Exact Simulation of Multivariate Itô Diffusions

Jose Blanchet Joint work with Fan Zhang

Columbia and Stanford

July 7, 2017

Jose Blanchet (Columbia/Stanford)

Exact Simulation of Diffusions

July 7, 2017 1 / 28

2 SDEs with Identity Diffusion Matrix

Consider the multivariate Itô Stochastic Differential Equations (SDE)

$$dX(t) = \mu(X(t))dt + \sigma(X(t))dW(t),$$

where $X(\cdot)$ and $\mu(\cdot)$ are *d*-dimensional vectors; $W(\cdot)$ is a *d'*-dimensional Brownian motion.

Consider the multivariate Itô Stochastic Differential Equations (SDE)

$$dX(t) = \mu(X(t))dt + \sigma(X(t))dW(t),$$

where $X(\cdot)$ and $\mu(\cdot)$ are *d*-dimensional vectors; $W(\cdot)$ is a *d'*-dimensional Brownian motion.

Question: Is it possible to simulate X(T) exactly?

- (Beskos & Roberts (2005)) First exact simulation algorithm of SDE in "d = 1", under boundedness conditions.
- (Beskos et al. (2006), Chen & Huang (2013)) Relaxed boundedness assumption but "d = 1" as well.

• Can apply Lamperti's transform, which maps $X(\cdot)$ into a constant diffusion matrix diffusion.

- Can apply Lamperti's transform, which maps $X(\cdot)$ into a constant diffusion matrix diffusion.
- Drift coefficient $\mu(\cdot)$ is the gradient of some functions (i.e. $\nabla v(\cdot) = \mu(\cdot)$).

- Can apply Lamperti's transform, which maps $X(\cdot)$ into a constant diffusion matrix diffusion.
- Drift coefficient $\mu(\cdot)$ is the gradient of some functions (i.e. $\nabla v(\cdot) = \mu(\cdot)$).

Question: Is it possible to simulate X(T) exactly for generic diffusions?

Yes! It is possible.

• The running time of our algorithm, although finite with probability one, has infinite mean.

- The running time of our algorithm, although finite with probability one, has infinite mean.
- But please don't go! This is still interesting because:

- The running time of our algorithm, although finite with probability one, has infinite mean.
- But please don't go! This is still interesting because:
 - This is the first exact simulation algorithm for generic multidimensional diffusions (aren't you curious?).

- The running time of our algorithm, although finite with probability one, has infinite mean.
- But please don't go! This is still interesting because:
 - This is the first exact simulation algorithm for generic multidimensional diffusions (aren't you curious?).
 - This requires a novel conceptual framework, different from Lamperti's transformation.

- The running time of our algorithm, although finite with probability one, has infinite mean.
- But please don't go! This is still interesting because:
 - This is the first exact simulation algorithm for generic multidimensional diffusions (aren't you curious?).
 - This requires a novel conceptual framework, different from Lamperti's transformation.
 - Check out interesting algorithmic ideas: Multilevel Monte Carlo, Bernoulli factories and ε -strong simulation.

2 SDEs with Identity Diffusion Matrix

Model Setup

• Assume $X(\cdot)$ is $\tilde{\mathbb{P}}$ -Brownian motion.

Define

$$L(t) = \exp\left(\sum_{i=1}^{d} \int_{0}^{t} \mu_{i}(X(t)) dX_{i}(t) - \frac{1}{2} \int_{0}^{t} \|\mu(X(t))\|^{2} dt\right),$$

• If $\mu(\cdot)$ is Lipchitz continuous, then $L(\cdot)$ is a martingale, define

$$d\mathbb{P} = L(T)d\tilde{\mathbb{P}}$$

• There exist a \mathbb{P} -Brownian motion $W(\cdot)$, such that

$$X(t)=X(0)+\int_0^t \mu(X(s))ds+W(t); \quad 0\leq t\leq T.$$

Direct Acceptance-Rejection

- Step 1: Propose X(T) under measure ℙ̃, which is Normal distribution.
- Step 2: Accept the proposal with probability proportional to L(T).

Direct Acceptance-Rejection

- Step 1: Propose X(T) under measure ℙ̃, which is Normal distribution.
- Step 2: Accept the proposal with probability proportional to L(T).

There are two challenges in the execution of Step 2:

- Unboundedness of L(T).
- 2 "Intractability" of stochastic integral in L(T).

Conditional on integer part of L(T)

- Assume we can sample L(T) under \mathbb{P} and $\tilde{\mathbb{P}}$.
- Suppose U ~ Unif(0,1) independent of everything else,

 $\mathbb{P}(X(T) \in dx | \lfloor L(T) \rfloor = k)$ = $\tilde{\mathbb{P}}(X(T) \in dx | (k+1)U < L(T); \lfloor L(T) \rfloor = k)$

Conditional on integer part of L(T)

- Assume we can sample L(T) under \mathbb{P} and $\tilde{\mathbb{P}}$.
- Suppose *U* ~ Unif(0,1) independent of everything else,

$$\begin{split} \mathbb{P}(X(T) \in dx | \lfloor L(T) \rfloor &= k) \\ &= \tilde{\mathbb{P}}(X(T) \in dx | (k+1)U < L(T); \lfloor L(T) \rfloor = k) \end{split}$$

Acceptance-Rejection with Unbounded Likelihood Ratio

- **Step 1**: Sample $\lfloor L(T) \rfloor$ under measure \mathbb{P} , let $k = \lfloor L(T) \rfloor$.
- Step 2: Sample $U \sim \text{Unif}(0,1)$, let u = U.
- Step 3: Sample (X(T), L(T)) jointly from ℙ̃ until max((k+1)u, k) < L(T) < k + 1.

- We don't need to simulate L(T) without any bias.
- It suffices to be able to simulate $\lfloor L(T) \rfloor$ and/or I(a < L(T) < b).
- Approximate L(T) by ε -strong simulation.

Theorem (Blanchet, Chen and Dong (2017))

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and the following multidimensional SDE:

$$dY(t) = \alpha(Y(t))dt + \nu(Y(t))dW(t), \quad Y(t) = y_0$$
(1)

Suppose that $\alpha(\cdot)$ and $\nu(\cdot)$ satisfy suitable regularity conditions. Then, given any deterministic $\varepsilon > 0$, we can simulate a piecewise constant process $Y_{\varepsilon}(\cdot)$, such that

$$\sup_{t\in[0,T]}\|Y_{\varepsilon}(t)-Y(t)\|_{2}\leq\varepsilon\quad a.s.$$

Furthermore, for any m > 1 and $0 < \varepsilon_m < \cdots < \varepsilon_1 < 1$, we can simulate Y_{ε_m} conditional on $Y_{\varepsilon_1}, \ldots, Y_{\varepsilon_{m-1}}$.

Illustration of ε -Strong Simulation

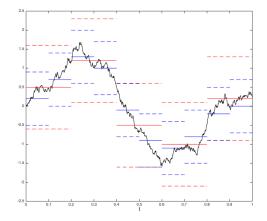


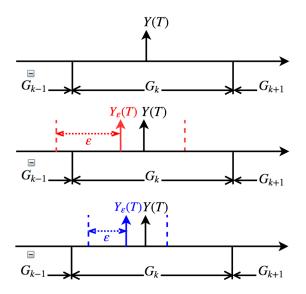
Figure: Illustation for ε -Strong Simulation in one dimension. Black Path = True; Red Line = Coarse Approximation; Red Dashed Line = Coarse Error Bound; Blue Line = Refined Approximation; Blue Dashed Line = Refined Error Bound;

Jose Blanchet (Columbia/Stanford)

Exact Simulation of Diffusions

July 7, 2017 14 / 28

Localization for SDEs: d = 1 for Illustration



ε -Strong Simulation of $(X(\cdot), L(\cdot))$

• Under measure \mathbb{P} :

$$\begin{cases} dL(t) = L(t) \|\mu(X(t))\|_2^2 dt + \mu^T(X(t)) dW(t), \\ dX(t) = \mu(X(t)) dt + dW(t), \end{cases}$$

• Under measure $\tilde{\mathbb{P}}$:

$$\begin{cases} dL(t) = L(t)\mu^{T}(X(t))dX(t). \\ dX(t) = dX(t). \end{cases}$$

- ε -strong simulation is applicable to $(X(\cdot), L(\cdot))$ under both measure.
- Under measure $\tilde{\mathbb{P}}$, the first step of ε -strong simulation is sampling X(T).

Exact Simulation of SDEs with Identity Diffusion Matrix

- Step 1: Sample $\lfloor L(T) \rfloor$ under measure \mathbb{P} by ε -strong simulation, let $k = \lfloor L(T) \rfloor$.
- Step 2: Sample $U \sim \text{Unif}(0, 1)$, let u = U.
- Step 3: Apply ε -strong simulation to sample $I(\max((k+1)u, k) < L(T) < k+1)$ and X(T) under measure $\tilde{\mathbb{P}}$.
- Step 4: Output X(T) if I(max((k+1)u, k) < L(T) < k + 1) = 1; otherwise return to Step 2.

1 Introduction

2 SDEs with Identity Diffusion Matrix

$$dX(t) = \mu(X(t))dt + \sigma(X(t))dW(t).$$

- Girsanov's theorem can't substantially simplify the problem.
- Idea: Construct an unbiased estimator of density of X(T).

• Suppose $r_n \searrow 0$; $B_{r_n}(x) =$ Ball with radius r_n centered at x;

$$\hat{p}_n(x) = [V(B_{r_n}(0))]^{-1} \times I(X(T) \in B_{r_n}(x)); \hat{p}_0(x) = 0.$$

- We can sample $\hat{p}_n(x)$ by ε -strong simulation.
- Due to smoothness of density

$$p(x) = \mathbb{E}\left[\sum_{n=0}^{\infty} \left(\hat{p}_{n+1}(x) - \hat{p}_n(x)\right)\right].$$

• Connection to multi-level Monte Carlo (Giles (2008), Rhee-Glynn (2015))

• For a given integer r.v. N, define

$$\Lambda_n(x) = \sum_{k=0}^n \frac{\hat{p}_{k+1}(x) - \hat{p}_k(x)}{\mathbb{P}(N \ge k)} \quad \text{for} \quad n \ge 0.$$

- $p(x) = \mathbb{E}[\Lambda_N(x)].$
- We want the estimator to be nonnegative and bounded.

Key Lemma

For any compact set G, there exist a family of random variables $\{\Lambda_n^+(x); n \in \mathbb{N}, x \in G\}$ and computable constants m and $\{m_n; n \in \mathbb{N}\}$, such that the following properties hold:

$$0 \quad 0 \leq \Lambda_n^+(x) \leq m_n < \infty.$$

$$0 \leq \mathbb{E}[\Lambda_n^+(x)] = \mathbb{E}[\Lambda_n(x)] \leq m, \quad \forall n \in \mathbb{N}.$$

Siven *n* and *x*, there is an algorithm to simulate $\Lambda_n^+(x)$.

The constants m and $\{m_n; n \in \mathbb{N}\}$ depend only on set G and bounds on $\mu(\cdot), \sigma(\cdot)$ and their derivatives of order 1, 2, 3.

- $\Lambda_N^+(x)$ is unbiased estimator of p(x), but it is unbounded.
- We introduce an auxiliary r.v. N' coupled with X(T) in the following way

$$\mathbb{P}(N'=n|X(T)=x)\propto\mathbb{P}(N=n)\times E[\Lambda_n^+(x)]$$

• Given N' = n and $X(T) \in G$, the conditional density is easy to sample

$$\mathbb{P}(X(T) \in dx | N' = n, X(T) \in G) \propto \mathbb{E}[\Lambda_n^+(x)].$$

- Sample a compact set G s.t. $X(T) \in G$.
- 2 Sample $(N'|X(T) \in G)$.
- Sample $(X(T)|N', X(T) \in G)$.

- ₹ 🗦 🕨

- Divide the space $\mathbb R$ into disjoint boxes.
- Apply ε-strong simulation to decide the box G to which X(T) belongs.

Step 2: Simulation of N' conditional on $X(T) \in G$

$$\mathbb{P}(N'=n|X(T)\in G)=\frac{\mathbb{P}(N=n)}{\mathbb{P}(X(T)\in G)}\times \int_{G}\mathbb{E}[\Lambda_{n}^{+}(x)]dx.$$

- Use N as proposal for N'.
- Given N = n, accept the proposal with probability $(mV(G))^{-1} \int_G \mathbb{E}[\Lambda_n^+(x)] dx$.
 - Use upper bounds recall *m* and *m_n*;

Step 3: Simulation of X(T) conditional on $X(T) \in G$ and N'

$$\mathbb{P}(X(T) \in dx | N' = n, X(T) \in G) \propto \mathbb{E}[\Lambda_n^+(x)],$$

- Sample x from uniform distribution of G.
- Accept x as X(T) with probability $\propto \mathbb{E}[\Lambda_n^+(x)]$
 - Sample $\Lambda_n^+(x)$ and $U \sim \text{Unif}(0, m_n)$.
 - Accept x if $U \leq \Lambda_n^+(x)$.

- First exact sampler for generic *d*-dimensional diffusions.
- Algorithm exposes the role of ε -strong simulation.
- Interesting unbiased estimators (density).
- Interplay of several debiasing techniques.
- Key Open Problem: Can we execute Y(T) ∈ G in finite expected time?