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Abstract: A brief introduction and overview of models of the formation of networks is given,
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1 Introduction

A growing literature in economics examines the formation of networks and complements a rich lit-
erature in sociology and recently emerging literatures in computer science and statistical physics.
Research on network formation is generally motivated by the observation that social structure
is important in a wide range of interactions including the buying and selling of many goods and
services, the transmission of job information, decisions of whether to undertake criminal activity,
and informal insurance networks.

Networks are often modeled using tools and terminology from graph theory. Most models
of networks view a network as either a non-directed or a directed graph. Which type of graph
is more appropriate depends on the context. For instance, if a network is a social network of
people and links represent friendships or acquaintances, then it would tend to be non-directed.
Here the people would be modeled as the nodes of the network and the relationships would be
the links. (In terms of a graph, the people would be vertices and the relationships would be
edges.) If the network, instead represents citations from one article to another, then each article
would be a node and the links would be directed, as one article could cite another. While many
social and economic relationships are reciprocal or require the consent of both parties, there
are also enough applications that take a directed form, so that both non-directed and directed
graphs are useful as modeling tools.

Models of how networks form can be roughly divided into two classes. One derives from
random graph theory, and views an economic or social relationships as a random variables. The
other views the people (or �rms or other actors involved) as exercising discretion in forming
their relationships, and uses game theoretic tools to model formation. Each of these techniques
is discussed in turn.
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2 Models of Random Networks

2.1 Bernoulli Random Graphs

Some of the earliest formal models used to understand the formation of networks are random
graphs, with the canonical example being that of a pure Bernoulli process of link formation (e.g.,
see the seminal study of Erdös and Rényi (1960)). For instance, consider a network where the
(non-directed) link between any two nodes is formed with some probability p (where 1 > p > 0),
and this process occurs independently across pairs of nodes. While such a random method of
forming links allows any network to potentially emerge, some networks are much more likely
than others. Moreover, as the number of nodes becomes large, there is much that can be deduced
about the structure that the network is likely to take, as a function of p. For instance, one can
examine the probability that the resulting network will be connected in the sense that one can
�nd a path (sequence of links) leading from any given node to any other node. We can also
ask what the average distance will be in terms of path length between di¤erent nodes, among
other things. As Erdös and Rényi showed, such a random graph exhibits a number of �phase�
transitions as the probability of forming links, p, is varied relative to the number of nodes, n.
That is, resulting networks exhibit di¤erent characteristics depending on the relative sizes of p
and n.

Whether or not such a purely random graph model is a good �t as a model of network
formation, it is of interest, as it indicates that networks with di¤erent densities of links might
tend to have very di¤erent structures and also provides some comparisons for network formation
processes more generally. Some of the basic properties that such a random graph exhibits can
be summarized as follows. When p is small relative to n, so that p < 1=n (i.e., the average
number of links per node is less than one), then with a probability approaching 1 as n grows the
resulting graph consists of a number of disjoint and relatively small components, each of which
has a tree-like structure. (A component of a network is a subgraph such that each node in the
subgraph can be reached from any other node in the subgraph via a path that lies entirely in the
subgraph, and there are no links between any nodes in the subgraph and any nodes outside of the
subgraph.) Once p is large enough relative to n, so that p > 1=n, then a single �giant component�
emerges. That is, with a probability approaching 1 the graph consists of one large component,
which contains a nontrivial fraction of the nodes, and all other components are vanishingly
small in comparison. Why there is just one giant component and all other components are of a
much smaller order is fairly intuitive. In order to have two �large�components each having a
nontrival fraction of n nodes, there would have to be no links between any node in one of the
components and any node in the other. For large n, it becomes increasingly unlikely to have two
large components with absolutely no links between them. Thus, nontrivial components mesh
into a giant component, and any other components must be of a much smaller order. As p is
increased further, there is another phase transition when p is proportional to log(n)=n. This is
the threshold at which the network becomes �connected�so that all nodes are path-connected to
each other and the network consists of a single component. Once we hit the threshold at which
the network becomes connected, we also see further changes in the diameter of the network as
we continue to increase p relative to n. (The diameter is the maximal distance between two
nodes, where distance is the minimal number of links that are needed to pass from one node
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to another.) Below the threshold, the diameter of giant component is of the order of log(n),
then at the threshold of connectedness it hits log(n)=loglog(n), and it continues to shrink as p
increases.

Similar properties and phase transitions have been studied in the context of other models
of random graphs. For example, Molloy and Reed (1995), among others (see Newman (2003)),
have studied component size and connectedness in a �con�guration model.� There, a set of
nodes is given together with the number of links that each node should have, and then links are
randomly formed to leave each node with the pre-speci�ed number of links.

2.2 Clustering and Markov Graphs

Although the random graphs of Erdös and Rényi are a useful starting point for modeling network
formation, they lack many characteristics observed in most social and economic networks. This
has led to a series of richer random graph-based models of networks. The most basic property
that is absent from such random networks is that the presence of links tends to be correlated. For
instance, social networks tend to exhibit signi�cant clustering. Clustering refers to the following
property of a network. If we examine triples of nodes such that two of them are each connected to
the third, what is the frequency with which those two nodes are linked to each other? This tends
to be much larger in real social networks than one would see in a Bernoulli random graph. On an
intuitive level, models of network formation where links are formed independently tend to look
too much like �trees�while observed social and economic networks tend to exhibit substantial
clustering, with many more cycles than would be generated at random (see Watts (1999) for
some discussion and evidence).

Frank and Strauss (1986) identi�ed a class of random graphs that generalize Bernoulli random
graphs, which they called �Markov graphs�(also referred to as p� networks). Their idea was to
allow the chance that a given link forms to be dependent on whether or not neighboring links
are formed. Specifying interdependencies requires special structure as, for instance, making one
link dependent on a second, and the second on the third, can imply some interdependencies
between the �rst and third. These sorts of dependencies are di¢ cult to analyze in a tractable
manner, but nevertheless some special versions of such models have been useful in statistical
estimation of networks.

2.3 Small Worlds

Another variation on a Bernoulli network was explored by Watts and Strogatz (1998) in order to
generate networks that exhibit both relatively low distances (in terms of minimum path length)
between nodes and relatively high clustering; two features that are present in many observed
networks but not in the Bernoulli random graphs unless the number of links per node (p(n�1))
is extremely high. They started with a very structured network that exhibits a high degree
of clustering. Then by randomly rewiring enough (but not too many) links, one ends up with
a network that has a small average distance between links but still has substantial clustering.
While such a rewiring process results in networks that exhibit some of the features of social
networks, it leads to networks that miss out on other basic characteristics that are present in
many social networks. For example, the nodes of such a network tend to be too similar in terms
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of the number of links that they each have.

2.4 Degree Distributions

One fundamental characteristic of a social network is a network�s degree distribution. The
degree of a node is the number of links it has, and the degree distribution keeps track of how
varied the degree is across the nodes of the network. That is, the degree distribution is simply
the frequency distribution of degrees across nodes. For instance, in a friendship network some
individuals might only have a few friends while other individuals might have very many, and
then the degree distribution quanti�es this information.

Price (1965) examined a network of citations (between scienti�c articles), and found that
the degree distribution exhibited �fat tails� relative to what one would observe in a Bernoulli
random graph. That is, there was a higher frequency of articles that had many citations, and
a higher frequency of articles that had no citations, than should be observed it citations were
generated independently. In fact, many social networks exhibit such fat tails, and some have
even been thought to exhibit what is known as a �scale- free� degree distribution or said to
�follow a power law�. A scale-free distribution is one where the frequency of degrees can be
written in the form f(d) = ad�b, for some parameters a and b, where d is the degree and f(d) is
the relative frequency of nodes with degree d. Such distributions date to Pareto (1896), and have
been observed in a variety of other contexts ranging from the distribution of wealth in a society
to the relative use of words in a language. Price (1976) adapted ideas from Simon (1955) to
develop a random link formation process that produces networks with such degree distributions.
A similar model was later studied by Barabasi and Albert (2001), who called the process of link
formation �preferential attachment.� The idea is that nodes gain new links with probabilities
that are proportional to the number of links that they already have (which is closely related
to a lognormal growth process). In a system where new nodes are born over time, this process
generates scale-free degree distributions.

A simple preferential attachment model also has its limitations. One is that most social net-
works, in fact, do not have degree distributions that are scale-free. Observed degree distributions
tend to lie somewhere between the extremes of a scale-free distribution and that correspond-
ing to a independent Bernoulli random graph. Second, the preferential attachment model fails
to produce the type of clustering observed in many social networks, just as Bernoulli random
graphs do. This has led to the construction of hybrid models that allow for richer sets of degree
distributions, as well as clustering and correlation in degrees, and allows for the structural �tting
of random graph based network formation models to data (e.g., see Jackson and Rogers (2004)
and the discussion there).

3 Strategic Models of Network Formation

Strategic models of network formation have emerged from the economics literature, and take
a very di¤erent perspective from random graph models and o¤er a very complementary set of
insights (see Jackson (2005) for some comparison and discussion). The starting point for a game
theoretic approach is to assume that the nodes are active discretionary agents or players who get
payo¤s that depend on the social network that emerges. For example, if nodes are countries and
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links are political alliances, or nodes are �rms and links are trading or collaboration agreements,
then the relationships are entered into with some care and thought. Even in modeling something
like a friendship networks, while individuals might not be directly calculating costs and bene�ts
from relationships, they do react to how enjoyable or worthwhile a relationship is and might
tend to spend more e¤ort or time in relationships that are more bene�cial and avoid ones that
are less so. Di¤erent social networks lead to di¤erent outcomes for the involved agents (e.g.,
di¤erent trades, di¤erent access to information or favors, etc.). Links are then formed at the
discretion of the agents, and various equilibrium notions are used to predict which networks
will form. This di¤ers from the random models not only in that links result as a function of
decisions rather than at random, but also in that there are natural costs and bene�ts associated
with networks which then allow a welfare analysis.

Some of the �rst models bringing explicit utilities and choice to the formation of social
links, were in the context of modeling the tradeo¤s between �strong� and �weak� ties (links)
in labor contact networks. Such models by Boorman (1975) and Montgomery (1991) explored
a theory, due to Granovetter (1973), about di¤erent strengths of social relationships and their
role in �nding employment. Granovetter observed that when individuals obtained jobs through
their social contacts, while they sometimes did so through strong ties (people whom they knew
well and interacted with on a frequent basis), they also quite often obtained jobs through weak
ties (acquaintances whom they knew less well and/or interacted with relatively infrequently).
This led Granovetter to coin the phrase �the strength of weak ties.� Boorman�s article and
Montgomery�s articles provided explicit models where costs and bene�ts could be assigned to
strong and weak ties, and tradeo¤s between them could be explored.

In a very di¤erent setting, another use of utility functions involving networks emerged in the
work of Myerson (1977). Myerson analyzed a class of cooperative games that were augmented
with a graph structure. In these games the only coalitions that could produce value are those
that are pathwise connected by the graph, and so such graphs indicate the possible cooperation
or communication structures. This then led Myerson to characterize a variation on the Shapley
Value, now called the Myerson Value, which was a cooperative game solution concept for the
class of cooperative games where constraints on coalitions were imposed by a graph structure.
Although the graphs in Myerson�s analysis are tools to de�ne a special class of cooperative
games, it does allow the graph structure to in�uence the allocation of societal value among a set of
players. Aumann and Myerson (1988), recognizing that di¤erent graph structures led to di¤erent
allocations of value, used this to study a game where the graph structure was endogenous.
They studied an extensive form game where links are considered one-by-one according to some
exogenous order, and formed if both agents involved agree. While that game turns out to be
hard to analyze even in three-person examples, it was an important precursor to the more recent
economic literature on network formation.

In contrast to the cooperative game setting, Jackson and Wolinsky (1996) explicitly con-
sidered networks, rather than coalitions, as the primitive. Thus rather than deducing utilities
indirectly through a cooperative game on a graph, they posited that networks were the primitive
structure and agents derived utilities based on the network structure in place. So, once a social
network structure is in place, one can then deduce what agent�s payo¤s will be. Using such a
formulation where players�payo¤s are determined as a function of the social network in place,
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it is easy to model network formation using game theoretic techniques.

3.1 Pairwise Stability

In modeling network formation from a game theoretic perspective, one needs to have some
notion of equilibrium or stable networks. As it is natural to require mutual consent in many
applications, standard Nash equilibrium based ideas are not very useful. For instance, consider
a game where each agent simultaneously announces which other agents he or she is willing to
link to. It is always a Nash equilibrium for each agent to say that he or she does not want to
form any links, anticipating that the others will do the same. Generally, this allows for a large
multiplicity of equilibria, many of which make little sense from a social network perspective.
Even equilibrium re�nements (such as undominated Nash or perfect equilibrium) do not avoid
this problem. Given that it is natural in a network setting for the agents prospectively forming a
link to be able to communicate with each other, they should also be able to coordinate with each
other on the forming of a link. An approach taken by Jackson and Wolinsky (1996), is to de�ne
a stability notion that directly incorporates the mutual consent needed to form links. Jackson
and Wolinsky (1996) de�ned the following notion of �pairwise stability.� A network is pairwise
stable if (i) no player would be better o¤ if he or she severed one of his or her links, and (ii)
no pair of players would both bene�t (with at least one of the pair seeing a strict bene�t) from
adding a link that is not in the network. The requirement that no player wishes to delete a link
that he or she is involved in implies that a player has the discretion to unilaterally terminate
relationships that he or she is involved in. The second part of the de�nition captures the idea
that if we are at a network where the creation of a new link would bene�t both players involved,
then the network g is not stable, as it will be in the players�interests to add the link.

Pairwise stability is a fairly permissive stability concept, as for instance, it does not consider
deviations where players delete some links and add others at the same time. While pairwise
stability is easy to work with and often makes fairly pointed predictions, considering further
re�nements can make a di¤erence. There are a variety of re�nements and alternative notions
that have been introduced, including allowing agents to form and sever links at the same time,
allowing coalitions of agents to add and sever links in a coordinated fashion, or behavior where
agents anticipate how the formation of one link might in�uence others to form further links (see
Jackson (2004) for some discussion and references). There are also dynamic models (e.g. Watts
(2001)) in which the possibility of forming links arises (repeatedly) over time, and agents might
�tremble� when they form links. These various equilibrium/stability concepts have di¤erent
properties and are appropriate in di¤erent contexts.

With pairwise stability, or some other solution in hand, one can address a series of questions.
One fundamental question is whether e¢ cient or optimal networks from society�s point of view
will be stable when agents form links with their sel�sh interests in mind. Here given that
transfers are being considered, one natural de�nition of an �e¢ cient�or �optimal�network is
one that maximizes the total value or the sum of utilities of all agents in the society. Another
basic question is to ask whether in situations where no e¢ cient network is pairwise stable, is it
possible for some sort of intervention (e.g., in the form of taxing or subsidizing links), to lead
e¢ cient networks to form.
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3.2 A Connections Model of Social Network

One stylized example from Jackson and Wolinsky (1996) give some feeling for the issues involved
in the above questions and is useful for illustrating the relationship between e¢ cient and pairwise
stable networks. Jackson and Wolinsky called it the �symmetric connections model.� There
links represent social relationships between players such as friendships. These relationships o¤er
bene�ts in terms of favors, information, etc., and also involve some costs. Moreover, players
bene�t from having indirect relationships. A �friend of a friend�produces bene�ts or utility for
a player, although of a lesser value than the direct bene�ts that come from a �friend.� The same
is true of �friends of a friend of a friend,� and so forth. Bene�t deteriorates in the �distance�
of the relationship, as represented by a factor � between 0 and 1, which indicates the bene�t
from a direct relationship between two agents and is raised to higher powers for more distant
relationships. For instance, in the network where player 1 is linked to 2, 2 is linked to 3, and 3
is linked to 4; player 1 gets a bene�t of � from the direct connection with player 2, an indirect
bene�t of �2 from the indirect connection with player 3, and an indirect bene�t of �3 from the
indirect connection with player 4. For � < 1 this leads to a lower bene�t from an indirect
connection than a direct one. Players also pay some cost c for maintaining each of their direct
relationships (but not for indirect ones). Once the bene�t parameter, �, and the cost parameter,
c > 0 are speci�ed, it is possible to determine each agent�s payo¤ from every possible network,
allowing a characterization of the pairwise stable networks as well as the e¢ cient networks. The
e¢ cient network structures are the complete network if c < � � �2, a �star� (a network where
one agent is connected to each other agent and there are no other connections) encompassing
all nodes if � � �2 < c < � + (n�2)

2 �2, and the empty network if � + (n�2)
2 �2 < c. The idea is

that if costs are very low it will be e¢ cient to include all links in the network, as shortening any
path leads to higher payo¤s. When the link cost is at an intermediate level, then the unique
e¢ cient network structure is to have all players arranged a star network, as such a structure has
the minimal number of links (n�1) needed to connect all individuals, and yet still has all nodes
within at most two links from one another. Once links become so costly that a star results in
more cost than bene�t, then the empty network is e¢ cient. One can also examine a directed
version of such a model, as in Bala and Goyal (2000) and �nds related results.

3.3 Ine¢ ciency of Stable Networks

The set of pairwise stable networks does not always coincide with the e¢ cient ones, and some-
times do not even intersect with the set of e¢ cient networks. For instance, if the cost of a link
is greater than the direct bene�t (c > �), then relationships are only valuable to a given agent if
they generate indirect bene�ts as well as direct ones. In such a situation a star is not pairwise
stable since the center player gets bene�t of the direct value from each of his or her links, which
is less than the cost of each of those links. This model of social networks makes it obvious that
there will be situations where individual incentives are not aligned with overall societal bene�ts.

As it will generally be the case that in economic and social networks, there are some sort of
externalities present, as two agents�decisions of whether or not to form a relationship can a¤ect
the well-being of other agents, one should expect that there will be situations where the networks
that are formed through the sel�sh decisions of the agents do not coincide with those that are
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e¢ cient from society�s perspective. In such situations, it is natural to ask whether intervention
in the form of transfers among agents might help align individual and overall societal incentives
to form the right network. For instance, in the connections model, it would make sense to have
the peripheral agents in a star pay the center of the star in order to maintain their links. The
peripheral agents bene�t much more from the relationship with the center agent than vice versa,
as the center agent provides access to many indirect agents. Although a simple set of transfers
can align individual and overall incentives in the connections model, it turns out to be impossible
to always correct this tension between individual incentives and overall e¢ ciency by taxing and
subsidizing agents for the links they form (even in a complete information setting). The fact that
there are very simple, natural network settings where no �reasonable�set of transfers can help
rectify the disparity stability and e¢ ciency was shown Jackson and Wolinsky (1996). Without
providing details, the impossibility of reconciling stability and e¢ ciency stems from the following
considerations. From any given network, there are many other networks that can be reached.
In fact, if there are n nodes, then there are n(n � 1)=2 possible links that can be added to or
deleted from any given network. In order to ensure that a given e¢ cient network is pairwise
stable, payo¤s to all neighboring networks have to be con�gured so that no agent �nds it in his
or her interest to delete a link and no two agents �nd it in their interests to add a link. It is
impossible to assign all the necessary taxes and subsidies in such a way that (i) the transfers are
feasible (and are not given to unattached agents), (ii) identical agents are treated identically,
and (iii) it is always the case that at least one e¢ cient network is pairwise stable.

There is much more that has been learned about the relationship between stable and e¢ cient
networks, and possible transfers to ensure that the e¢ cient networks form. For instance, one can
characterize some classes of settings where the e¢ cient networks and the stable ones do coincide
(see Jackson and Wolinsky (1996)). One can also design transfers that ensure that some e¢ cient
network stable by treating agents unequally (e.g., taxing or subsidizing them di¤erently even
though the agents are identical in the problem as shown by Dutta and Mutuswami (1997)).
Another important point was made by Currarini and Morelli (2000) who showed that if agents
bargain over the division of payo¤s generated by network relationships at the time when they
form link, then in a nontrivial class of settings equilibrium networks are e¢ cient. While the
conclusions hinge on the structure of the link-formation-bargaining game, and in particular on an
asymmetry in bargaining power across the agents, such a result tells us that it can be important
to model the formation of the links of a network together with any potential bargaining over
payo¤s or transfers. Further study in this area shows how the types of transfers that are needed
to reach e¢ cient networks relate to the types of network externalities that are present in the
setting.

3.4 Small Worlds and Strategic Network Formation

Beyond understanding the relationship between stable networks and e¢ cient ones, strategic
models of network formation have also shed light on some empirical regularities, and helped
predict which networks will arise in settings of particular interest. For instance, strategic mod-
els of network formation provide substantial insight into the �small-worlds�properties of social
networks: the simultaneous presence of high clustering (a high density of links on a local level)
and short average path length between nodes (see Jackson (2005) for references). The reasoning
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is based on a premise that di¤erent nodes have di¤erent distances from each other, either geo-
graphically or according to some other characteristic, such as profession, tastes, etc. Low costs
of forming links to other nodes that are nearby then naturally explain high clustering. High
bene�ts from forming links that bridge disparate parts of the network, due to the access and
indirect connections that they bring, naturally explain low average path length.

3.5 Networks and Markets

There is a rich set of studies of markets and networks from an economics perspective, including
models that explicitly examine whether or not buyers and sellers have incentives to form an
e¢ cient network of relationships (e.g., Kranton and Minehart (2001)). The incentives to form
e¢ cient networks depend on the setting and which agents bear the cost of forming relationships.
There are settings where competitive forces lead to the right con�guration of links, and others
where buyers and sellers over-connect in order to improve their relative bargaining positions.
There are also studies in the context of speci�c markets, such as labor markets where people
bene�t from connections with neighbors who provide information about job opportunities (see
Ioannides and Loury (2005) for an overview and references).

In addition to studies of networks of relationships between buyers and sellers, �rms also
form relationships amongst themselves that a¤ect their costs and the sets of products they o¤er.
Such oligopoly settings where network formation is important (see Bloch (2004) for a recent
survey), again provides a rich set of results regarding the structure of networks that emerge,
and contrasts between settings where e¢ cient networks naturally emerge and others where only
ine¢ cient networks are formed.

Network formation has also been studied in the context of many other applications including
risk-sharing in developing countries, social mobility, criminal activity, international trade, and
banking deposits.

Finally, there have been a number of experiments with human subjects done on network
formation. These examine a variety of questions, ranging from how forward-looking agents are
when they form social ties, to whether or not agents overcome coordination problems when
forming links, to whether there are pronounced di¤erences between network formation when
links can be formed unilaterally versus when they require mutual consent, to whether e¢ cient
networks will tend to result and how that depends on symmetries or asymmetries in the e¢ cient
network structure (see Falk and Kosfeld (2003) for some discussion and references).
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