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A Little Story: Motivation and Goal

We want to develop a systematic, data driven, approach for stress
testing.
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Formalizing

Risk factors are encoded as X ∈ Rd and the exposure is h (X ) (a
function of the risk factors).

Want to compute (for simplicity)

Risk = Etrue (h (X ))

Ptrue (·) represents the unknown probabilistic law of X <– this is a
problem.

How do we estimate Etrue (h (X )) combining empirical sample
and what-if scenarios in a meaningful way?
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Empirical Distributions and Stress Testing

Let’s say the BANK has an empirical sample X1, ...,Xn, i.i.d. copies
of X .

Natural non-parametric estimator

1
n

n

∑
j=1
Xj .

Assume that the REGULATOR produces Y1, ...,Yn i.i.d. copies from
some r.v. Y . <– Think "WHAT-IF" distribution.

How do we incorporate the scenarios Y1, ...,Yn as a form of
stress testing?
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Incorporating Scenarios as Stress Testing

Step 1: Define Zi = Xi , for i = 1, ..., n and Zn+j = Yj for j = 1, ..., n
(put ALL scenarios X’s and Y ’s together).

Step 2: Let

µn (dx) =
1
n

n

∑
j=1

δ{Xj} (dx) <—empirical. measure.

vn (dz) =
2n

∑
j=1

δ{Zj} (dx)w (j) <—prob. measure.

Step 3: Consider

sup
vn(·)
{Evn (h (Z )) : d (vn, µn) ≤ δ}.
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Natural Questions...

sup
vn(·)
{Evn (h (Z )) : d (vn, µn) ≤ δ}.

How to choose uncertainty region?

How is this different from distributionally robust optimization?

OK, so what’s the new stuff here?
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Choosing The Region and Connections to Distributionally
Robust Optimization

We advocate choosing Wasserstein’s distance

d (vn, µn) = min{∑
i ,j

π (i , j) |Zj − Xi |2 : πZ = vn,πX = µn}.

Other regions based on divergence (such as Kullback-Leibler) -
Hansen & Sargent (2016)

D (vn ||µn) = Evn
(
log
(
dvn
dµn

))
.

Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

It is crucial that vn (Yj ) > 0: WE MUST VIOLATE ABSOLUTE
CONTINUITY TO DO STRESS TESTING.
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What’s New Here?

Distributionally robust stochastic programming using Wasserstein
distance: Kuhn et al. (2015)...

Distributionally robust stress testing formulation is NEW here.

Main Contribution (to explain in the sequel):

We explain how to optimally select δ and obtain confidence intervals.
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Profile Function

Introducing Wasserstein’s Profile Function

Rn (γ)

= min{∑
i ,j

π (i , j) |Zj − Xi |2 : πZ = vn,πX = µn,Evn (h (Z )) = γ}

= min{∑
i ,j

π (i , j) |Zj − Xi |2 : πX = µn,Eπ (h (Z )) = γ}.

Idea borrowed from Empirical Likelihood, Owen (1988).
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Asymptotic Distribution for Wasserstein Profile Function

Theorem (B. and Kang 2016)

Suppose h(X ) has a density f (·), h (Y ) has density g (·), and
E
(
h (X )2 + h (Y )2

)
< ∞. Then under the null hypothesis, i.e. H0 :

γ = Etrue (h (X )),
nRn(γ)→ κχ21.
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How to Use The Wasserstein Profile Function?
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Incorporating Scenarios as Stress Testing

Compute δ so that P
(
χ21 ≤ δn/κ

)
= .95 and solve the LP

max
2n

∑
j=1
h (Zj )w (j)

∑
i

π (i , j) |Xi − Zj |2 ≤ δ ∀j

∑
i

π (i , j) = w (j) ∀j , ∑
j

π (i , j) =
1
n
∀i

π (i , j) ≥ 0 ∀i , j
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Asymptotic Distribution for Wasserstein Profile Function

Theorem (B. and Kang 2016)

Suppose H (X ) = (h1(X ), ..., hd (X )) has a density f (·), H (Z ) has
density g (·), and E

(
hi (X )

2 + hi (Y )
2
)
< ∞. Then under the null

hypothesis, i.e. H0 : γi = Etrue (hi (X )) for all i , then

When d = 1,
nRn(γ)⇒ κ1χ

2
1.

When d = 2,

nRn(γ)⇒ κ2UTVar (H (X ))U with U ∼ N (0, I ) .

When d ≥ 3,

n1/2+ 3
2d+2Rn(γ)⇒ κd

(√
UTVar (H (X ))U

)1+1/(d+1)

.
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An Interesting Connection to Machine Learning

Theorem (B. Kang and Murthy 2016)

Suppose you want to find β such that

inf
β

sup
dC (P ,µn)≤δ

EP [
∥∥∥Y − βTX

∥∥∥2
2
],

then choosing a suitably chosen function C (·) the formulation turns out
to be equivalent to genearlized LASSO. And regularization parameter
corresponds to δ. So one can choose it without using cross-validation.
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Now to Infinite Dimensions

Let’s move to robust performance analysis of stochastic processes...
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Robust Performance Analysis for Stochastic Processes

Theorem (B. & Murthy (2016))

Suppose X takes values on a Polish space S . Let

C (x , y) : S × S → [0,∞)

satisfy C (x , x) = 0, C (x , y) ≤ C (x , z) + C (z , y), and lower
semicontinuous. Consider for A closed

OPT = supP (Y ∈ A)
s.t. (X ,Y ) satisfies : E (C (X ,Y )) ≤ δ and X follows P0.

Then,

OPT = P0 (X ∈ B (δ)) = P0
(
inf
y∈A

C (X , y) ≤ 1/λ∗ (δ)

)
.
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Intuition for Multidimensional rv’s
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Conclusions: We Can Robustify in Great Generality!

New inference methodology designed to incorporate stress-testing
scenarios.

New robust performance analysis analysis results for stochastic
processes.

Last word of caution: there is stuff that is just too bad to be
robustified...
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Not Everything Can be Robustified...
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