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Goal:

Goal: Present a comprehensive framework
for decision making under model uncertainty...

This presentation is an invitation to read these two papers:
https://arxiv.org/abs/1604.01446
https://arxiv.org/abs/1610.05627
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Example: Model Uncertainty in Ruin Probabilities

R (t) = the reserve (perhaps multiple lines) at time t.

Ruin probability (in finite time horizon T )

uT = Ptrue (R (t) ∈ B for some t ∈ [0,T ]) .

B is a set which models bankruptcy.

Problem: Model (Ptrue) may be complex, intractable or simply
unknown...
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A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

P (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.
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Desirable Elements of Distributionally Robust Formulation

Would like Dc (·) to have wide flexibility (even non-parametric).

Want optimization to be tractable.

Want to preserve advantages of using P0.

Want a way to estimate δ.
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Connections to Distributionally Robust Optimization

Standard choices based on divergence (such as Kullback-Leibler) -
Hansen & Sargent (2016)

D (v ||µ) = Ev
(
log
(
dv
dµ

))
.

Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

Big problem: Absolute continuity may typically be violated...
Think of using Brownian motion as a proxy model for R (t)...

We advocate using optimal transport costs (e.g. Wasserstein
distance).
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Elements of Optimal Transport Costs

SX and SY be Polish spaces.

BSX and BSY be the associated Borel σ-fields.

c (·) : SX × SX → [0,∞) be lower semicontinuous.
µ (·) and v (·) Borel probability measures defined on SX and SY .
Given π a Borel prob. measure on SX × SY ,

πX (A) = π (A× SY ) and πY (C ) = π (SX × C ) .
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Definition of Optimal Transport Costs

Define

Dc (µ, v) = min
π
{Eπ (c (X ,Y )) : πX = µ and πY = v}.

This is the so-called Kantorovich problem (see Villani (2008)).

If c (·) is a metric then Dc (µ, v) is a Wasserstein distance of order 1.
If c (x , y) = 0 if and only if x = y then Dc (µ, v) = 0 if and only if
µ = v .

Kantorovich’s problem is a "nice" infinite dimensional linear
programming problem.
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Illustration of Optimal Transport Costs
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Fundamental Theorem of Robust Performance Analysis

Theorem (B. and Murthy (2016))

Suppose that c (·) is lower semicontinuous and that h (·) is upper
semicontinuous with EP0 |f (X )| < ∞. Then,

sup
Dc (P0,P )≤δ

EP (f (Y )) = inf
λ≥0

EP0 [λδ+ sup
z
{f (z)− λc (X , z)}].

Moreover, (π∗) and dual λ∗ are primal-dual solutions if and only if

f (y)− λ∗c (x , y) = sup
z
{f (z)− λ∗c (x , z)} (x , y) -π∗ a.s.

λ∗ (Eπ∗ [c (X ,Y )− δ]) = 0.
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Implications for Risk Analysis

Theorem (B. and Murthy (2016))

Suppose that c (·) is lower semicontinuous and that B is a closed set. Let
cB (x) = inf{c (x , y) : y ∈ B}, then

sup
Dc (P0,P )≤δ

P (Y ∈ B) = P0 (cB (X ) ≤ 1/λ∗) ,

where λ∗ ≥ 0 satisfies (under mild assumptions on cB (X ))

δ = E0 [cB (X ) I (cB (X ) ≤ 1/λ∗)] .
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Application 1: Back to Classical Risk Problem

Suppose that

c (x , y) = dJ (x (·) , y (·)) = Skorokhod J1 metric.
= inf

φ(·) bijection
{ sup
t∈[0,1]

|x (t)− y (φ (t))| , sup
t∈[0,1]

|φ (t)− t|}.

If R (t) = b− Z (t), then ruin during time interval [0, 1] is

Bb = {z (·) : b ≤ sup
t∈[0,1]

z (t)}.

Let P0 (·) be the Wiener measure want to compute

sup
Dc (P0,P )≤δ

P (Z ∈ Bb) .
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Application 1: Computing Distance to Bankruptcy

So: {cBb (z) ≤ 1/λ∗} = {supt∈[0,1] z (t) ≥ b− 1/λ∗}, and

sup
Dc (P0,P )≤δ

P (Z ∈ Bb) = P0

(
sup
t∈[0,1]

Z (t) ≥ b− 1/λ∗
)
.
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Application 1: Computing Uncertainty Size

Note any coupling π so that πX = P0 and πY = P satisfies

Dc (P0,P) ≤ Eπ [c (X ,Y )] ≈ δ.

So use any coupling between evidence and P0 or expert knowledge.

We discuss choosing δ non-parametrically in a moment
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Application 1: Illustration of Coupling

Given arrivals and claim sizes let Z (t) = m−1/2
2 ∑

N (t)
k=1 (Xk −m1)
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Application 1: Coupling in Action
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Application 1: Numerical Example

Assume Poisson arrivals.

Pareto claim sizes with index 2.2 (P (V > t) = 1/(1+ t)2.2).
Cost c (x , y) = dJ (x , y)

2 <—note power of 2.

Used Algorithm 1 to calibrate (estimating means and variances from
data).

b P0(Ruin)
Ptrue (Ruin)

P ∗robust (Ruin)
Ptrue (Ruin)

100 1.07× 10−1 12.28
150 2.52× 10−4 10.65
200 5.35× 10−8 10.80
250 1.15× 10−12 10.98
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Additional Applications: Multidimensional Ruin Problems

Paper: Quantifying Distributional Model Risk via Optimal Transport
(B. & Murthy ’16) https://arxiv.org/abs/1604.01446 contains
more applications
Multidimensional risk processes (explicit evaluation of cB (x) for dJ
metric).
Control: minθ supP :D (P ,P0)≤δ E [L (θ,Z )] <—robust optimal
reinsurance.
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Connections to Machine Learning

Connection to machine learning helps further understand
why optimal transport costs are sensible choices...

Paper:
Robust Wasserstein Profile Inference and

Applications to Machine Learning (B., Murthy & Kang ’16)
https://arxiv.org/abs/1610.05627
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Robust Performance Analysis in Machine Learning

Consider estimating β∗ ∈ Rm in linear regression

Yi = βXi + ei ,

where {(Yi ,Xi )}ni=1 are data points.

Optimal Least Squares approach consists in estimating β∗ via

MSE (β) = min
β

1
n

n

∑
i=1

(
Yi − βTXi

)2
.

Apply the distributionally robust estimator based on optimal
transport.
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Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖2q if y = y ′

∞ if y 6= y ′ .

Then, if 1/p + 1/q = 1

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
=
√
MSE (β) +

√
δ ‖β‖2p .

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).
Remark 2: Also representations for support vector machines, LAD lasso,
group lasso, adaptive lasso, and more!
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For Instance... Regularized Estimators

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖q if y = y ′

∞ if y 6= y ′ .

Then,

sup
P : Dc (P ,Pn)≤δ

EP
[
log(1+ e−Y βTX )

]
=
1
n

n

∑
i=1
log(1+ e−Yi β

TXi ) + δ ‖β‖p .

Remark 1: This is regularized logistic regression (see also Esfahani and
Kuhn 2015).
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Connections to Empirical Likelihood

Paper:
https://arxiv.org/abs/1610.05627

Also chooses δ optimally introducing
an extension of Empirical Likelihood

called "Robust Wasserstein Profile Inference".
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The Robust Wasserstein Profile Function

Pick δ = 95% quantile of Rn(β∗) and we show that

nRn(β∗) ≈d
E [e2]

E [e2]− (E |e|)2
‖N(0,Cov (X ))‖2q .

Blanchet (Columbia U. and Stanford U.) 24 / 25



Conclusions

Presented systematic approach for quantifying model misspecification.

Approach based on optimal transport

sup
D (P ,P0)≤δ

P (X ∈ B) = P0 (cB (X ) ≤ 1/λ∗) .

Closed forms solutions, tractable in terms of P0, feasible calibration of
δ.

New statistical estimators, connections to machine learning &
regularization.

Extensions of Empirical Likelihood & connections to optimal
regularization.
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