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A Little Story: Motivation and Goal

We want to develop a systematic, data driven, approach for stress
testing.
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Formalizing

o Risk factors are encoded as X € R and the exposure is h (X) (a
function of the risk factors).
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Formalizing

o Risk factors are encoded as X € R and the exposure is h (X) (a
function of the risk factors).

e Want to compute (for simplicity)
Risk = Egrue (h (X))

@ Pyrye () represents the unknown probabilistic law of X <— this is a
problem.

e How do we estimate E;,. (h(X)) combining empirical sample
and what-if scenarios in a meaningful way?
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Empirical Distributions and Stress Testing

@ Let's say the BANK has an empirical sample Xi, ..., X, i.i.d. copies
of X.
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Empirical Distributions and Stress Testing

o Let’s say the BANK has an empirical sample Xi, ..., X;, i.i.d. copies
of X.

@ Natural non-parametric estimator

@ Assume that the REGULATOR produces Y7, ..., Y, i.i.d. copies from
some r.v. Y. <— Think "WHAT-IF" distribution.

@ How do we incorporate the scenarios Y3, ..., Y, as a form of
stress testing?
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Incorporating Scenarios as Stress Testing

o Step 1: Define Z; = X;, fori=1,...,nand Z,;; = Yjforj=1,..,n
(put ALL scenarios X's and Y's together).
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Incorporating Scenarios as Stress Testing

o Step 1: Define Z; = X;, fori=1,...,nand Z,;; = Yjforj=1,..,n
(put ALL scenarios X's and Y's together).

o Step 2: Let

1 n
u, (dx) = o 1‘5{Xj} (dx) <— empirical. measure.
J:

2n
Vo (dz) = 25{21-} (dx) w (j) <-— prob. measure.
j=1
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Incorporating Scenarios as Stress Testing

o Step 1: Define Z; = X;, fori=1,...,nand Z,;; = Yjforj=1,..,n
(put ALL scenarios X's and Y's together).
o Step 2: Let

1

n:
J

n
u, (dx) = d¢x;) (dx) <— empirical. measure.
-1
2n
Vo (dz) = 25{21-} (dx) w (j) <-— prob. measure.
j=1
o Step 3: Consider

sup (s, (1(2))d (. 1) <6}

Blanchet (Columbia) 5/19



Natural Questions...

sup (s, (0(2)) (v 1) < 3}

@ How to choose uncertainty region?
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Natural Questions...

sup (s, (0(2)) (v 1) < 3}

@ How to choose uncertainty region?
@ How is this different from distributionally robust optimization?

@ OK, so what's the new stuff here?
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Choosing The Region and Connections to Distributionally

Robust Optimization

@ We advocate choosing Wasserstein's distance

d(vapu,) = min{Zﬁ(i,j) |Zj — Xilo:mz = v, Tx = 1, }.
iJ
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@ Other regions based on divergence (such as Kullback-Leibler) -
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@ Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).
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Choosing The Region and Connections to Distributionally

Robust Optimization

@ We advocate choosing Wasserstein's distance

d(vapu,) = min{Zn(i,j) |Zj — Xilo:mz = v, Tx = 1, }.

ij

@ Other regions based on divergence (such as Kullback-Leibler) -
Hansen & Sargent (2016)

D (vnll,) = &, (1o " )

@ Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

e It is crucial that v, (Y;) > 0: WE MUST VIOLATE ABSOLUTE
CONTINUITY TO DO STRESS TESTING.
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What's New Here?

@ Distributionally robust stochastic programming using Wasserstein
distance: Kuhn et al. (2015)...
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What's New Here?

@ Distributionally robust stochastic programming using Wasserstein
distance: Kuhn et al. (2015)...

@ Distributionally robust stress testing formulation is NEW here.
e Main Contribution (to explain in the sequel):

We explain how to optimally select § and obtain confidence intervals.
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Profile Function

o Introducing Wasserstein’s Profile Function

Ra (7)
= min{Zﬂ(i,j) |Zj = Xil2: mz = va, tx = p,, By, (h(Z)) = 7}
= min{Zﬂ(i,j)|Zj—Xi|237TX:,unvEn<h(Z)>:')’}-
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Profile Function

o Introducing Wasserstein’s Profile Function

Ra (7)
= min{Zﬂ(i,j) |Zj = Xil2: mz = va, tx = p,, By, (h(Z)) = 7}
= min{Zﬂ(i,j)|Zj—Xi|237TX:,unvEn<h(Z)>:')’}-

@ Idea borrowed from Empirical Likelihood, Owen (1988).
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Asymptotic Distribution for Wasserstein Profile Function

Theorem (B. and Kang 2016)

Suppose h(X) has a density f (), h(Y') has density g (), and
E (h (X)*> +h (Y)2) < 0o. Then under the null hypothesis, i.e. Hy :
V= Etrue (h (X)),

nR(7) — KXY.
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How to Use The Wasserstein Profile Function?

Ry ()

a
P(R,(v)<8)=P(x?*<6n/Kk)=.95
Under H, we have P(y € Red interval)=.95
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Incorporating Scenarios as Stress Testing

o Compute § so that P ()(% < (Sn/K) = .95 and solve the LP
2n
max ) h(Z;)w (j)
j=1
Y (i) X~ 2, <6

Yy =w() Vi, L) = vi

7 (i,j) >0Vi,j
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Asymptotic Distribution for Wasserstein Profile Function

Theorem (B. and Kang 2016)
Suppose H (X) = (h1(X), ..., hg (X)) has a density f (-), H(Z) has

density g (-), and E (h,- (X)? + hj (Y)2) < oo. Then under the null
hypothesis, i.e. Hy : v; = Etre (hi (X)) for all i, then
o Whend =1,
nR,(7) = x1x3.
o When d = 2,

nR, () = xUT Var (H (X)) U with U ~ N (0,1) .

o When d > 3,

, 1+1/(d+1)
nt/?* @2 R, (v) = K4 (\/UTVar (H(X))U )

v
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An Interesting Connection to Machine Learning

Theorem (B. Kang and Murthy 2016)
Suppose you want to find B such that

2
inf  sup EP[HY—ﬁTXH 1,
B dc(Py,)<s 2

then choosing a suitably chosen function C (-) the formulation turns out
to be equivalent to genearlized LASSO. And regularization parameter
corresponds to 8. So one can choose it without using cross-validation.
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Now to Infinite Dimensions

Let's move to robust performance analysis of stochastic processes...
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Robust Performance Analysis for Stochastic Processes

Theorem (B. & Murthy (2016))

Suppose X takes values on a Polish space S. Let
C(x,y):SxS —[0,00)

satisfy C (x,x) =0, C(x,y) < C(x,z)+ C(z,y), and lower
semicontinuous. Consider for A closed

OPT = supP(Y €A)
s.t. (X,Y) satisfies : E(C(X,Y)) <6 and X follows Py.

Then,

OPT = Py (X € B(8)) = Py (yigi\C(X,y) <1/A (5)) .

V.
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Intuition for Multidimensional rv's

Question:
max P(Y € 4)
EC(X,Y)<3§
X follows P,

Cost:
cx,Y)=1X —Yl,

@

Blanchet (Columbia)

Answer:
Py(X € B)

Shape of Set B
DependsonC(.)

Cost:
CX,Y)=|X-Y|,

17 /
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Conclusions: We Can Robustify in Great Generality!

@ New inference methodology designed to incorporate stress-testing
scenarios.
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Conclusions: We Can Robustify in Great Generality!

@ New inference methodology designed to incorporate stress-testing
scenarios.

@ New robust performance analysis analysis results for stochastic
processes.

@ Last word of caution: there is stuff that is just too bad to be
robustified...
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Not Everything Can be Robustified...

Mexican
immigrant!

Now that we can robustify
in great generality...

Nothing can possibly go wrong...
Right?
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