On Robust Risk Analysis

Jose Blanchet (based on work with Y. Kang and K. Murthy)

Columbia University. Department of Statistics, Department of IEOR.

.∋...>

We want to develop a systematic, data driven, approach for stress testing.

A B F A B F

• Risk factors are encoded as $X \in \mathbb{R}^d$ and the exposure is h(X) (a function of the risk factors).

< m²

- A I I I A I I I I

- Risk factors are encoded as $X \in \mathbb{R}^d$ and the exposure is h(X) (a function of the risk factors).
- Want to compute (for simplicity)

$$\textit{Risk} = \textit{E}_{true}\left(h\left(X
ight)
ight)$$

3 K K 3 K

- Risk factors are encoded as $X \in \mathbb{R}^d$ and the exposure is h(X) (a function of the risk factors).
- Want to compute (for simplicity)

$$\textit{Risk} = \textit{E}_{true}\left(h\left(X\right)\right)$$

• *P*_{true} (·) represents the **unknown** probabilistic law of *X* <— this is a problem.

- Risk factors are encoded as $X \in \mathbb{R}^d$ and the exposure is h(X) (a function of the risk factors).
- Want to compute (for simplicity)

$$\textit{Risk} = \textit{E}_{true}\left(h\left(X\right)\right)$$

- *P*_{true} (·) represents the **unknown** probabilistic law of *X* <— this is a problem.
- How do we estimate $E_{true}(h(X))$ combining empirical sample and what-if scenarios in a meaningful way?

イロン イ理と イヨン -

• Let's say the **BANK** has an empirical sample X₁, ..., X_n, i.i.d. copies of X.

▶ < ∃ ▶ < ∃ ▶</p>

- Let's say the **BANK** has an empirical sample X₁, ..., X_n, i.i.d. copies of X.
- Natural non-parametric estimator

$$\frac{1}{n}\sum_{j=1}^n X_j.$$

4 3 > 4 3 >

- Let's say the **BANK** has an empirical sample X₁, ..., X_n, i.i.d. copies of X.
- Natural non-parametric estimator

$$\frac{1}{n}\sum_{j=1}^n X_j.$$

• Assume that the **REGULATOR** produces $Y_1, ..., Y_n$ i.i.d. copies from some r.v. Y. <--- Think "WHAT-IF" distribution.

- Let's say the **BANK** has an empirical sample X₁, ..., X_n, i.i.d. copies of X.
- Natural non-parametric estimator

$$\frac{1}{n}\sum_{j=1}^n X_j.$$

- Assume that the **REGULATOR** produces Y₁, ..., Y_n i.i.d. copies from some r.v. Y. <-- Think "WHAT-IF" distribution.
- How do we incorporate the scenarios $Y_1, ..., Y_n$ as a form of stress testing?

Incorporating Scenarios as Stress Testing

 Step 1: Define Z_i = X_i, for i = 1, ..., n and Z_{n+j} = Y_j for j = 1, ..., n (put ALL scenarios X's and Y's together).

Incorporating Scenarios as Stress Testing

- Step 1: Define $Z_i = X_i$, for i = 1, ..., n and $Z_{n+j} = Y_j$ for j = 1, ..., n (put *ALL* scenarios X's and Y's together).
- Step 2: Let

$$\mu_n(dx) = \frac{1}{n} \sum_{j=1}^n \delta_{\{X_j\}}(dx) <- \text{ empirical. measure.}$$

$$v_n(dz) = \sum_{j=1}^{2n} \delta_{\{Z_j\}}(dx) w(j) <- \text{ prob. measure.}$$

Incorporating Scenarios as Stress Testing

- Step 1: Define $Z_i = X_i$, for i = 1, ..., n and $Z_{n+j} = Y_j$ for j = 1, ..., n (put *ALL* scenarios X's and Y's together).
- Step 2: Let

$$\mu_n(dx) = \frac{1}{n} \sum_{j=1}^n \delta_{\{X_j\}}(dx) <- \text{ empirical. measure.}$$

$$v_n(dz) = \sum_{j=1}^{2n} \delta_{\{Z_j\}}(dx) w(j) <- \text{ prob. measure.}$$

• Step 3: Consider

$$\sup_{v_{n}(\cdot)} \{ E_{v_{n}}(h(Z)) : d(v_{n}, \mu_{n}) \leq \delta \}.$$

$$\sup_{v_{n}(\cdot)} \{ E_{v_{n}}(h(Z)) : d(v_{n}, \mu_{n}) \leq \delta \}.$$

• How to choose uncertainty region?

æ

・ロト ・聞ト ・ ほト ・ ほト

$$\sup_{v_{n}(\cdot)} \{ E_{v_{n}}(h(Z)) : d(v_{n}, \mu_{n}) \leq \delta \}.$$

- How to choose uncertainty region?
- How is this different from *distributionally* robust optimization?

∃ ► < ∃ ►</p>

$$\sup_{v_{n}(\cdot)} \{ E_{v_{n}}(h(Z)) : d(v_{n}, \mu_{n}) \leq \delta \}.$$

- How to choose uncertainty region?
- How is this different from *distributionally* robust optimization?
- OK, so what's the new stuff here?

• We advocate choosing Wasserstein's distance

$$d(v_n, \mu_n) = \min\{\sum_{i,j} \pi(i, j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n\}.$$

• We advocate choosing Wasserstein's distance

$$d(v_n, \mu_n) = \min\{\sum_{i,j} \pi(i, j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n\}.$$

 Other regions based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v_n||\mu_n) = E_{v_n}\left(\log\left(\frac{dv_n}{d\mu_n}\right)\right)$$

• We advocate choosing Wasserstein's distance

$$d(v_n, \mu_n) = \min\{\sum_{i,j} \pi(i, j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n\}.$$

 Other regions based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v_n||\mu_n) = E_{v_n}\left(\log\left(\frac{dv_n}{d\mu_n}\right)\right)$$

Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

• We advocate choosing Wasserstein's distance

$$d(v_n, \mu_n) = \min\{\sum_{i,j} \pi(i, j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n\}.$$

 Other regions based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v_n||\mu_n) = E_{v_n}\left(\log\left(\frac{dv_n}{d\mu_n}\right)\right)$$

- Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).
- It is crucial that $v_n(Y_j) > 0$: WE MUST VIOLATE ABSOLUTE CONTINUITY TO DO STRESS TESTING.

d

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

• Distributionally robust stochastic programming using Wasserstein distance: Kuhn et al. (2015)...

- ∢ ∃ ▶

- Distributionally robust stochastic programming using Wasserstein distance: Kuhn et al. (2015)...
- Distributionally robust stress testing formulation is **NEW** here.

- Distributionally robust stochastic programming using Wasserstein distance: Kuhn et al. (2015)...
- Distributionally robust stress testing formulation is **NEW** here.
- Main Contribution (to explain in the sequel):

We explain how to optimally select δ and obtain confidence intervals.

• Introducing Wasserstein's Profile Function

$$= \min\{\sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n, E_{v_n}(h(Z)) = \gamma\}$$

$$= \min\{\sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_X = \mu_n, E_{\pi}(h(Z)) = \gamma\}.$$

æ

• Introducing Wasserstein's Profile Function

$$= \min\{\sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_Z = v_n, \pi_X = \mu_n, E_{v_n}(h(Z)) = \gamma\}$$

$$= \min\{\sum_{i,j} \pi(i,j) | Z_j - X_i |_2 : \pi_X = \mu_n, E_{\pi}(h(Z)) = \gamma\}.$$

• Idea borrowed from Empirical Likelihood, Owen (1988).

Theorem (B. and Kang 2016)

Suppose h(X) has a density $f(\cdot)$, h(Y) has density $g(\cdot)$, and $E\left(h(X)^2 + h(Y)^2\right) < \infty$. Then under the null hypothesis, i.e. $H_0:$ $\gamma = E_{true} (h(X)),$ $nR_n(\gamma) \to \kappa \chi_1^2.$

How to Use The Wasserstein Profile Function?

• Compute δ so that $P\left(\chi_1^2 \leq \delta n/\kappa
ight) =$.95 and solve the LP

$$\max \sum_{j=1}^{2n} h(Z_j) w(j)$$

$$\sum_{i} \pi(i,j) |X_i - Z_j|_2 \le \delta \quad \forall j$$

$$\sum_{i} \pi(i,j) = w(j) \quad \forall j, \quad \sum_{j} \pi(i,j) = \frac{1}{n} \quad \forall i$$

$$\pi(i,j) \ge 0 \quad \forall i,j$$

Asymptotic Distribution for Wasserstein Profile Function

Theorem (B. and Kang 2016)

Suppose $H(X) = (h_1(X), ..., h_d(X))$ has a density $f(\cdot)$, H(Z) has density $g(\cdot)$, and $E(h_i(X)^2 + h_i(Y)^2) < \infty$. Then under the null hypothesis, i.e. $H_0: \gamma_i = E_{true}(h_i(X))$ for all i, then

When d = 1,

$$nR_n(\gamma) \Rightarrow \kappa_1 \chi_1^2.$$

• When d = 2,

 $nR_{n}(\gamma) \Rightarrow \kappa_{2}U^{T} Var(H(X)) U \text{ with } U \sim N(0, I).$

• When $d \geq 3$,

$$n^{1/2+\frac{3}{2d+2}}R_{n}(\gamma) \Rightarrow \kappa_{d}\left(\sqrt{U^{T}\operatorname{Var}\left(H\left(X\right)\right)U}\right)^{1+1/(d+1)}$$

Theorem (B. Kang and Murthy 2016)

Suppose you want to find β such that

$$\inf_{\beta} \sup_{d_{C}(P,\mu_{n}) \leq \delta} E_{P}[\left\| Y - \beta^{T} X \right\|_{2}^{2}],$$

then choosing a suitably chosen function $C(\cdot)$ the formulation turns out to be equivalent to genearlized LASSO. And regularization parameter corresponds to δ . So one can choose it without using cross-validation. Let's move to robust performance analysis of stochastic processes...

∃ ▶ ∢ ∃ ▶

Theorem (B. & Murthy (2016))

Suppose X takes values on a Polish space S. Let

$$C(x, y) : S \times S \rightarrow [0, \infty)$$

satisfy C(x, x) = 0, $C(x, y) \le C(x, z) + C(z, y)$, and lower semicontinuous. Consider for A closed

 $OPT = \sup P(Y \in A)$ s.t. (X, Y) satisfies : $E(C(X, Y)) \le \delta$ and X follows P_0 .

Then,

$$OPT = P_0 \left(X \in B(\delta) \right) = P_0 \left(\inf_{y \in A} C(X, y) \le 1/\lambda^*(\delta) \right).$$

3

Intuition for Multidimensional rv's

Depends on C(.)

Blanchet (Columbia)

æ

Conclusions: We Can Robustify in Great Generality!

• New inference methodology designed to incorporate stress-testing scenarios.

∃ ► < ∃ ►</p>

- New inference methodology designed to incorporate stress-testing scenarios.
- New robust performance analysis analysis results for stochastic processes.

∃ ► < ∃ ►</p>

- New inference methodology designed to incorporate stress-testing scenarios.
- New robust performance analysis analysis results for stochastic processes.
- Last word of caution: there is stuff that is just too bad to be robustified...

Not Everything Can be Robustified...

Now that we can robustify in great generality...

Nothing can possibly go wrong... Right?

Image: Image:

-∢∃>