates € = {A, B,..., M} to
be decided by an electorate of voters V = {1,2,...,n} using plurality rule.

The candidates C' € € simultaneously choose policy positions, z¢, in a
compact subset X of IR’. Let T = (za,...,zm) denote a profile of policy
platforms for the candidates, and let X denote the set of platform profiles.

Voters observe the policy positions and then cast votes. Voter ¢, having
observed the candidates’ platforms, casts a ballot b; in € for one of the
candidates, with no abstention allowed. Let b = (by,...,b,) € C" denote
a profile of ballots, i.e., an election return which indicates which candidate
each voter voted for. The winner is the candidate with the greatest number
of votes, with ties broken by an even lottery among the tied candidates. Let

W(B):{C'G(f : #{i:bi:C’}Z#{i:bi:C"}foraHC"EG}

denote the set of potential winners (before any ties are broken), for a given
election return (b.

Candidate C has a continuous utility function uc : €* x X — IR, where
the payoff to candidate C from an outcome (b, Z) is uc (b, T). For our existence
results, we impose a restriction on the ways in which u¢ is allowed to depend
on election returns. Because that restriction is mainly technical, here we
will simply note that it is satisfied in the following three special cases, all
prominent in the literature, and refer the interested reader to later sections
for the fuller model.

e win-motivation:

=

)

#W (b)

_ L if C e W(
uc(b®) = { 0 else



e vote-motivation:
uc(b,7) = #{i : b;=C}.

e policy-motivation:

- _ o UC(ZL’C/)
uc(b,T) = Z, —#W(I_))'

C'eW (B)

Voter ¢ with a continuous utility function u;: € x X — IR, and the payoff
to voter i from outcome (b, T) is

7 i(C' xer)
Crew (b) #W(0)

An important special case is where voters care only about policy outcomes:
we say that voter i is policy-oriented if u;(C, x) does not depend on C.

We allow candidates and voters to use mixed strategies in equilibrium,
as in many applications this is actually necessary for equilibrium existence.
Some of our formal results focus on electoral equilibria in which candidate
mixed strategies are symmetric, i.e., the candidates mix over policy platforms
with the same probability distribution. We consider voting equilibria in
which no voter puts positive probability on a “dominated” strategy. For
technical reasons (discussed in the next section), our refinement is weaker
than the usual notion of undominated strategies: we say a ballot b; for voter
i is undominated™ if b; is not the strictly worst candidate for voter i. Our
definition of undominated strategies coincides with the usual one when there
are only two candidates.

We say that an electoral equilibrium is Duwvergerian if there are two can-
didates such that, for all profiles of platforms, only those two candidates
receive votes. That is, there are only two “viable” candidates. In this case,
we say a voting strategy for i is symmetric if i’s vote between the two viable
candidates depends not on the name of the candidate, but only on the candi-
dates’ platforms. So, for example, if 7 votes for candidate A with probability
1/3 and candidate B with probability 2/3, and then we consider a platform
profile in which the candidates’ platforms are interchanged, then the voter
must now vote for A with probability 2/3 and for B with probability 1/3.
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Our first result establishes the general existence of subgame perfect equi-
libria in the electoral model. (Theorems are numbered as they are presented
in later sections.) The key step in the proof of Theorem 3 is to convert the
electoral game to a game with an “endogenous sharing rule,” allowing us to
apply results of Simon and Zame (1990) and Jackson, Simon, Swinkels, and
Zame (2002) to specify the behavior of indifferent voters appropriately.

THEOREM 3 Consider the multi-candidate complete information electoral model,
where there are at least four voters or there are only two candidates. There
exists a subgame perfect equilibrium in undominated™ voting strategies. More-
over, there exists such an equilibrium that s Duvergerian, in which two ar-
bitrary candidates A and B receive votes. If all voters are policy-oriented
and candidates A and B are both win-motivated or both vote-motivated, then
there exists such an equilibrium that is symmetric on {A, B}.

We next give a partial characterization of equilibrium policy platforms
in the Downsian model, where we assume candidates seek to maximize their
probabilities of winning. We show that policy platforms lie in the deep
uncovered set, a centrally located region of the policy space that has received
considerable attention in the political science literature. It is one of many
possible extensions of the uncovered set to settings where ties are possible in
the majority voting relationship.

The deep uncovered set consists of the policies x such that, for every other
policy y, either x is weakly majority-preferred to y or there is a policy z such
that x is weakly majority-preferred to z and z is weakly majority-preferred
to y.

THEOREM 5 In the two-candidate Downsian model (where candidates are
win motiwated and voters are policy oriented), in every subgame perfect equi-
librium that has symmetric and undominated® voting strategies, the support
of each candidate’s strateqy lies in the deep uncovered set.

Theorem 4 tells us that every policy in the support of an equilibrium
mixed strategy is weakly majority-preferred to every other policy in at most
two steps.



We also provide an existence result for a general model of probabilistic
voting in two-candidate elections. Each voter’s policy preferences now de-
pend on a type ;, unobserved by the candidates, and we extend voter utilities
to include this as an argument, as in u;(C,z,t;). We do not restrict voter
preferences, thereby capturing two special cases prominent in the electoral
modelling literature.

e stochastic candidate bias:

w(Coxt;) = wx)+tic.

e stochastic policy preference:

Although most applications of the probabilistic voting model impose some
structure on the distribution of voter types (requiring, for instance, that
voters are indifferent with probability 0), we do not restrict the distribution
of voter types in any way.

THEOREM 6 Consider the multi-candidate probabilistic voting model, where
there are at least four voters or there are only two candidates. There exists
a perfect Bayesian equilibrium in undominated® voting strategies. Moreover,
there exists such an equilibrium that is Duvergerian, in which two arbitrary
candidates A and B receive votes. If all voters are policy-oriented and can-
didates A and B are both win-motivated or both vote-motivated, then there
exists such an equilibrium that is symmetric on {A, B}.

Note that the complete information model is a special case of the proba-
bilistic voting model.

Thus, we prove existence of mixed strategy equilibria the canonical models
of elections, and we give a partial characterization in terms of the uncovered
set for the basic two-candidate Downsian model. In the sequel, we also give
convergence results as we vary voter preferences and (in the probabilistic
voting model) the distribution of voter types.



3 A General Model of Elections

We now present the full model.

3.1 Candidates and Policies

Fach candidate C' € € chooses a policy position, z¢, in a second countable,
locally compact Hausdorff space X¢. Let T = (24, ...,x)) denote a profile
of policy platforms for the candidates, and let X = [Iocc Xc denote the set
of platform profiles. Let X = | J X denote the space of all possible policies.
A mixed platform for a candidate C' € € is a Borel probability measure £
on X, with the product measure £ = £, X - - - X £,, representing a profile of
mixed platforms for the candidates.

3.2 Voting Correspondences

We explicitly model voters’ behavior in subsequent sections, but here we
analyze the game among just among the candidates, black-boxing voter
behavior. For now, we capture voter behavior through a correspondence,
U: XM = A(C"), from platform profiles to probability distributions over
election returns. The correspondence ¥ represents possible (equilibrium)
voter behavior contingent on the candidates’ positions. A measurable selec-
tion ¢ from ¥ determines a well-defined (but generally discontinuous) game
among the candidates.

3.3 Election Returns and Statistics

We wish to admit applications where candidates have preferences over more
than simply whether they win and/or which policy is enacted. For instance,
we wish to allow for applications where candidates care about their vote
totals or vote shares. In order to define candidate payoffs in such a general
manner, we let candidate preferences over election returns be dependent on
a statistic o: C" — S, where S is a nonempty, compact, and convex subset
of a finite-dimensional Euclidean space.



We impose two conditions on this statistic, both of which only apply to

. . . . —A
situations where at most two candidates receive votes. Let B~ denote the
set of election returns in which only candidates A and B receive votes; i.e.,

BY = {beer| forallieV, b e{A B} }

The first condition that we impose on the statistic is that whenever bal-
lots are restricted to any pair of candidates, the range of statistic is one-

dimensional ({o(b)|b € FAB} is one-dimensional for any A and B).

The second condition that we impose on the statistic is that whenever
ballots are restricted to any pair of candidates, the statistic is nondecreasing
in the set of votes cast for one of the candidates (and hence nonincreasing in
the votes cast for the other). Given two candidates A and B and two election
returns b, = C", write b >4 b if everyone who voted for A in b also votes
for A in 5/, i.e, for all i € V, b, = A implies b; = A. Then the monotonicity
condition is for all A, B € C, either

—/

for all b,b € FAB, b>,0 implies a(b) > a(b),

or

- -/

for all b,b € EAB, b>,0b implies a(b) <o(b).

3.4 Candidate Preferences

Each candidate C has a utility function uc : S x X — IR, which is jointly
continuous. Moreover, uc(s, z) is affine in s. The payoff to candidate C' from
an outcome (b, Z) is uc(o(b),T). Let u denote a profile of utility functions,
one for each candidate. An electoral game is then a triple (X, ¥, u) satisfying
the maintained assumptions stated above.

The main approaches to modeling candidates in the literature all satisfy
our assumptions. Some prominent special cases of the model are:

e win-motivation: let S be the unit simplex in IRM, let

1 . 7
vol®) = { i HCEeW(D)

0 else,



and define uc(s,T) = sc. That is, candidate C’s payoff is just the
candidate’s probability of winning.

e policy-motivation: let S and o be as above, but let

uc(s, ) = Zscfbc(xc')7

C’'eC

where uc: X — IR is continuous. That is, the candidate’s payoff is
the expected utility generated by a utility function defined over policy
outcomes.

e vote-motivation: let S be the cube [0,n] in IRY, let
A A A o
oc(b) = #{i:b;=C} Ig}ié#{l 1b;=C"},

and define uc(s,T) = sc. That is, the candidate’s payoff is just the
number of votes received in the election.?

To verify the dimensionality assumption for win-motivated and policy-
motivated candidates, just note that if two candidates A and B receive all
of the votes in an election return b, then o4(b) + op(b) = 1; and under

vote-motivation, o 4(b) + op(b) = n. Our monotonicity assumption is clearly
satisfied by all of the above specifications.

Note that the distinction between win-motivation and vote-motivation
is often overlooked, as these two objectives lead to the same pure strategy
equilibria. When we consider equilibria in mixed strategies, however, the dis-
tinction becomes potentially significant. The same observation holds when
voting behavior is probabilistic, and the distinction between the two objec-
tives is, accordingly, well-known in that literature.

We extend payoffs to lotteries over outcomes in the standard expected
utility manner, thereby inducing preferences over strategy profiles for candi-
dates. Given a measurable selection 1 of voting behavior, preferences of a

3Tt could also be that the candidate cares about vote share, or vote differences. For

instance, the condition is met if oc(b) = #{i : b; = C} — maxcrxc #{i : b = C'}, or

oc(b) =#{i: b, = C}/maxcrzc #{i: b; = C'}, or o¢(b) = #{i : b; = C}/n, etc.
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candidate C' over platform profiles are represented by the measurable payoff
function uz: X — IR, defined by

W@ = Y uclo®),7) 6@ @)

becnr

Given the selection 1, the expected payoff of candidate C' from the profile &
of mixed platforms is then

ULE) = / ul(T) £(d7).

3.5 Equilibrium

An endogenous voting equilibrium is a measurable selection ¢ from ¥, and a
profile of mixed strategies &, such that ¢ forms a Nash equilibrium under the
payoff functions Ué{’.

To define symmetric equilibrium, we use the following notational conven-
tions. Given two candidates A and B and platform profile Z, let Z4% denote
the result of interchanging the two candidates’ platforms, leaving the other
candidates unchanged, i.e.,

xéB = rqg IfC=8B
zco else.

Similarly, let 5" denote the result of interchanging ballots for the two can-
didates, i.e., for all 1 € 'V,

B ifph=A
b = ¢ A ifb,=B
b; else.

If X¢ = X for all candidates C, then we say the selection v is symmetric
on ¢ C Cif

e for all 7 € X, ¢/(Z) has support in €, i.e., 1(7)(b) > 0 implies that for
alli eV, b, € €,

11



e 1) is symmetric in the positions of candidates in €', i.e., for all A, B € ¢/,

all 7 € X, and all b € €7, we have (7)) = ¥(@F)B).

We say ¢ is symmetric on €' if for all A, B € €', £, = 5. Finally, we
say an endogenous voting equilibrium (&, ) is symmetric on €' if £ and v
are both symmetric on €. That is, all candidates in €’ use the same mixed
strategy, only those candidates receive votes, and voters’ ballots depend on
the platforms of those candidates in a neutral way. When €' = €, we use the
above terminology without reference to the subset €'.

The electoral game (X, ¥, u) is symmetric on €' C C if there is a measur-
able selection 1 that is symmetric on € and for all A,B € € and all 7 € X,
we have u%(Z) = u%(z*P). That is, the game is symmetric on a subset of
candidates if there is a selection that is symmetric on that subset and, given

that selection, the payoffs of those candidates are symmetric.

4 Endogenous Voting Equilibria

We now present results on existence and continuity of endogenous voting
equilibria that only rely on the structure provided above. In the following
sections, we then use these results to derive further results for electoral models
where voters are players.

Our first result establishes the existence of an endogenous voting equilib-
rium.

Given a distribution v € A(C"), let c¥: X = S denote the correspon-

dence defined by
{/a(z)y(dz) v e \I/(f)} .

That is, oW (Z) consists of the mean of the statistic generated by all possible
voting behavior at platform vector .

THEOREM 1 Suppose that X is a compact metric space and that oW is up-
per hemi-continuous with nonempty, compact, and convex values. Then there

12



exists a Borel measurable selection i from U and a profile & of mized strate-
gies, such that (£,1) forms an endogenous voting equilibrium. Moreover, if
the electoral game is symmetric on some subset of candidates C', then there
exists an endogenous voting equilibrium (§,1) that is symmetric on C'.

The theorem follows from a direct application of theorems by Simon and
Zame (1990) to establish existence, and by Jackson, Simon, Swinkels and
Zame (2002) to obtain existence of symmetric equilibria. The proof (which
appears in Appendix A) consists of verifying that the conditions required by
those theorems are satisfied in our setting.

We remark that one can choose the strategies of the candidates who are
outside of the support of v arbitrarily, and so the candidates’ strategies can
be selected to be fully symmetric, even when v has support only on some
subset of candidates.

Another useful result is a convergence result across electoral games. This
is useful for working with finite approximations, as well as deriving results
about existence of perfect equilibrium, among other things. Fix the set of
candidates. We say that a sequence of electoral games (YT, U u") converges

to (70, WO ) if:

e for each C' € €, each X}, and X are compact metric spaces that are
subsets of some common compact metric space X¢, and such that X/,
converges to X2 in the Hausdorff metric,

e the graph of ¥" converges to the graph of ¥° in the Hausdorff metric,

e for every ¢ > 0 there exists § > 0 and r such that, for all v’ > r, all
C,C" € C and all 7 € X' and 7° € X such that d(z",7°) < 4, we
have |[uf,(C', ") — ud(C',7°)| < e.

Our next result shows that limits of equilibria corresponding to such a
sequence of electoral games are indeed equilibria of the limiting game. The
result follows directly from Theorem 2 in Jackson, Simon, Swinkels, and Zame
(2002) (noting from the proof of Theorem 1 that the necessary conditions to
apply their Theorem 2 are satisfied).

13



THEOREM 2 Consider a sequence of electoral games (YT, U” u") that con-

verge to (YO,WO,UO), and a corresponding sequence of endogenous voting
equilibria (£7,4"). Then there exist an endogenous voting equilibrium (€°,1)°)
of (X%, W0 %) and a subsequence (" ,4") such that

o &6 — £ weak®,
o ¢ = 0 weak*t and

e for each C € C, Ug’wrl ") — Ug’wo(é‘o)-

5 Equilibrium with Voters as Players

We now explicitly model voters as part of the game, and show that we can
still establish existence of equilibrium. As mentioned in the introduction,
the key to establishing this is to account for how voters vote when they are
indifferent, and noting that this may have to differ from the flip of a fair coin
in order to guarantee existence.

5.1 Voters’ Preferences and Strategies

Now let X be a compact metric space, and let each voter ¢ have a continuous
utility function u;: € x X — IR. The payoff to voter i from outcome (b, T) is

T — i(Cl7 SUC")
ui(b,T) = Z ti e,
cewp WO

Thus, voters care about who wins the election and/or what the policy out-
come is. They voters do not care directly for the specific ballot they cast
except to the extent that it determines the outcome of the election.

49p¢ denotes the set function defined by

GeY) = /Y B(EE(dE),

which measures the ballots cast when candidates use platform profiles in Y.

14



An important special case of the model is that in which voters are policy-
oriented, i.e., for each i, u;(C,x) is independent of the first argument and
depends only on the policy.

A strategy for voter i is a behavioral strategy f3,, where (,(-|Z) is a proba-
bility distribution on €, expressing the probability that voter ¢ votes for each
candidate given that the candidates have chosen policy positions z. Viewing
B,;(-|T) as a vector in the simplex, it is required to be Borel measurable as
a function of Z. Let the product measure S(-|Z) = [,(-|Z) x --- x 5,(-|7)
represent a list of behavioral strategies for the voters, and let ug () denote
the expected payoff to candidate C' when the candidates take positions 7 and
the voters employ strategies . That is,

wt@ = Y uo(a(0),)B0).

beCn

Let Ug(f ) denote the expected payoff to candidate C' when voting behavior
is given by 8 and candidates use

the mixed platforms £&. That is,
viw) = [ui@ea)

We seek a profile (£, 8) of candidate and voter strategies that form a subgame
equilibrium of the electoral game, after suitable refinements are imposed.

5.2 Refining to Undominated® Strategies

A known drawback of Nash-based equilibrium concepts in voting games is
that a wide variety of (degenerate) outcomes can be supported by a Nash
equilibrium of the voting game by specifying voting strategies that make no
voters pivotal. A standard approach to dealing with this problem is to require
that voters not use dominated strategies. Say that [, is undominated if for all
platform profiles Z, 3,(C|Z) > 0 implies that either there exists C" # C' such
that u;(C', xcr) < u;(C,z¢) or for all C" we have u;(C, xc) = w;(C, zcr).

In discontinuous games with continuum action spaces, however, it is gen-
erally natural (in order to guarantee existence) only to require that voters

15



use strategies that are in the closure of the set of undominated strategies.’
We use a slightly weaker definition, saying that a behavioral strategy [, is
undominated™ if for all platforms 7, 5;(C|T) > 0 implies that either there
exists C" # C such that u;(C, z¢) > u;(C', 2¢).° Note that when there are
just two candidates, the undominated™ voting strategies coincide with the
voting strategies that are undominated in the conventional sense.

When voters are policy-oriented, it is natural to look for equilibria where
voters treat the set of viable candidates symmetrically. Given a subset €
of candidates, we say that § is symmetric on C"if for all A, B € €' and all
TeEX,

61(A| f) = /Bz(B| fAB)'

In particular, if there are just two viable candidates, say A and B, and
these candidates take the same policy position x, then all voters emplying
symmetric strategies would flip fair coins to decide their votes: f,(A|x,z) =

We now consider existence in the general multi-candidate model, allowing
for an arbitrary number of candidates, for arbitrary candidate motivations,
and for voters who care not just about policy but also for the particular
candidates elected. We establish existence of a subgame perfect equilib-
rium in undominated*® voting strategies. Moreover, we prove existence of an
equilibrium in which there are just two candidates who receives votes in all
subgames. Formally, we say (3 is Duvergerian if there are two candidates
A, B € € such that for all 7 € X and all voters 4, 3;({A, B}|T) = 1. When
voters are policy-oriented, we can find an equilibrium where voting strategies

°For instance, see Jackson and Swinkels (2005) and the discussion there.

6Undominated strategies are those where a voter only votes for a least preferred candi-
date in the case where the voter is totally indifferent. Here, undominated™ strategies have
a voter only voting for a least preferred candidate in the case where the voter is indifferent
between that candidate and at least one other. The idea here is that a vote v; is undomi-
nated* at T if there is some sequence ZF — z such that the vote v; is undominated for each
7*. Provided that preferences are such that whenever a voter finds some candidate pair
tied at a given policy profile there exists arbitrarily small perturbations in policies that
can lead the voter to prefer either candidate, and that either there are at least four voters
or there are just two candidates, then this notion of closure leads to our formal definition
of undominated* strategies. In order not to add such additional preference restrictions,
we simply define undominated* directly, rather than through the closure.
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are symmetric on those two candidates.”

THEOREM 3 Consider the multi-candidate complete information electoral model,
where there are at least four voters or there are only two candidates. There
exists a subgame perfect equilibrium in undominated voting strategies. More-
over, there exists such an equilibrium that is Duvergerian, in which two ar-
bitrary candidates A and B receive votes. If all voters are policy-oriented
and candidates A and B are both win-motivated or both vote-motivated, then
there exists such an equilibrium that is symmetric on {A, B}.

6 Downsian Elections and the Deep Uncov-
ered Set

In this section, we consider a special case of the multicandidate complete
information model. That special case, the Downsian model, is one where
candidates are win-motivated and voters are policy-oriented.

Theorem 3 directly implies the existence of a subgame perfect equilib-
rium in which only two candidates, say A and B, receive votes, candidate
strategies are symmetric, and voting strategies are symmetric on {A, B} and
undominated®. In such equilibria, the positions of candidates other than A
and B are immaterial and so, without loss of generality, we focus attention
on two-candidate elections. That is, in this section let € = {A, B}. Here
undominated and undominated* voting strategies coincide.

COROLLARY 1 In the two-candidate Downsian model, there exists a sym-
metric subgame perfect equilibrium in undominated voting strategies.

6.1 The Deep Uncovered Set

While existence of equilibrium follows from Theorem 3, we have not yet
addressed the characterization of equilibrium platforms. We do so now by

"Note that this is not the same as saying that voters always flip a coin when they are
indifferent. It only requires that they break ties in symmetric ways more generally (e.g.,
if they are indifferent between x and y and vote for A when A proposes x and B proposes
Y, then they do the reverse when the candidates’ platforms are reversed).
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demonstrating that in the equilibrium of Corollary 1, the candidates adopt
platforms in the “uncovered set” (a prominent choice set in the extensive
literature on voting rules) with probability one.

In settings with a continuum of outcomes, there are various definitions
of the uncovered set that differ with respect to treatments of ties under the
majority relation. So, we need to be explicit in defining the set that we
consider.

Define strict and weak majority preferences, respectively, as follows: for
all z,y € X,

vPy & |{i]u(z) > wly)}| >

NI S

The relations P and R are dual, in the sense that xPy if and only if not
yRz (and zRy if and only if not yPx). Clearly, P is asymmetric and R is
complete, and our continuity assumption on u; implies that P is open and R
is closed. We use the standard notation,

P(x)={y€ X |yPr} and R(x)={ye X |yRa},

for the upper sections of these relations. As is customary, let x/y denote
majority indifference, where neither z Py nor y Pz (or equivalently, z Ry and
yRz).

We bound equilibrium policy positions by a weak version of the uncovered
set, derived as the maximal elements of a strong version of the usual covering
relation. Following Duggan (2006), we say that = deeply covers y, written
x DCy, if R(z) C P(y). That is,  deeply covers y if every alternative weakly
majority-preferred to z is strictly majority-preferred to y. Equivalently, x
deeply covers y if whenever y weakly defeats some alternative z, then x
strictly defeats z. Note that this implies that if x DC'y implies =Py, i.e.,
deep covering is a subrelation of P. Obviously, DC' is transitive. Moreover,
Duggan (2006) shows that the deep covering relation, DC, is open under our
maintained assumptions. The deep uncovered set is defined as the maximal
elements of the deep covering relation:

DC = {z € X | thereisnoy € X such that y DC x}.
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Assuming X is compact, the fact that DC' is transitive and open immediately
yields non-emptiness of the deep uncovered set, and in fact DC' is compact.
Note that the deep uncovered set is equivalently defined by the following
“two-step” principle:

re€DC <  forall y € X, there exists z € X such that xRz Ry.

Thus, a policy position = is in the deep uncovered set if and only if, for
every other position y, = is either weakly majority-preferred to y directly or
indirectly, via some other alternative.

The next theorem shows that, given any equilibrium in which voters use
symmetric, undominated strategies, the candidates locate in the deep uncov-
ered set with probability one. Note that the result does not assume candidate
strategies are symmetric, so the result holds even for non-symmetric equilib-
ria.

THEOREM 4 In the two-candidate Downsian model, let (£, 3) be a subgame
perfect equilibrium in symmetric, undominated voting strategies. Then the

supports of both candidates’ strategies lie in the deep uncovered set; that is,
£4(DC) =ER(DO) = 1.

Although Theorem 4 applies to equilibria in which candidates may use
non-symmetric strategies, the focus on equilibria where voters are using sym-
metric strategies is needed for the result. For instance, if voters always fa-
vored one candidate in the case of ties, it is easy to construct examples where
that candidate wins and the other candidate chooses arbitrary policies. In
Appendix B, we present a (finite) example showing that if voters favor one
candidate over the other, then there exist equilibria in which one candidate
locates outside the weak uncovered and that candidate wins with positive
probability.

7 Probabilistic Voting

We now address another prominent model from the literature, namely where
voters’ preferences are unknown to the candidates. The candidates have be-
liefs about voter preferences, so that given any pair of campaign platforms,
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any voter’s behavior is a random variable from the perspective of the can-
didates. Here we examine a general setting that captures models of “prob-
abilistic voting” from the political science literature as special cases. We
return to the general case in terms of candidate and voter preferences.

Define the probabilistic voting model as follows. The policy space, X, is
a compact metric space. For each voter i let T; be a space of types, with a
generic type for voter ¢ denoted ¢;. Let T' = xT; be the space of type profiles,
with generic element ¢t = (t1,...,t,). Welet (T, T, 1) be a probability space,
with each t € T representing a state of the world and p being a probability
measure.® Each voter ¢ has a utility function u;: € x X x T; — IR, where
u;(C, x,t;) is continuous in x and measurable in ¢;. Note that the voters’
policy preferences are completely determined by their types, so that this is
a setting of “private values,” in the sense that each voter knows his or her
preference when voting. Neverthless, the general form of the probability
measure f allows the model to handle arbitrary correlation structures in
voters preferences, and so to admit cases where there could be substantial

commonality in voters’ preferences.

The payoff to voter i from outcome (b, T) is

wpm) = Y HCenl)
C'ew (b) #W(0)

We say that voter i is policy-oriented if u;(C,x,t;) is constant in its first
argument.

Two prominent electoral models that are captured are:

e stochastic candidate bias: T, = RM and

u (C, 2, t) = () +tic

e stochastic policy preference:

8 As is clear in the proof, it is not necessary that u be a probability measure - it could
be a more general measure.
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In the stochastic candidate bias model, the policy preferences of the voters
are fixed, t is a n x M matrix, and the only unknown component in a voter
¢’s utility is the term ¢; ¢ which embodies the incremental utility received by
the voter if candidate C' wins. It is commonly understood that this utility is
derived from fixed characteristics of the candidates, or alternatively that the
announced policies are not binding and by knowing which candidate is elected
the voters can predict the policy that will ensue. In the stochastic policy
preference model, a voter’s utility depends not on the particular candidate
who wins, but instead on that candidate’s announced policy position.

Let us emphasize that our model is more general that the usual one,
along a number of dimensions. For instance, in both of the cases above, it is
typically assumed that there is a zero probability that voters are indifferent
between the two candidates (provided the adopt distinct platforms in the
stochastic policy preference model). We impose no restriction on the distri-
bution of types. We also admit general forms of preferences for voters and
candidates, in terms of how they value policy-candidate combinations.

A strategy for voter i is a behavioral strategy 3;: X x T; — [0, 1], where
B;(xa,xp,t;) represents the probability that voter i votes for candidate A
given policy platforms x4 and xp and type ;. As usual, we require that [, is
measurable. We consider perfect Bayesian equilibrium of the electoral game
in which voters use undominated* voting strategies.’

THEOREM 5 Consider the multi-candidate probabilistic voting model, where
there are at least four voters or there are only two candidates. There exists
a perfect Bayesian equilibrium in undominated® voting strategies. Moreover,
there exists such an equilibrium that is Duvergerian, in which two arbitrary
candidates A and B receive votes. If all voters are policy-oriented and can-
didates A and B are both win-motivated or both vote-motivated, then there
exists such an equilibrium that is symmetric on {A, B}.

If candidates are win-motivated or office-motivated, and if the probabil-
ity of indifference between the candidates when they adopt distinct positions

9Note that because candidates are uninformed at the time that they adopt platforms,
and because voters know their own preferences and thus have well-defined undominated*
voting strategies (under the same definition as with complete information), the updating
of beliefs does not play a role in the equilibrium analysis. Hence it is inconsequential
whether we examine perfect Bayesian equilibrium or some stronger refinement.

21



is zero, then it can be shown that discontinuities in candidate payoffs are
restricted to the diagonal. Thus, for an interesting subclass of models, dis-
continuities in payoffs take a very restricted form. In fact, candidate payofts
are fully continuous in the stochastic candidate bias model as long as voter
types are continuously distributed. The aspect of Theorem 5 that admits
discontinuities and requires the proof supplied here is that the distribution
of voter preferences is arbitrary. This allows them to be indifferent in terms
of how they vote, or to allow for correlation in their types.

Note also that the endogenous voting equilibrium approach can still be
fruitful, even in the case where voters are (almost) never indifferent. If one
considers limits of equilibria of probabilistic voting models as candidate un-
certainty regarding voter preferences goes to zero; the limiting equilibria are
themselves equilibria of the limiting complete information game. This can
be proven either using Theorem 2 or Theorem 2 of Jackson, Simon, Swinkels
and Zame (2002) (and noting that incentive compatibility is not an issue at
any tie-breaking point). Thus, this offers another proof for existence of equi-
librium in the two-candidate Downsian model: (i) examine a probabilistic
voting version of the model, (ii) consider a sequence where the uncertainty in
the stochastic candidate bias goes to zero, (iii) to select a corresponding se-
quence of equilibria in those models, and (iv) to take the limit of a convergent
subsequence.

8 Public Randomization and Voting

We close with an extension of our results.

The importance of Duvergeian equilibrium in our analysis deals with con-
vexity of the outcome correspondence. In particular, suppose that there are
several possible candidates who could be elected given their platforms. If
all voters are voting for just two candidates, then it must be that there are
some indifferent voters. By varying the probabilities that they vote for ei-
ther candidate, we can get any probability that one or the other wins. This
allows us to convexify the outcome correspondence, which is important in es-
tablishing existence. When there are more than two candidates who can win
in different equilibrium configurations of voters’ behavior, it is possible that
the outcome correspondence is not convex. This happens because voters are
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independently choosing their strategies, and full convexity over more than
two candidates can require some correlation in how voters behave. Thus,
to establish existence of equilibrium (in undominated strategies) where more
than two candidates get votes, we need to have some means of correlating
voters behavior. It is enough to have them observe a randomly generated
public signal.

The definition of equilibrium with a publicly observed signal is again
perfect Bayesian equilibrium.

THEOREM 6 In the general probabilistic voting model, there exists a per-
fect Bayesian equilibrium with public randomization in undominated® voting
strategies. Furthermore, if for all voters i, all distinct policies x and y, and
all candidates A and B, u({t € T | u;(A, x,t;) = u;(B,y,t;)}) = 0, then there
exists a perfect Bayesian equilibrium with public randomization in undomi-
nated voting strategies. If, in addition, for all voters i, all policies x € X,
and all candidates A, B € C, u({t € T | u;(A, x,t;) = wi(B,z,t;)}) =0, then
there exists a perfect Bayesian equilibrium in undominated voting strategies.

The proof is a straightforward extension of the proofs of Theorems 3 and 5,
and so we just discuss the critical step of showing convexity. Given the finite
set of candidates, the convex hull of the set of possible equilibria of voters for
any given policy choices of the candidates is defined by a finite set (say with
cardinality K') of extreme points, with corresponding equilibria 4!, ..., y%. A
convex combination with weights (a?, ..., o) of these is obtained by having
K different signals, each generated with these corresponding progabilities.
Voters then play the equilibrium corresponding to the observed signal. Note
that here since we are not starting with two a priori specified candidates A
and B, we can start with equilibria in the closure of the set of undominated
strategies. If types are almost never indifferent, then this equilibrium can be
found so that voters play dominated strategies with probability zero.

Three features of Theorem 6 are worth noting. First, the general prob-
abilistic voting model allows for a degenerate probability measure u, and it
therefore encompasses the multicandidate model with “deterministic” voting.
Second, when the probability that voters are indifferent between distinct al-
ternatives is zero, which precludes the deterministic model, we find equilibria
in which voters eliminate undominated strategies in the standard sense. This
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is because subgames in which the undominated and undominated™ strategies
differ are probability zero from the perspective of candidates, allowing us
to “patch up” our selection from equilibria in voting subgames. Third, our
strongest assumption is satisfied in the stochastic candidate bias model when
types are continuously distributed, but it is not satisfied in the stochastic pol-
icy preference model: there, all voters are indifferent between two candidates
who adopt the same policy platform. Candidate payoffs are continuous in
the candidate bias model when there are just two candidates, and we have
noted that equilibrium existence is not an issue in that case. But with three
or more candidates, it is not generally possible to take a continuous selection
from equilibria in voting subgames, so the result of Theorem 6 is non-trivial
even in that relatively tractable model.

9 Appendix A: Proofs

PROOF OF THEOREM 1: Let E”(c(b)) denote the integral [ o(b)v(db). The
first part of Theorem 1 follows upon verifying the conditions of the main

result in Simon and Zame (1990).'° We claim that the payoff correspondence
defined by

{(u%(@),...,u’(F)) | ¥ is a measurable section from ¥ }

is upper hemi-continuous with nonempty, compact, convex values. Non-
emptiness is clear. Now take a sequence {Z'} in X converging to 7 and a
sequence 1" of measurable selections from ¥ such that {ug (")} converges
for all C' € €. Since A(C") is compact, there is a subsequence of {¢"(Z")},
which we continue to index by r for simplicity, that converges to some dis-
tribution ¥ € A(C"). Since ¥ has closed graph, it follows that v € ¥(Z).
Letting ¢) be any measurable selection of ¥ such that (%) = v, we have
ul(T) = limul (T7) for all O € C, and (u4(Z),...,ul (T)) € U(T), estab-
lishing closed graph. To establish convex values, take any 7, any o € (0, 1),
and any measurable selections ¢ and ¢’ from ¥. Let v,/ € U(T) satisfy
v =1(T) and v = ¢'(T). For all C € €, linearity of uc in s implies

au%(f) + (1 - Oz)ug(f) = uc(aB”(a(b)) + (1 — a)E”l(a(B)),f).

10Simon and Zame (1990) work with a correspondence of utilities rather than outcomes.
Theorem 1 in Jackson, Simon, Swinkels and Zame (2002) works with outcome correspon-
dences and directly implies the first statement in Theorem 1.
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By the assumption that oW () is convex, we can choose 7 € VU(T) indepen-
dent of C' such that

E(0(B) = aB(o®)+ (1 - a)E” (o(3).

Let ¢ be a measurable selection of ¥ satisfying {ﬂ(f) = . Then

/

aul(@) + (1 - a)ul (@) = ul(@),

which establishes convex values, as required. The second part then follows
from Theorem 2 in Jackson, Simon, Swinkels, and Zame (2002, remark (ii)).

PrOOF OF THEOREM 3: Pick two candidates A and B from €. Consider a
restricted game where voters can only vote for one of these two candidates,
and we model only these two candidates’ strategies. We prove existence of an
equilibrium in this modified game. Note that if there are more candidates,
and at least four voters, then the following is a subgame perfect equilibrium
in undominated™® voting strategies of the original game: have voters follow the
strategies from the restricted game independent of the policies of the remain-
ing candidates, and have the remaining candidates play arbitrary strategies.
Note that the role of having at least four voters is that any deviation by a
single voter cannot result in the election of any other candidate. Thus, we
need only prove that there exists an equilibrium in the two candidate game.

Construct a voting correspondence V¥ as follows. Let W(z4,xp) consist of
all distributions v € A(C") such that for all voters i, there exists v, € [0, 1]
satisfying

(1) for all b € €,

(2) for alli eV,

v, = 1 ifui(Axs) > u(B,zp)
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Let v = (v4,..-,7,)- Here, we interpret -, as the probability that voter i
votes for candidate A as a function of the voter’s type, where we require the
voter to put probability zero on dominated votes. This then determines the
probability that any particular ballot vector is realized.

Clearly, U has nonempty values. We claim that, for all 7 € X, ¥(7)
is connected. Given v generated by v and v/ generated by ', let v be the
distribution generated by ay+ (1 —a)y’. Then the path swept out by v as «
varies over [0, 1] connects v and v/, establishing the claim. Note that £ (o(b))
is continuous in v, and therefore oW (), as the image of a connected set under
a continuous function, is connected. By our dimensionality assumption, the
range of E¥(o(b)) is one-dimensional, and it follows that oW¥(Z) is indeed

convex. Therefore, cU has convex values.

To verify that oW has closed graph, take a sequence (2%, 2%, s*) such that
(zk, 2% %) — (w4, 25, s) and, for all k, s¥ € oW(ah, 2%). By the latter, for
each k, there exists ¥ € U (2, 2%) such that s* = E*"(o(b)). Thus, for each
k, there exists v* satisfying (1) and (2) above with 2% and 2% in condition
(2). By compactness, there is a convergent subsequence of {7}, still indexed
by k for simplicity. Let v denote the limit of this subsequence, and let v be
defined from v as in condition (1), so that s = E”(o(b)). Then continuity of
u; ensures that condition (2) also holds, and therefore s € W(z 4, zp). Thus,

oV has closed graph.

By Theorem 1, there is an endogenous voting equilibrium (&, ), where
¥ is a selection from W. Define the behavioral strategy f; for voter i as
follows. For all x4, x5 € X, since ¢ selects from W, there exists v satisfying
(1) and (2) with v = ¢(x4,xp). Then let §,(x4,x5) = 7,), completing the
equilibrium construction and proving the first part of the theorem.

For the second part of the theorem, note that if voters are policy-oriented
and A and B are both win-motivated or both vote-motivated, then the elec-
toral game (X, ¥, u) is symmetric on {A, B}, and Theorem 1 yields an en-
dogenous voting equilibrium that is symmetric on {A, B}. We then use the
associated selection to define symmetric voting strategies, as required. i

We now turn to the proof of Theorem 4. First we present a useful lemma.
Our equilibrium analysis uses the following dominance relation on the can-
didates’ strategies. We say = stage dominates y, written x SD y, if, for every
symmetric, undominated (3, we have ui(m, z) > uﬁ(y, z) for all z € X, with
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strict inequality for at least one z € X (where the first entry in u/y(z, 2) is
A’s chosen policy). Note that, given undominated 3, x Py implies that a ma-
jority of voters must vote for the candidate, say A, with position x, implying
W’ (z,y) = 1 and u}(2,y) = —1 (noting that in the Downsian setting the
election is a zero sum game and assigning a value of 1 to winning the elec-
tion). The next result establishes a tight connection between deep covering

and stage dominance of the electoral model.

LEMMA 1 In the two-candidate Downsian model, x DCy implies x SDy.
Assuming n is odd, the converse holds as well.

PrOOF OF LEMMA 1: Assume x DC'y, and take any 2z € X. If Pz, then
ui(x, z) = 1, and the weak inequality in the definition of stage dominance is
fulfilled. If zRx, then, by deep covering, zPy. This implies uﬁ(y, z) = —1,
fulfilling the weak inequality in stage dominance. Finally, when 2z = x, we
have ui(m, z) = 0 by symmetry of g, and, by xPy, we have ui(y, z) = —1,
fulfilling the strict inequality in stage dominance. Therefore, z SDy. Now
assume n is odd and = SD y, and take any z € R(x). Suppose z ¢ P(y), i.e.,

yRz. Since n is odd, we have

{ilw(z) 2 w(@)} > 5 and  [{i | uy) = u2)}] > 5.

Therefore, there exists a symmetric, undominated 3 such that uﬁ (r,z)=—1
and u(y,z) = 1, a contradiction. Therefore, z € P(y), and we conclude
that © DC y. |

An immediate corollary, using the above observations on the deep uncov-
ered set, is that when n is odd the set of stage undominated policy positions
is non-empty and compact. When n is even, it need not be the case that
stage dominance implies deep covering: in this case, we may have x SD y yet
xlz and ylz for some z, if no voters are indifferent between x and z and
none indifferent between y and z — so majority indifference is the result of
an equal split among the voters, with all voters having strict preferences. In
this case, the latitude in specifying the behavior of indifferent voters does
not play a role, and no contradiction need arise.

Proof of Theorem 4: Let (é’ As é 5, 3) be a subgame perfect equilibrium in Sym-
metric, undominated voting strategies, and suppose that the support of £ 4 is
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not contained in DC'. Letting V' denote the set of positions that are deeply
covered, this means éA(V) >0. Let {4 =¢&5 = %A. Since the game between
the candidates induced by [ is symmetric and zero-sum, (£ 4, &z, 3) is a sub-
game perfect equilibrium in symmetric, undominated voting strategies. For
each y € V, there exists z € X such that z DC'y. And since the deep cover-
ing relation DC' is open, there exists an open set G, C X such that y € G,
and z DC G,. Giving V the relative topology, then {G, NV |y € V} is an
open cover of V. Since X is second countable, V' is as well, and it therefore
possesses the Lindelsf property: so there is a countable open subcover given
by, say, {Hy}. Since £4(V) > 0, it follows that & 4(Hj) > 0 for some k. Let
2, € X satisfy 2, DC Hy, and transform & 4 to &4 by “replacing” any policy
in Hy with z;. Specifically, define the mapping ¢: X — X as follows:

T else,

for all 7. Define ¢, = £, 0 ¢, where (4,00 ") (Y) = £4(¢71(Y)), for all
Borel measurable Y C X. Then

US(E, €5, 8)
- [h@ € x gam)

— [ wiélen).on) glan
= /H Huﬁ(gb(xA),fEB)S(df)
W (d(za), x5) E(T).
+/(X><X)\(Hk><Hk)) alotea) e

Note that z, = ¢(z4) DC Hy, for all 4 € Hy, so u(é(z4), z5) = 1 for all
rA,xp € Hy, which implies

/H . ui(ﬁb(l’A),xB)f(df) = (L (HER(H,) > 0.

In contrast, symmetry implies

/ (x4, 2p) E(dT) = 0.
HpxHy,
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From Lemma 1, we have 2z, = ¢(x4) SD Hy, for all x4 € Hy, which implies

W (B(ra), 2p) E(dT) > / (a2 E(dT).

/(XXX)\(HkXHk)) (X xX)\(Hgx Hy))

Combining these observations yields

U6 0) > / o (0, 5) €(d7)

HkXHk

+f w4, 25) ()
(XxX)\(HpxHy)
= US4, 5. B),

contradicting the assumption that (€ 4, &5, 8) is an equilibrium. I

PrROOF OF THEOREM 5: Just as in Theorem 3, we pick two candidates A
and B from €. Consider a restricted game where voters can only vote for one
of these two candidates, and we model only these two candidates’ strategies.
We prove existence of an equilibrium in this modified game. Note that if there
are more candidates, and at least four voters, then the following is a perfect
Bayesian equilibrium in undominated™® voting strategies of the original game:
have voters follow the strategies from the restricted game independent of the
policies of the remaining candidates, and have the remaining candidates play
arbitrary strategies. Note that the role of having at least four voters is that
any deviation by a single voter cannot result in the election of any other
candidate. Thus, we need only prove that there exists an equilibrium in the
two candidate game.

Construct a voting correspondence ¥ as follows. Let W(z4,xp) consist of
all distributions v € A(C™) such that for all voters i, there exists a measurable
mapping v,: T; — [0, 1] satisfying

(1) for all b € €,
v(b) = / ( H %(tz‘)) < H (1 —%(tz‘))> p(dt)
T i:b;=A i
(2) for all i € V and all t; € T;,

’)/Z(tl) =1 lfUZ(A,{L'A,tZ)>U1(B,$B,tz)
=0 lfU,Z<A,JIA,tz) <UZ‘(B7.TB,tZ‘).
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Let v = (v4,..-,7,)- Here, we interpret -, as the probability that voter i
votes for candidate A as a function of the voter’s type, where we require the
voter to put probability zero on dominated votes. This then determines the
probability that any particular ballot vector is realized.

Because u; is measurable, ¥ has nonempty values. We claim that, for
all 7 € X, ¥(7) is connected. Given v generated by v and 1/ generated by
7', let v* be the distribution generated by ay + (1 — «)y’. Then the path
swept out by v* as « varies over [0, 1] connects v and 1/, establishing the
claim. Note that E”(o(b)) is continuous in v, and therefore oW (Z), as the
image of a connected set under a continuous function, is connected. By our
dimensionality assumption, the range of E¥ (o (b)) is one-dimensional, and it
follows that o¥(7) is indeed convex. Therefore, W has convex values.

To verify that oW has closed graph, take a sequence (2%, 2%, s*) such that

(2k, 2% %) — (w4, 25, s) and, for all k, s* € oW(ah, 2%). By the latter, for
each k, there exists ¥ € U(z%, 2%) such that s* = E*"(o(b)). Thus, for each
k, there exists " satisfying (1) and (2) above with 2% and 2% in condition (2).
We must construct v and v satisfying (1) and (2) for the limiting platforms
x4 and 2 and such that s = E¥(a(b)).

For each i, let 77" denote the set of types for which ¢ prefers candidate A
with platform x4 to B with platform z g, let T;~ denote the set of types for
which ¢ prefers B, and let 7=(7) be the set of types such that i is indifferent:

7 = {ti € T |ui(A,va,ti) > ui(B, vp,1;)}
T'< - {tl S 7_; | U’Z(A7 'rA7ti) < ui(BuxBati)}
I = {tl € E | uZ(A7 ‘IAvti) = 'U@(B,.TB,tD},

and let T= = (J,oy (75~ x T_;) denote the set of type profiles at which some
voter is indifferent. Take any ¢t € T;”. By continuity of u;, voter i prefers
candidate A for sufficiently high k, and therefore 7%(¢;) = 1; similarly, if
t; € T, then v¥(t;) = 0 for sufficiently high k. Given a € [0,1]", define
v¢: T; — [0,1] by

1 ift; €Ty
vi(t) = a ifteT-
0 ifteTs,

which is clearly measurable. Letting v* = (¢, ...,7%), we see that v* fulfills
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condition (2). Let v be the distribution determined by v* through condition
(1)

We have left to establish existence of o € [0, 1]” such that E*(c(b)) = s.
For convenience, define

r*oft) = (H Vit ) (H (1—72“(2%)))’

and define I'*(¢) similarly using v*. Note that

E*(0(B) = / B)T* (Bl dt)

Cn

B (0(B) = / BT (3|t u(dt).

Cn

We have argued that each 7% converges pointwise to v{* on T’ \T=, and there-
fore T'*(-|b) also converges pointwise to I'*(:|b) on T\ T=. As a consequence,
we have

[ o dnu = fm (BT Ble)n(de).

k—oo T\T_

If u(T=) = 0, then the above equality yields £ (c(b)) = s, as desired.
Otherwise, if u(7=) > 0, define

am u<;> | > ot eiuo.

f = Iim

By our dimensionality an_c/l monotonicity assumptions, we may assume that
b >4 b implies o(b) > o(b ). We therefore have

/:Ej HGlud) < 6 /L}: T (b[1)u(dt).

CTL

Thus, by continuity, we may choose « € [0, 1] such that

/_}: b0 (blt)p(dt),
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yielding o such that E¥" (o (b)) = s, completing the proof of closed graph.

By Theorem 1, there is an endogenous voting equilibrium (, ), where
¥ is a selection from W. Define the behavioral strategy [3; for voter i as
follows. For all x4, x5 € X, since ¢ selects from W, there exists v satisfying
(1) and (2) with v = ¢(x4,2p). Then let 5,(xa,zp,t;) = 7,(t;), completing
the equilibrium construction and proving the first part of the theorem.

For the second part of the theorem, note that if voters are policy-oriented
and A and B are both win-motivated or both vote-motivated, then the elec-
toral game (X, V¥, u) is symmetric, and Theorem 1 yields a symmetric en-
dogenous voting equilibrium. We then use the associated selection to define
symmetric voting strategies, as required. |

10 Appendix B: An Asymmetric Voting Ex-
ample

It is relatively easy to construct examples that violate Theorem 4, once the
restriction of symmetric voting is removed. For example, suppose that all
voters have the same ideal point and vote for candidate A if A proposes that
policy, and otherwise specify any undominated votes; let candidate A choose
the voters’ ideal point, and let candidate B choose any policy position. This
is a subgame perfect equilibrium in undominated voting strategies, but it
exhibits two features that make it uninteresting. First, all voters vote for A,
even if both candidates adopt the voters’ ideal point, an extreme violation of
symmetric voting. Second, the position chosen by candidate B, which may
be covered, does not arise as a policy outcome, since A wins the election with
probability one.

The example in Table 1 shows that, even if we maintain the assump-
tion that voters flip a fair coin to decide their vote in case both candidates
adopt the same position, it is possible that one candidate adopts a covered
policy position. In fact, in the example, that candidate wins with positive
probability after adopting that position.

Here, let rows denote the strategies of candidate A, columns the strate-
gies of B, and let entries denote A’s payoffs: “0” denotes majority indiffer-
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0 0 0 -1 | -1 1 01

0 0 0 | -1 0D | —1 1

0 0 0 1 1 o] 41

1 1 | -11] 0 1 ~1 —1

1 oW | —1 | —1 0 -1 -1
—1 ] 1 [0® | 1 1 oW | oW
ob | —1 | 1 1 1 oW | oM

Table 1: Covered equilibrium platform
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ence, and a superscript indicates the resolutions of indifferent voters. For
example, “0)” indicates that a sufficient number of indifferent voters vote
for A with probability one that A wins the election with certainty. Spec-
ify mixed strategies for the candidates so that £, = (0,0,0,0, %, %, %) and
&g = (%, %, %, 0,0,0,0). It is straightforward to check that these strategies,
with the voters’ strategies implicit in the candidates’ payoffs, form a subgame
perfect equilibrium (and we may assume that voters use undominated strate-
gies). Note, however, that the voters’ strategies do not treat the candidates
symmetrically: when A chooses g and B chooses f, voters resolve indifference

in favor of A, and they also do so when A chooses f and B chooses g.

In this example, candidate A chooses policy e with probability one third,
despite the fact that it is covered by d: driving this is the fact that the voter
votes for A with probability one when A chooses e and B chooses b, giving A
an expected payoff of 1/3 from choosing e (as with f or g). It then becomes
critical to limit B’s payoff to —1/3 if that candidate deviates to e, f, or g,
necessitating the asymmetric voting strategies employed in the example.

Note that A’s expected payoff upon choosing e, as a function of B’s choice
of a, b, or ¢, is actually identical to the payoff the candidate would receive
upon choosing d. In fact, letting A choose d with probability one third instead
of e, we have an “equivalent” equilibrium in which the candidates use only
uncovered strategies. Theorem 4 can be generally extended in this way to
allow for asymmetric voting, when appropriately restated: for every subgame
perfect equilibrium in undominated voting strategies, say (&, 3), there exists
another such equilibrium, say (¢', 3), such that ¢, and ¢ have support on
the deep uncovered set and the distribution of each candidate’s payoffs are
equivalent to that under (£, 3).
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