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Introduction

Consider the multivariate 1t6 Stochastic Differential Equations (SDE)
dX(t) = u(X(t))dt + o (X())dW(t),

where X(-) and p(-) are d-dimensional vectors; W(-) is a d’-dimensional
Brownian motion.
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o (Beskos & Roberts (2005)) First exact simulation algorithm of SDE in
“d = 1", under boundedness conditions.

o (Beskos et al. (2006), Chen & Huang (2013)) Relaxed boundedness
assumption but “d = 1" as well.
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Key Assumptions on Current Generic Methods

Existing methodos require the following:
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Key Assumptions on Current Generic Methods

Existing methodos require the following:

e Can apply Lamperti's transform, which maps X(-) into a constant
diffusion matrix diffusion.

o Drift coefficient p(-) is the gradient of some functions (i.e.

Vo() = p(-)).

Question: Is it possible to simulate X(T) exactly for generic
diffusions?
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Yes! It is possible.
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The Bad News:

Drawback:

@ The running time of our algorithm, although finite with probability
one, has infinite mean.
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The Bad News:

Drawback:

@ The running time of our algorithm, although finite with probability
one, has infinite mean.

But please don't go! This is still interesting because:

@ This is the first exact simulation algorithm for generic
multidimensional diffusions (aren’t you curious?).

@ This requires a novel conceptual framework, different from Lamperti's
transformation.

@ Check out interesting algorithmic ideas: Multilevel Monte Carlo,
Bernoulli factories and e-strong simulation.
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Model Setup

o Assume X(-) is P-Brownian motion.

@ Define

d
. t ' - _E t 5
L(t) = exp <’_§:1/0 pi(X(t))dXi(t) 2/0 (X ()]l dt>,

o If u(-) is Lipchitz continuous, then L(-) is a martingale, define
dP = L(T)dP

@ There exist a P-Brownian motion W(-), such that

X(t) = X(0) + /t,u,(X(s))ds—i— W(t): 0<t<T.
0
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Direct Algorithm by Acceptance-Rejection

Direct Acceptance-Rejection

o Step 1: Propose X(T) under measure P, which is Normal
distribution.

o Step 2: Accept the proposal with probability proportional to L(T).
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Direct Algorithm by Acceptance-Rejection

Direct Acceptance-Rejection

o Step 1: Propose X(T) under measure P, which is Normal
distribution.

o Step 2: Accept the proposal with probability proportional to L(T).

There are two challenges in the execution of Step 2:
© Unboundedness of L(T).
@ ‘Intractability” of stochastic integral in L(T).
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Conditional on integer part of L(T)

o Assume we can sample L(T) under P and P.
@ Suppose U ~ Unif(0,1) independent of everything else,
P(X(T) € dx|[[L(T)] = k)
=P(X(T) € dx|(k+ 1)U < L(T); |L(T)]| = k)
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Conditional on integer part of L(T)

o Assume we can sample L(T) under P and P.
@ Suppose U ~ Unif(0,1) independent of everything else,
P(X(T) € dx|[[L(T)] = k)
=P(X(T) € dx|(k+ 1)U < L(T); |L(T)]| = k)

Acceptance-Rejection with Unbounded Likelihood Ratio

o Step 1: Sample |L(T)| under measure P, let k = |L(T)].
o Step 2: Sample U ~ Unif(0,1), let u = U.

o Step 3: Sample (X(T), L(T)) jointly from P until
max((k + 1)u, k) < L(T) < k+ 1.
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e We don't need to simulate L(T) without any bias.
o It suffices to be able to simulate |L(T)] and/or I(a < L(T) < b).
o Approximate L(T) by e-strong simulation.
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e-Strong Simulation for SDEs

Theorem (Blanchet, Chen and Dong (2017))

Consider a probability space (2, F,P) and the following multidimensional
SDE:

dY(t) = a(Y(t))dt + v(Y(2))dW(t), Y(t) =y (1)

Suppose that a(-) and v(-) satisfy suitable regularity conditions. Then,
given any deterministic € > 0, we can simulate a piecewise constant
process Y:(-), such that

sup [|[Yz(t) = Y(t)]2<e as.
te[0,T]

Furthermore, for any m > 1 and 0 < g, < --- < g1 < 1, we can simulate

Y., conditionalon Y ,..., Y ..
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lllustration of £-Strong Simulation

Figure: Illustation for e-Strong Simulation in one dimension. Black Path = True;
Red Line = Coarse Approximation; Red Dashed Line = Coarse Error Bound;
Blue Line = Refined Approximation; Blue Dashed Line = Refined Error Bound,
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Localization for SDEs: d = 1 for lllustration
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e-Strong Simulation of (X(+), L())

@ Under measure P:

dL(t) = L(t)[|(X(2))I5dt + pu T (X(2))dW(t),
dX(t) = p(X(t))dt + dW(1),

@ Under measure P:

dL(t) = L(t)uT (X(1))dX(t).
dX(t) = dX(t).

@ c-strong simulation is applicable to (X(+), L(+)) under both measure.

o Under measure P, the first step of e-strong simulation is sampling
X(T).
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Algorithm

Exact Simulation of SDEs with Identity Diffusion Matrix

o Step 1: Sample [L(T)| under measure P by e-strong simulation, let
k= [L(T)].
o Step 2: Sample U ~ Unif(0,1), let u = U.

o Step 3: Apply e-strong simulation to sample 5
I(max((k +1)u, k) < L(T) < k+ 1) and X(T) under measure P.

o Step 4: Output X(T) if I(max((k+ 1)u, k) < L(T) < k+1) =1;
otherwise return to Step 2.
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When Lamperti's Transform is not Applicable

dX(t) = p(X(t))dt + o(X(t))dW(t).

@ Girsanov's theorem can't substantially simplify the problem.

@ Idea: Construct an unbiased estimator of density of X(T).
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Construction of Density Estimator

@ Suppose r, N\, 0; By, (x) = Ball with radius r, centered at x;

Bu(x) = [V(B,,(0))] ™ x I(X(T) € By,(x)): ho(x) = 0.

e We can sample p,(x) by e-strong simulation.

@ Due to smoothness of density

Z Pn-l—l ﬁn(x))
n=0

o Connection to multi-level Monte Carlo (Giles (2008), Rhee-Glynn
(2015))
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Multilevel Monte Carlo Estimator

e For a given integer r.v. N, define

Pk+1 ()
> 0.
E N>k) for n>0

o p(x) = E[An(x)]-
@ We want the estimator to be nonnegative and bounded.
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On Non-negativity and Boundedness

Key Lemma

For any compact set G, there exist a family of random variables
{A}(x);n € N,x € G} and computable constants m and {m,; n € N} ,
such that the following properties hold:

Q 0 <Af(x) < mp < .
Q@ 0<E[N(X)] =E[An(x)] <m, VneN.
@ Given n and x, there is an algorithm to simulate A} (x).

The constants m and {m,; n € N} depend only on set G and bounds on
u(+),o(-) and their derivatives of order 1,2, 3.
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Introduction of Extra Randomness

o Aj(x) is unbiased estimator of p(x), but it is unbounded.
e We introduce an auxiliary r.v. N’ coupled with X(T) in the following

way
P(N' = n|X(T) = x) x P(N = n) x E[A}(x)]

e Given N’ = nand X(T) € G, the conditional density is easy to sample

P(X(T) € dx|N' = n, X(T) € G)  E[AS (x)].
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Outline of the Algorithm

@ Sample a compact set G s.t. X(T) € G.
@ Sample (N'|X(T) € G).
@ Sample (X(T)|N',X(T) € G).
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Step 1: Localization of X(T)

@ Divide the space R into disjoint boxes.

@ Apply e-strong simulation to decide the box G to which X(T)
belongs.
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Step 2: Simulation of N’ conditional on X(T) € G

P(N' = n|X(T) € G) = IP(IE((('\’T):E")G) x /GE[/\ﬁ(x)]dx.

@ Use N as proposal for N'.

@ Given N = n, accept the proposal with probability
(mV(G)™" [ EIAT (x)]dx.

o Use upper bounds - recall m and m,;
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Step 3: Simulation of X(T) conditional on X(T) € G and

N/

P(X(T) € dx|N' = n,X(T) € G) < E[AS(x)],

@ Sample x from uniform distribution of G.

@ Accept x as X(T) with probability oc E[A;}(x)]
o Sample Af(x) and U ~ Unif(0, m,).
o Accept x if U <A} (x).
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Conclusions

First exact sampler for generic d-dimensional diffusions.
Algorithm exposes the role of e-strong simulation.
Interesting unbiased estimators (density).

Interplay of several debiasing techniques.

Key Open Problem: Can we execute Y(T) € G in finite expected
time?

Jose Blanchet (Columbia/Stanford) Exact Simulation of Diffusions July 7, 2017 28 /28



	Introduction
	SDEs with Identity Diffusion Matrix
	General SDEs

