On Robust Risk Analysis

Jose Blanchet (based on work with Y. Kang and K. Murthy)

Columbia University. Department of Statistics, Department of IEOR.

4 0 8

We want to develop a systematic, data driven, approach for stress testing.

* す唐 ト す唐 ト

4 0 8

Risk factors are encoded as $X \in R^d$ and the exposure is $h(X)$ (a function of the risk factors).

4 0 8

 \rightarrow -4 B X

- Risk factors are encoded as $X \in R^d$ and the exposure is $h(X)$ (a function of the risk factors).
- Want to compute (for simplicity)

$$
\mathit{Risk} = E_{\mathit{true}}\left(h\left(X\right)\right)
$$

4 0 8

- Risk factors are encoded as $X \in R^d$ and the exposure is $h(X)$ (a function of the risk factors).
- Want to compute (for simplicity)

$$
\mathit{Risk}=\mathit{E}_{\mathit{true}}\left(h\left(X\right)\right)
$$

 \bullet $P_{true}(\cdot)$ represents the unknown probabilistic law of $X \leq$ this is a problem.

医单位 医单位

- Risk factors are encoded as $X \in R^d$ and the exposure is $h(X)$ (a function of the risk factors).
- Want to compute (for simplicity)

$$
Risk = E_{true} (h(X))
$$

- \bullet $P_{true} (\cdot)$ represents the unknown probabilistic law of $X \leq$ this is a problem.
- How do we estimate $E_{true}(h(X))$ combining empirical sample and what-if scenarios in a meaningful way?

K ロ ▶ K 優 ▶ K 둘 ▶ K 둘 ▶ ...

• Let's say the **BANK** has an empirical sample $X_1, ..., X_n$, i.i.d. copies of X .

4 0 8

4 E X 4 E X

- Let's say the **BANK** has an empirical sample $X_1, ..., X_n$, i.i.d. copies of X .
- Natural non-parametric estimator

$$
\frac{1}{n}\sum_{j=1}^n X_j.
$$

4 0 8

4 E X 4 E X

- Let's say the **BANK** has an empirical sample $X_1, ..., X_n$, i.i.d. copies of X.
- Natural non-parametric estimator

$$
\frac{1}{n}\sum_{j=1}^n X_j.
$$

• Assume that the **REGULATOR** produces $Y_1, ..., Y_n$ i.i.d. copies from some r.v. $Y \leq -T$ hink "WHAT-IF" distribution.

メロメ メ母メ メミメ メミメ

- Let's say the **BANK** has an empirical sample $X_1, ..., X_n$, i.i.d. copies of X.
- Natural non-parametric estimator

$$
\frac{1}{n}\sum_{j=1}^n X_j.
$$

- Assume that the REGULATOR produces $Y_1, ..., Y_n$ i.i.d. copies from some r.v. $Y \leq -T$ hink "WHAT-IF" distribution.
- How do we incorporate the scenarios $Y_1, ..., Y_n$ as a form of stress testing?

K ロ ▶ K 優 ▶ K 둘 ▶ K 둘 ▶ ...

Incorporating Scenarios as Stress Testing

 $\mathsf{Step~1:}$ Define $Z_i=X_i,$ for $i=1,...,n$ and $Z_{n+j}=Y_j$ for $j=1,...,n$ (put ALL scenarios X 's and Y's together).

メロメ メ御メ メミメ メミメン

Incorporating Scenarios as Stress Testing

- $\mathsf{Step~1:}$ Define $Z_i=X_i,$ for $i=1,...,n$ and $Z_{n+j}=Y_j$ for $j=1,...,n$ (put ALL scenarios X 's and Y's together).
- **Step 2: Let**

$$
\mu_n(dx) = \frac{1}{n} \sum_{j=1}^n \delta_{\{X_j\}}(dx) < \text{empirical. measure.}
$$
\n
$$
v_n(dz) = \sum_{j=1}^{2n} \delta_{\{Z_j\}}(dx) w(j) < \text{prob. measure.}
$$

K ロ ▶ K 優 ▶ K 둘 ▶ K 둘 ▶ ...

Incorporating Scenarios as Stress Testing

- $\mathsf{Step~1:}$ Define $Z_i=X_i,$ for $i=1,...,n$ and $Z_{n+j}=Y_j$ for $j=1,...,n$ (put ALL scenarios X 's and Y's together).
- **Step 2: Let**

$$
\mu_n(dx) = \frac{1}{n} \sum_{j=1}^n \delta_{\{X_j\}}(dx) < \text{empirical. measure.}
$$
\n
$$
v_n(dz) = \sum_{j=1}^{2n} \delta_{\{Z_j\}}(dx) w(j) < \text{prob. measure.}
$$

Step 3: Consider

$$
\sup_{v_n(\cdot)}\{E_{v_n}\left(h\left(Z\right)\right):d\left(v_n,\mu_n\right)\leq\delta\}.
$$

メロメ メ御 メメ きょくきょう

$$
\sup_{v_n(\cdot)}\{E_{v_n}\left(h\left(Z\right)\right):d\left(v_n,\mu_n\right)\leq\delta\}.
$$

 \bullet How to choose uncertainty region?

活

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

$$
\sup_{v_n(\cdot)}\{E_{v_n}\left(h\left(Z\right)\right):d\left(v_n,\mu_n\right)\leq\delta\}.
$$

4 0 8

- How to choose uncertainty region?
- \bullet How is this different from *distributionally* robust optimization?

- 4 B X \rightarrow

$$
\sup_{v_n(\cdot)}\{E_{v_n}\left(h\left(Z\right)\right):d\left(v_n,\mu_n\right)\leq\delta\}.
$$

4 0 8

- How to choose uncertainty region?
- How is this different from *distributionally* robust optimization?
- OK, so what's the new stuff here?

• We advocate choosing Wasserstein's distance

$$
d(v_n, \mu_n) = \min \{ \sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n \}.
$$

4 0 8

4 E X 4 E X

• We advocate choosing Wasserstein's distance

$$
d(v_n, \mu_n) = \min \{ \sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n \}.
$$

Other regions based on divergence (such as Kullback-Leibler) - Hansen & Sargent (2016)

$$
D\left(v_n||\mu_n\right)=E_{v_n}\left(\log\left(\frac{dv_n}{d\mu_n}\right)\right).
$$

그리 그는 어디 그는 어디

• We advocate choosing Wasserstein's distance

$$
d(v_n, \mu_n) = \min \{ \sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n \}.
$$

Other regions based on divergence (such as Kullback-Leibler) - Hansen & Sargent (2016)

$$
D\left(v_n||\mu_n\right)=E_{v_n}\left(\log\left(\frac{dv_n}{d\mu_n}\right)\right).
$$

Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

AD > (3) (3)

• We advocate choosing Wasserstein's distance

$$
d(v_n, \mu_n) = \min \{ \sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n \}.
$$

Other regions based on divergence (such as Kullback-Leibler) - Hansen & Sargent (2016)

$$
D\left(v_n||\mu_n\right)=E_{v_n}\left(\log\left(\frac{dv_n}{d\mu_n}\right)\right).
$$

- Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).
- It is crucial that $v_n(Y_i) > 0$: WE MUST VIOLATE ABSOLUTE CONTINUITY TO DO STRESS TESTING.

メロメ メ母メ メミメ メミメー

d

メロトメタトメ ミドメミド ニミックダウ

Distributionally robust stochastic programming using Wasserstein distance: Kuhn et al. (2015)...

4 0 8

ミメスミメ

Distributionally robust stochastic programming using Wasserstein distance: Kuhn et al. (2015)...

4 0 8

• Distributionally robust stress testing formulation is **NEW** here.

- Distributionally robust stochastic programming using Wasserstein distance: Kuhn et al. (2015)...
- **•** Distributionally robust stress testing formulation is **NEW** here.
- Main Contribution (to explain in the sequel):

We explain how to optimally select δ and obtain confidence intervals.

. Introducing Wasserstein's Profile Function

$$
R_{n}(\gamma)
$$

= $\min \{ \sum_{i,j} \pi(i,j) | Z_{j} - X_{i} |_{2} : \pi_{Z} = v_{n}, \pi_{X} = \mu_{n}, E_{v_{n}} (h(Z)) = \gamma \}$
= $\min \{ \sum_{i,j} \pi(i,j) | Z_{j} - X_{i} |_{2} : \pi_{X} = \mu_{n}, E_{\pi} (h(Z)) = \gamma \}.$

活

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

• Introducing Wasserstein's Profile Function

$$
R_{n}(\gamma)
$$

= $\min \{ \sum_{i,j} \pi(i,j) | Z_{j} - X_{i} |_{2} : \pi_{Z} = v_{n}, \pi_{X} = \mu_{n}, E_{v_{n}} (h(Z)) = \gamma \}$
= $\min \{ \sum_{i,j} \pi(i,j) | Z_{j} - X_{i} |_{2} : \pi_{X} = \mu_{n}, E_{\pi} (h(Z)) = \gamma \}.$

• Idea borrowed from Empirical Likelihood, Owen (1988).

メロメ メタメ メミメ メミメ

Theorem (B. and Kang 2016)

Suppose $h(X)$ has a density $f(\cdot)$, $h(Y)$ has density $g(\cdot)$, and $E\left(h\left(X\right)^2+h\left(Y\right)^2\right)<\infty.$ Then under the null hypothesis, i.e. H_0 : $\gamma = E_{true} (h(X)),$ $nR_n(\gamma) \to \kappa \chi_1^2$.

How to Use The Wasserstein Profile Function?

Compute δ so that $P\left(\chi_1^2 \leq \delta n/\kappa\right) = .95$ and solve the LP

$$
\max \sum_{j=1}^{2n} h(Z_j) \, w(j)
$$
\n
$$
\sum_{i} \pi(i,j) \, |X_i - Z_j|_2 \le \delta \quad \forall j
$$
\n
$$
\sum_{i} \pi(i,j) = w(j) \quad \forall j, \quad \sum_{j} \pi(i,j) = \frac{1}{n} \quad \forall i
$$
\n
$$
\pi(i,j) \ge 0 \quad \forall i,j
$$

メロメ メタメ メミメ メミメ

Asymptotic Distribution for Wasserstein Profile Function

Theorem (B. and Kang 2016)

Suppose $H(X) = (h_1(X), ..., h_d(X))$ has a density $f(\cdot)$, $H(Z)$ has density $g\left(\cdot\right)$, and $E\left(h_{i}\left(X\right)^{2}+h_{i}\left(Y\right)^{2}\right)<\infty.$ Then under the null hypothesis, i.e. H_0 : $\gamma_i = E_{true}$ (h_i (X)) for all i, then

• When $d = 1$.

 $nR_n(\gamma) \Rightarrow \kappa_1 \chi_1^2$.

• When $d = 2$.

 $nR_n(\gamma) \Rightarrow \kappa_2 U^T$ Var $(H(X))$ U with $U \sim N(0, I)$.

• When $d > 3$,

$$
n^{1/2+\frac{3}{2d+2}}R_n(\gamma) \Rightarrow \kappa_d\left(\sqrt{U^T Var\left(H(X)\right)U}\right)^{1+1/(d+1)}.
$$

Theorem (B. Kang and Murthy 2016)

Suppose you want to find β such that

$$
\inf_{\beta} \sup_{d_C(P,\mu_n)\leq \delta} E_P[\left\|Y-\beta^T X\right\|_2^2],
$$

then choosing a suitably chosen function $C(\cdot)$ the formulation turns out to be equivalent to genearlized LASSO. And regularization parameter corresponds to *δ*. So one can choose it without using cross-validation.

Let's move to robust performance analysis of stochastic processes...

4 0 3 4

ミメスミメ

Theorem (B. & Murthy (2016))

Suppose X takes values on a Polish space S . Let

$$
C(x,y): \mathcal{S} \times \mathcal{S} \rightarrow [0,\infty)
$$

satisfy $C(x, x) = 0$, $C(x, y) \le C(x, z) + C(z, y)$, and lower semicontinuous. Consider for A closed

 $OPT = \sup P (Y \in A)$ s.t. (X, Y) satisfies : $E(C(X, Y)) \leq \delta$ and X follows P_0 .

Then,

$$
OPT = P_0 \left(X \in B \left(\delta \right) \right) = P_0 \left(\inf_{y \in A} C \left(X, y \right) \leq 1/\lambda^* \left(\delta \right) \right).
$$

メロト メ都 トメ きょ メ きょう

Intuition for Multidimensional ry's

 $P_0(X \in B)$

Depends on C(.)

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

活

Conclusions: We Can Robustify in Great Generality!

New inference methodology designed to incorporate stress-testing scenarios.

4 0 8

Gradual Gradua

• New inference methodology designed to incorporate stress-testing scenarios.

4 0 8

IK BIN K BIN

New robust performance analysis analysis results for stochastic processes.

- New inference methodology designed to incorporate stress-testing scenarios.
- New robust performance analysis analysis results for stochastic processes.
- Last word of caution: there is stuff that is just too bad to be robustified...

4 0 8

14 B K 4 B K

Not Everything Can be Robustified...

Now that we can robustify in great generality...

Nothing can possibly go wrong... **Right?**

← ロ ▶ → イ 同

 \rightarrow э. \rightarrow -4 э. э