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Introduction

Consider the multivariate Itô Stochastic Differential Equations (SDE)

dX (t) = µ(X (t))dt + σ(X (t))dW (t),

where X (·) and µ(·) are d-dimensional vectors; W (·) is a d ′-dimensional
Brownian motion.

Question: Is it possible to simulate X (T ) exactly?
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Previous Work

(Beskos & Roberts (2005)) First exact simulation algorithm of SDE in
“d = 1”, under boundedness conditions.

(Beskos et al. (2006), Chen & Huang (2013)) Relaxed boundedness
assumption but “d = 1” as well.
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Key Assumptions on Current Generic Methods

Existing methodos require the following:

Can apply Lamperti’s transform, which maps X (·) into a constant
diffusion matrix diffusion.

Drift coefficient µ(·) is the gradient of some functions (i.e.
∇υ(·) = µ(·)).
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The Good News:

Yes! It is possible.
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The Bad News:

Drawback:

The running time of our algorithm, although finite with probability
one, has infinite mean.

But please don’t go! This is still interesting because:

This is the first exact simulation algorithm for generic
multidimensional diffusions (aren’t you curious?).

This requires a novel conceptual framework, different from Lamperti’s
transformation.

Check out interesting algorithmic ideas: Multilevel Monte Carlo,
Bernoulli factories and ε-strong simulation.
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Model Setup

Assume X (·) is P̃-Brownian motion.

Define

L(t) = exp

(
d∑

i=1

∫ t

0
µi (X (t))dXi (t)− 1

2

∫ t

0
‖µ(X (t))‖2dt

)
,

If µ(·) is Lipchitz continuous, then L(·) is a martingale, define

dP = L(T )d P̃

There exist a P-Brownian motion W (·), such that

X (t) = X (0) +

∫ t

0
µ(X (s))ds + W (t); 0 ≤ t ≤ T .
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Direct Algorithm by Acceptance-Rejection

Direct Acceptance-Rejection

Step 1: Propose X (T ) under measure P̃, which is Normal
distribution.

Step 2: Accept the proposal with probability proportional to L(T ).

There are two challenges in the execution of Step 2:

1 Unboundedness of L(T ).

2 “Intractability” of stochastic integral in L(T ).
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Conditional on integer part of L(T )

Assume we can sample L(T ) under P and P̃.

Suppose U ∼ Unif(0, 1) independent of everything else,

P(X (T ) ∈ dx |bL(T )c = k)

= P̃(X (T ) ∈ dx |(k + 1)U < L(T ); bL(T )c = k)

Acceptance-Rejection with Unbounded Likelihood Ratio

Step 1: Sample bL(T )c under measure P, let k = bL(T )c.

Step 2: Sample U ∼ Unif(0, 1), let u = U.

Step 3: Sample (X (T ), L(T )) jointly from P̃ until
max((k + 1)u, k) < L(T ) < k + 1.
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Observation

We don’t need to simulate L(T ) without any bias.

It suffices to be able to simulate bL(T )c and/or I (a < L(T ) < b).

Approximate L(T ) by ε-strong simulation.
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ε-Strong Simulation for SDEs

Theorem (Blanchet, Chen and Dong (2017))

Consider a probability space (Ω,F ,P) and the following multidimensional
SDE:

dY (t) = α(Y (t))dt + ν(Y (t))dW (t), Y (t) = y0 (1)

Suppose that α(·) and ν(·) satisfy suitable regularity conditions. Then,
given any deterministic ε > 0, we can simulate a piecewise constant
process Yε(·), such that

sup
t∈[0,T ]

‖Yε(t)− Y (t)‖2 ≤ ε a.s.

Furthermore, for any m > 1 and 0 < εm < · · · < ε1 < 1, we can simulate
Yεm conditional on Yε1 , . . . ,Yεm−1 .
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Illustration of ε-Strong Simulation

Figure: Illustation for ε-Strong Simulation in one dimension. Black Path = True;
Red Line = Coarse Approximation; Red Dashed Line = Coarse Error Bound;
Blue Line = Refined Approximation; Blue Dashed Line = Refined Error Bound;
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Localization for SDEs: d = 1 for Illustration
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ε-Strong Simulation of (X (·), L(·))

Under measure P:{
dL(t) = L(t)‖µ(X (t))‖2

2dt + µT (X (t))dW (t),

dX (t) = µ(X (t))dt + dW (t),

Under measure P̃:{
dL(t) = L(t)µT (X (t))dX (t).

dX (t) = dX (t).

ε-strong simulation is applicable to (X (·), L(·)) under both measure.

Under measure P̃, the first step of ε-strong simulation is sampling
X (T ).
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Algorithm

Exact Simulation of SDEs with Identity Diffusion Matrix

Step 1: Sample bL(T )c under measure P by ε-strong simulation, let
k = bL(T )c.
Step 2: Sample U ∼ Unif(0, 1), let u = U.

Step 3: Apply ε-strong simulation to sample
I (max((k + 1)u, k) < L(T ) < k + 1) and X (T ) under measure P̃.

Step 4: Output X (T ) if I (max((k + 1)u, k) < L(T ) < k + 1) = 1;
otherwise return to Step 2.
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When Lamperti’s Transform is not Applicable

dX (t) = µ(X (t))dt + σ(X (t))dW (t).

Girsanov’s theorem can’t substantially simplify the problem.

Idea: Construct an unbiased estimator of density of X (T ).
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Construction of Density Estimator

Suppose rn ↘ 0; Brn(x) = Ball with radius rn centered at x ;

p̂n(x) = [V (Brn(0))]−1 × I (X (T ) ∈ Brn(x)); p̂0(x) = 0.

We can sample p̂n(x) by ε-strong simulation.

Due to smoothness of density

p(x) = E

[ ∞∑
n=0

(p̂n+1(x)− p̂n(x))

]
.

Connection to multi-level Monte Carlo (Giles (2008), Rhee-Glynn
(2015))
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Multilevel Monte Carlo Estimator

For a given integer r.v. N, define

Λn(x) =
n∑

k=0

p̂k+1(x)− p̂k(x)

P(N ≥ k)
for n ≥ 0.

p(x) = E[ΛN(x)].

We want the estimator to be nonnegative and bounded.
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On Non-negativity and Boundedness

Key Lemma

For any compact set G , there exist a family of random variables
{Λ+

n (x); n ∈ N, x ∈ G} and computable constants m and {mn; n ∈ N} ,
such that the following properties hold:

1 0 ≤ Λ+
n (x) ≤ mn <∞.

2 0 ≤ E[Λ+
n (x)] = E[Λn(x)] ≤ m, ∀n ∈ N.

3 Given n and x , there is an algorithm to simulate Λ+
n (x).

The constants m and {mn; n ∈ N} depend only on set G and bounds on
µ(·), σ(·) and their derivatives of order 1, 2, 3.
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Introduction of Extra Randomness

Λ+
N(x) is unbiased estimator of p(x), but it is unbounded.

We introduce an auxiliary r.v. N ′ coupled with X (T ) in the following
way

P(N ′ = n|X (T ) = x) ∝ P(N = n)× E [Λ+
n (x)]

Given N ′ = n and X (T ) ∈ G , the conditional density is easy to sample

P(X (T ) ∈ dx |N ′ = n,X (T ) ∈ G ) ∝ E[Λ+
n (x)].
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Outline of the Algorithm

1 Sample a compact set G s.t. X (T ) ∈ G .

2 Sample (N ′|X (T ) ∈ G ).

3 Sample (X (T )|N ′,X (T ) ∈ G ).
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Step 1: Localization of X (T )

Divide the space R into disjoint boxes.

Apply ε-strong simulation to decide the box G to which X (T )
belongs.
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Step 2: Simulation of N ′ conditional on X (T ) ∈ G

P(N ′ = n|X (T ) ∈ G ) =
P(N = n)

P(X (T ) ∈ G )
×
∫
G
E[Λ+

n (x)]dx .

Use N as proposal for N ′.

Given N = n, accept the proposal with probability
(mV (G ))−1

∫
G E[Λ+

n (x)]dx .

Use upper bounds - recall m and mn;
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Step 3: Simulation of X (T ) conditional on X (T ) ∈ G and
N ′

P(X (T ) ∈ dx |N ′ = n,X (T ) ∈ G ) ∝ E[Λ+
n (x)],

Sample x from uniform distribution of G .

Accept x as X (T ) with probability ∝ E[Λ+
n (x)]

Sample Λ+
n (x) and U ∼ Unif(0,mn).

Accept x if U ≤ Λ+
n (x).
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Conclusions

First exact sampler for generic d-dimensional diffusions.

Algorithm exposes the role of ε-strong simulation.

Interesting unbiased estimators (density).

Interplay of several debiasing techniques.

Key Open Problem: Can we execute Y (T ) ∈ G in finite expected
time?
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