Jose Blanchet (joint work with X. Chen, P. Glynn, and K. Murthy)

Columbia University

February, 2015
1 Agenda

2 Multidimensional RBM: What is it?

3 Exact Simulation of RBM

4 Remark on Multidimensional SDEs Sampling

5 Unbiased Steady-state Estimation of RBM

6 Conclusions
1. Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
1. Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
2. Exact Sampling of RBM
1 Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
2 Exact Sampling of RBM
3 A Remark about Sampling of Multidimensional SDEs
Agenda

1. Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
2. Exact Sampling of RBM
3. A Remark about Sampling of Multidimensional SDEs
4. Multilevel Monte Carlo for steady-state analysis of RBM
1 Agenda

2 Multidimensional RBM: What is it?

3 Exact Simulation of RBM

4 Remark on Multidimensional SDEs Sampling

5 Unbiased Steady-state Estimation of RBM

6 Conclusions
Multidimensional RBM?

- Multidimensional RBM: solution to a certain SDE with constraints.
Multidimensional RBM?

- Multidimensional RBM: solution to a certain SDE with constraints.
- Input Data:
Multidimensional RBM?

- Multidimensional RBM: solution to a certain SDE with constraints.
- **Input Data:**

(\(X(t): t \geq 0\)) Brownian Motion drift \(\mu\) covariance \(\sigma\).
Multidimensional RBM?

- Multidimensional RBM: solution to a certain SDE with constraints.
- **Input Data:**
 1. \((X(t) : t \geq 0)\) Brownian Motion drift \(\mu\) covariance \(\sigma\).
 2. Matrix \(R = I - Q^T\) where \(Q\) is a substochastic matrix and zeroes in the diagonal.
Multidimensional RBM?

- Multidimensional RBM: solution to a certain SDE with constraints.

Input Data:

1. \((X(t) : t \geq 0)\) Brownian Motion drift \(\mu\) covariance \(\sigma\).
2. Matrix \(R = I - QT\) where \(Q\) is a substochastic matrix and zeroes in the diagonal.

Model: Solution to a pair \((Y(\cdot), L(\cdot))\) satisfying

\[
dY(t) = dX(t) + RdL(t), \quad Y(0) = y_0
\]

- \(Y(t) \geq 0\) componentwise
- \(dL_j(t) \geq 0\) non-decreasing for \(j = 1, \ldots, d\)
- \(Y_j(t) dL_j(t) = 0\) i.e. \(L_j\) increases only when \(Y_j(t) = 0\)
Multidimensional RBM?

- Multidimensional RBM: solution to a certain SDE with constraints.

Input Data:

1. \((X(t) : t \geq 0)\) Brownian Motion drift \(\mu\) covariance \(\sigma\).
2. Matrix \(R = I - QT\) where \(Q\) is a substochastic matrix and zeroes in the diagonal.

Model: Solution to a pair \((Y(\cdot), L(\cdot))\) satisfying

\[
dY(t) = dX(t) + RdL(t), \quad Y(0) = y_0
\]

\(Y(t) \geq 0\) componentwise

\(dL_j(t) \geq 0\) non-decreasing for \(j = 1, \ldots, d\)

\(Y_j(t) dL_j(t) = 0\) i.e. \(L_j\) increases only when \(Y_j(t) = 0\)

Skorokhod problem: Existence and Uniqueness guaranteed (Harrison-Reiman '81)
Forget RBM for a moment let’s build intuition using Stochastic Fluid Networks (Kella ’96)
Forget RBM for a moment let’s build intuition using Stochastic Fluid Networks (Kella ’96)

Let’s model workload content of a queueing system:
Multidimensional RBM: What does it mean?

- Forget RBM for a moment let’s build intuition using Stochastic Fluid Networks (Kella ’96)
- Let’s model workload content of a queueing system:

1. d dimensional network of servers with routing matrix Q
Forget RBM for a moment let’s build intuition using Stochastic Fluid Networks (Kella ’96)

Let’s model workload content of a queueing system:

1. d dimensional network of servers with routing matrix Q
2. $N_i(t)$: Arrivals to station i during time $[0, t]$.
Multidimensional RBM: What does it mean?

- Forget RBM for a moment let’s build intuition using Stochastic Fluid Networks (Kella ’96)
- Let’s model workload content of a queueing system:
 1. \(d \) dimensional network of servers with routing matrix \(Q \)
 2. \(N_i(t) \): Arrivals to station \(i \) during time \([0, t]\).
 3. \(k \)-th service arriving in the \(i \)-th station: \(V_i(k) \) (independent and identically distributed for each station)
Multidimensional RBM: What does it mean?

- Forget RBM for a moment let’s build intuition using Stochastic Fluid Networks (Kella ’96)
- Let’s model workload content of a queueing system:
 1. d dimensional network of servers with routing matrix Q
 2. $N_i(t)$: Arrivals to station i during time $[0, t]$.
 3. k-th service arriving in the i-th station: $V_i(k)$ (independent and identically distributed for each station)
 4. Total jobs arriving at station i up to time t

\[
J_i(t) := \sum_{k=1}^{N_i(t)} V_i(k)
\]
Multidimensional RBM: What does it mean?

- Assume service rate r_i at the i-th server.
Multidimensional RBM: What does it mean?

- Assume service rate r_i at the i-th server.
- $Y(t) \in \mathbb{R}^d$: System workload at time t

$$dY_i(t) = dJ_i(t) - r_i dt + \sum_{j=1}^{d} Q_{j,i} r_j dt$$

$$+ r_i I(Y_i(t) = 0) dt - \sum_{j=1}^{d} Q_{j,i} r_j I(Y_j(t) = 0) dt$$
Multidimensional RBM: What does it mean?

- Assume service rate r_i at the i-th server.
- $Y(t) \in \mathbb{R}_+^d$: System workload at time t

$$dY_i (t) = dJ_i (t) - r_i dt + \sum_{j=1}^{d} Q_{j,i} r_j dt$$

$$+ r_i I (Y_i (t) = 0) dt - \sum_{j=1}^{d} Q_{j,i} r_j I (Y_j (t) = 0) dt$$

- In matrix notation $X(t) = J(t) - (I - Q^T)rt$

$$dY (t) = dX (t) + (I - Q^T) dL (t),$$

$$L_i (t) = r_i \int_0^t I(Y_i (s) = 0) ds.$$
Multidimensional RBM: What does it mean?

- Assume service rate r_i at the i-th server.
- $Y(t) \in \mathbb{R}_+^d$: System workload at time t

\[
dY_i(t) = dJ_i(t) - r_i \, dt + \sum_{j=1}^{d} Q_{j,i} r_j \, dt
+ r_i I(Y_i(t) = 0) \, dt - \sum_{j=1}^{d} Q_{j,i} r_j I(Y_j(t) = 0) \, dt
\]

- In matrix notation $X(t) = J(t) - (I - Q^T)rt$

\[
dY(t) = dX(t) + (I - Q^T) dL(t),
\]
\[
L_i(t) = r_i \int_0^t I(Y_i(s) = 0) \, ds.
\]

- This is a Skorokhod problem with input data $X(\cdot)$.

Jose Blanchet (Columbia)
Exact sampling and Steady-state Simulation
02/2015 7 / 34
FACT 1 (Harrison - Reiman ’81)

\[Y(\cdot) \text{ is Lipschitz continuous function of } X(\cdot) \text{ in uniform norm. WE’LL WRITE } Y(\cdot; X) \]

CONSEQUENCE: By CLT (functional) a really large class of queueing systems can be approximated by RBM

RBM is one of the most important models in stochastic Operations Research!
Open Problems:

1. Can one evaluate the transition distribution of RBM?
2. Can one evaluate the steady-state distribution of RBM?

Our Contributions:

1) First exact sampler for RBM
2) Unbiased steady-state estimation
Outline

1. Agenda

2. Multidimensional RBM: What is it?

3. Exact Simulation of RBM

4. Remark on Multidimensional SDEs Sampling

5. Unbiased Steady-state Estimation of RBM

6. Conclusions
Exact Simulation of Diffusions: Why standard approach doesn’t work

- Beskos & Roberts ’04, Beskos, Roberts, and Papaspiliopoulos ’06, Chen and Huang ’12

\[dY(t) = \nabla u(Y(t)) \, dt + dB(t), \quad Y(0) = y_0 \]
Exact Simulation of Diffusions: Why standard approach doesn’t work

- Beskos & Roberts ’04, Beskos, Roberts, and Papaspiliopoulos ’06, Chen and Huang ’12

\[dY(t) = \nabla u(Y(t)) \, dt + dB(t), \quad Y(0) = y_0 \]

- **KEY ASSUMPTION:** Drift term \(\nabla u(Y(t)) \, dt \) CAN’T deal with \(dL(t) \).
Exact Simulation of Diffusions: Why standard approach doesn’t work

- Beskos & Roberts ’04, Beskos, Roberts, and Papaspiliopoulos ’06, Chen and Huang ’12

\[dY(t) = \nabla u(Y(t)) \, dt + dB(t), \quad Y(0) = y_0 \]

- **KEY ASSUMPTION:** Drift term \(\nabla u(Y(t)) \, dt \) **CAN’T** deal with \(dL(t) \).

Theorem (B. and Murthy ’14)

One can sample exactly $Y(t)$ for a multidimensional RBM with finite termination time.

Remark 1: Methodology extends to multidimensional reflected diffusions of the form

$$dY(t) = \nabla u(Y(t)) \, dt + dB(t) + dL(t), \quad Y(0) = y_0.$$
Forget about RBM and let’s explain the key idea...

- Sample $Y = Z + \Delta$, with Z and Δ independent.
- Suppose Z’s density is NOT known.
- Suppose that Z_n can be simulated so that $|Z_n - Z| < 1/n$ with probability 1.
- Suppose Δ has Lipschitz continuous density $f_\Delta(\cdot)$ with support on $[-a, a]$.
FACT 1: \(Y(\cdot ; X) \) is Lipschitz in \(X(\cdot) \). That is for \(K > 0 \) computable

\[
\max_{t \in [0,1]} |Y(t; X) - Y(t; X')| \leq K \max_{t \in [0,1]} |X(t) - X'(t)|.
\]
FACT 1: $Y(\cdot; X)$ is Lipschitz in $X(\cdot)$. That is for $K > 0$ computable

$$\max_{t \in [0,1]} |Y(t; X) - Y(t; X')| \leq K \max_{t \in [0,1]} |X(t) - X'(t)|.$$

FACT 2: $P(Y(t) > 0) = 1$ (deterministic t) and $Y(\cdot)$ is continuous.
FACT 1: \(Y(\cdot ; X) \) is Lipschitz in \(X(\cdot) \). That is for \(K > 0 \) computable

\[
\max_{t \in [0,1]} |Y(t; X) - Y(t; X')| \leq K \max_{t \in [0,1]} |X(t) - X'(t)|.
\]

FACT 2: \(P(Y(t) > 0) = 1 \) (deterministic \(t \)) and \(Y(\cdot) \) is continuous.

FACT 3: (Beskos, Peluchetti, Roberts ’12 & B. Chen ’13): Can simulate \(X_\varepsilon(\cdot) \) piecewise linear such that with probability one

\[
\max_{t \in [0,1]} |X(t) - X_\varepsilon(t)| < \varepsilon.
\]
Exact Simulation of RBM: Using uniform simulation approximations

- Simulate by stopping times...
Exact Simulation of RBM: Using uniform simulation approximations

- Simulate by stopping times...
Exact Simulation of RBM: Using uniform simulation approximations

- Simulate by stopping times...
Exact Simulation of RBM: Using uniform simulation approximations

- Simulate by stopping times...
Exact Simulation of RBM: Using uniform simulation approximations

- Refining $\varepsilon/2$: Sampling from conditional BESSEL BRIDGE $\xleftarrow{\sim}$ Known transition density!
Exact Simulation of RBM: Algorithm

- Simulate $X_{\epsilon_1} (\cdot), X_{\epsilon_2} (\cdot), \ldots, X_{\epsilon_N} (\cdot)$, $\epsilon_N = 2^{-N}$ until $Y_{\epsilon_N} (s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.
Simulate $X_{\varepsilon_1} (\cdot), X_{\varepsilon_2} (\cdot), \ldots, X_{\varepsilon_N} (\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N} (s) > 0$ for all $s \in [\tau_-, \tau_+]$ \& $t \in [\tau_-, \tau_+]$.

Stop in finite time: By FACT 2, $Y (t) > 0$ almost surely \& $Y (\cdot)$ continuous.
Simulate $X_{\epsilon_1}(\cdot), X_{\epsilon_2}(\cdot), \ldots, X_{\epsilon_N}(\cdot)$, $\epsilon_N = 2^{-N}$ until $Y_{\epsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.

Stop in finite time: By FACT 2, $Y(t) > 0$ almost surely & $Y(\cdot)$ continuous.

Denote information $F_{N_0}(\tau_-) = \text{info. generated by } \{X_{\epsilon_{N_0}}(s) : s \leq \tau_\}$.
Simulate $X_{\epsilon_1}(\cdot), X_{\epsilon_2}(\cdot), ..., X_{\epsilon_N}(\cdot), \epsilon_N = 2^{-N}$ until $Y_{\epsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.

Stop in finite time: By FACT 2, $Y(t) > 0$ almost surely & $Y(\cdot)$ continuous.

Denote information $\mathcal{F}_{N_0}(\tau_-) = \text{info. generated by } \{X_{\epsilon_{N_0}}(s) : s \leq \tau_\}.$

Note that

$$Y(t) = Y(\tau_-) + X(t) - X(\tau_-) \quad \text{AND}$$
Simulate $X_{\varepsilon_1}(\cdot), X_{\varepsilon_2}(\cdot), \ldots, X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.

Stop in finite time: By FACT 2, $Y(t) > 0$ almost surely & $Y(\cdot)$ continuous.

Denote information $\mathcal{F}_{N_0}(\tau_-) = \text{info. generated by } \{X_{\varepsilon_{N_0}}(s) : s \leq \tau_-\}$.

Note that

$$Y(t) = Y(\tau_-) + X(t) - X(\tau_-) \quad \text{AND}$$

$\Delta = X(t) - X(\tau_-)$ is increment of conditional Bessel bridge so KNOWN density $f_\Delta(\cdot)$
Simulate $X_{\varepsilon_1} (\cdot), X_{\varepsilon_2} (\cdot),..., X_{\varepsilon_N} (\cdot), \varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N} (s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.

Stop in finite time: By FACT 2, $Y (t) > 0$ almost surely & $Y (\cdot)$ continuous.

Denote information $\mathcal{F}_{N_0} (\tau_-) =$ info. generated by $\{X_{\varepsilon_{N_0}} (s) : s \leq \tau_\cdot\}$.

Note that

$$Y (t) = Y (\tau_-) + X (t) - X (\tau_-) \quad \text{AND}$$

$$\Delta = X (t) - X (\tau_-) \text{ is increment of conditional Bessel bridge so KNOWN density } f_\Delta (\cdot)$$

RESULT: $f_\Delta (\cdot)$ is Lipschitz continuous with support inside $[-2^{-N_0+1}, 2^{-N_0+1}]$.

Apply acceptance rejection: Let $f_{Y(t)}(\cdot)$ be density of $Y(t)$ given $\mathcal{F}_{N_0}(\tau_-)$

$$f_{Y(t)}(z) = f_{\Delta}(z - Y(\tau_-)).$$
Apply acceptance rejection: Let \(f_{Y(t)}(\cdot) \) be density of \(Y(t) \) given \(\mathcal{F}_{N_0}(\tau_\cdot) \)

\[
f_{Y(t)}(z) = f_\Delta(z - Y(\tau_\cdot)).
\]

We know that \(Y(t) \in [Y_{\epsilon N}(\tau_\cdot) - K2^{-N_0}, Y_{\epsilon N}(\tau_\cdot) + K2^{-N_0}] \) for computable \(K \) (FACT 1: Lipschitz continuity of Skorokhod map)
Apply acceptance rejection: Let $f_{Y(t)}(\cdot)$ be density of $Y(t)$ given $F_{N_0}(\tau_-)$

$$f_{Y(t)}(z) = f_{\Delta}(z - Y(\tau_-)).$$

We know that $Y(t) \in [Y_{\epsilon N}(\tau_-) - K2^{-N_0}, Y_{\epsilon N}(\tau_-) + K2^{-N_0}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)

Propose Z from uniformly on $[Y_{\epsilon N}(\tau_-) - K2^{-N_0}, Y_{\epsilon N}(\tau_-) + K2^{-N_0}]$ then accept Z as a sample from $f_{Y(t)}(\cdot)$ IF

$$V \leq \frac{1}{C(N_0)} f_{\Delta}(Z - Y(\tau_-)),$$

where V is $U(0,1)$ independent of everything.
Exact Simulation of RBM: Algorithm

- **Apply acceptance rejection**: Let \(f_Y(t)(\cdot) \) be density of \(Y(t) \) given \(\mathcal{F}_{N_0}(\tau_-) \)

\[
f_Y(t)(z) = f_\Delta(z - Y(\tau_-)).
\]

- We know that \(Y(t) \in [Y_{\varepsilon N}(\tau_) - K2^{-N_0}, Y_{\varepsilon N}(\tau_) + K2^{-N_0}] \) for computable \(K \) (FACT 1: Lipschitz continuity of Skorokhod map)

- Propose \(Z \) from uniformly on \([Y_{\varepsilon N}(\tau_) - K2^{-N_0}, Y_{\varepsilon N}(\tau_) + K2^{-N_0}] \) then accept \(Z \) as a sample from \(f_Y(t)(\cdot) \) IF

\[
V \leq \frac{1}{C(N_0)} f_\Delta(Z - Y(\tau_-)),
\]

where \(V \) is \(U(0, 1) \) independent of everything.

- **BIG problem** \(Y(\tau_) \) is unknown... is it really?
Key observations:

\[
\text{Law} \left(\Delta | \sigma(\bigcup_{k=N_0}^{\infty} \mathcal{F}_k (\tau_-)) \right) = \text{Law} \left(\Delta | \mathcal{F}_{N_0} (\tau_-) \right)
\]

and missing information to finally evaluate \(Y(\tau_-) \) is inside \(\sigma(\bigcup_{k>N_0}^{\infty} \mathcal{F}_k (\tau_-)) \).
Key observations:

\[
\text{Law} \left(\Delta \mid \sigma \left(\bigcup_{k=N_0}^\infty \mathcal{F}_k \left(\tau_- \right) \right) \right) = \text{Law} \left(\Delta \mid \mathcal{F}_{N_0} \left(\tau_- \right) \right)
\]

and missing information to finally evaluate \(Y \left(\tau_- \right) \) is inside \(\sigma \left(\bigcup_{k=N_0}^\infty \mathcal{F}_k \left(\tau_- \right) \right) \).

So, you can continue refining \(X_{\varepsilon_{N+1}}, X_{\varepsilon_{N+2}}, \ldots \) to get \(Y_{\varepsilon_{N+1}} \left(\tau_- \right), \ Y_{\varepsilon_{N+2}} \left(\tau_- \right), \ Y_{\varepsilon_{N+3}} \left(\tau_- \right) \ldots \) using Lipschitz continuity of \(f_\Delta \left(\cdot \right) \) eventually

\[
V \leq \frac{1}{C \left(N_0 \right)} f_\Delta \left(Z - Y_{\varepsilon_L} \left(\tau_- \right) \right) - \frac{\tilde{K}}{C \left(N_0 \right)} \varepsilon_L \rightarrow \text{ACCEPT}
\]

OR

\[
V \geq \frac{1}{C \left(N_0 \right)} f_\Delta \left(Z - Y_{\varepsilon_L} \left(\tau_- \right) \right) + \frac{\tilde{K}}{C \left(N_0 \right)} \varepsilon_L \rightarrow \text{REJECT}
\]
Exact Simulation of RBM: Algorithm

- Key observations:

\[
\text{Law} \left(\Delta \sigma \left(\bigcup_{k=N_0}^{\infty} F_k (\tau_-) \right) \right) = \text{Law} \left(\Delta | F_{N_0} (\tau_-) \right)
\]

and missing information to finally evaluate \(Y(\tau_-) \) is inside \(\sigma(\bigcup_{k>N_0}^{\infty} F_k (\tau_-)) \).

- So, you can continue refining \(X_{\epsilon_{N+1}}, X_{\epsilon_{N+2}}, \ldots \) to get \(Y_{\epsilon_{N+1}} (\tau_-), Y_{\epsilon_{N+2}} (\tau_-), Y_{\epsilon_{N+3}} (\tau_-) \) ... using Lipschitz continuity of \(f_{\Delta} (\cdot) \) eventually

\[
V \leq \frac{1}{C(N_0)} f_{\Delta} (Z - Y_{\epsilon_L} (\tau_-)) - \frac{\bar{K}}{C(N_0)} \epsilon_L \rightarrow \text{ACCEPT}
\]

OR

\[
V \geq \frac{1}{C(N_0)} f_{\Delta} (Z - Y_{\epsilon_L} (\tau_-)) + \frac{\bar{K}}{C(N_0)} \epsilon_L \rightarrow \text{REJECT}
\]

- Since \(\epsilon_n \rightarrow \infty \), algorithm must finish in finite time!
Outline

1. Agenda

2. Multidimensional RBM: What is it?

3. Exact Simulation of RBM

4. Remark on Multidimensional SDEs Sampling

5. Unbiased Steady-state Estimation of RBM

6. Conclusions
Important open problem in theory of Monte Carlo: Sample $Y(1)$ where

$$dY(t) = \mu(Y(t)) \, dt + \sigma(Y(t)) \, dB(t) \in \mathbb{R}^d$$ (1)
Remark on Multidimensional SDE Sampling

- **Important open problem in theory of Monte Carlo:** Sample $Y(1)$ where

 $$dY(t) = \mu(Y(t)) \, dt + \sigma(Y(t)) \, dB(t) \in \mathbb{R}^d \quad (1)$$

- Multidimensional RBM illustrates how

 $$\sup_{s \in [0,1]} |Y_\varepsilon(s) - Y(s)| \leq \varepsilon \quad (2)$$

 can be used to sample from $Y(1)$ exactly.
Remark on Multidimensional SDE Sampling

- **Important open problem in theory of Monte Carlo:** Sample $Y(1)$ where

$$dY(t) = \mu(Y(t)) \, dt + \sigma(Y(t)) \, dB(t) \in \mathbb{R}^d$$ \hspace{1cm} (1)

- Multidimensional RBM illustrates how

$$\sup_{s \in [0,1]} |Y_\varepsilon(s) - Y(s)| \leq \varepsilon$$ \hspace{1cm} (2)

can be used to sample from $Y(1)$ exactly.

- **B. Chen, and Dong (2015)** provides the first algorithm that achieves (2) for the SDE (1). Algorithms uses theory of rough paths.
Outline

1. Agenda

2. Multidimensional RBM: What is it?

3. Exact Simulation of RBM

4. Remark on Multidimensional SDEs Sampling

5. Unbiased Steady-state Estimation of RBM

6. Conclusions
B. and Chen '14: Perfect simulation if $X(\cdot)$ is stochastic fluid network (poly complexity as $d \to \infty$ in light traffic).
B. and Chen ’14: Perfect simulation if $X(\cdot)$ is stochastic fluid network (poly complexity as $d \to \infty$ in light traffic).

B. and Chen ’14: For RBM get $Y_\varepsilon(\infty)$ such that

$$|Y_\varepsilon(\infty) - Y(\infty)| \leq \varepsilon$$

with probability one.
B. and Chen ’14: Perfect simulation if $X(\cdot)$ is stochastic fluid network (poly complexity as $d \to \infty$ in light traffic).

B. and Chen ’14: For RBM get $Y_\varepsilon(\infty)$ such that

$$|Y_\varepsilon(\infty) - Y(\infty)| \leq \varepsilon$$

with probability one.

Complexity for RBM, fixed ε, $\Omega(1/\varepsilon^k)$ for $k > 2$.

B. and Chen ’14: Perfect simulation if $X (\cdot)$ is stochastic fluid network (poly complexity as $d \to \infty$ in light traffic).

B. and Chen ’14: For RBM get $Y_\varepsilon (\infty)$ such that

$$|Y_\varepsilon (\infty) - Y (\infty)| \leq \varepsilon$$

with probability one.

Complexity for RBM, fixed ε, $\Omega(1/\varepsilon^k)$ for $k > 2$.

Budhiraja, Chen, and Rubenthaler ’12, only for $Ef (Z (\infty))$ with smooth $f (\cdot)$.
Theorem (B., Chen, and Glynn ’15)

Assume \((1 - Q^T)^{-1} EX(1) < 0\) (stability). Let \(f(\cdot)\) be Lipschitz continuous we construct an estimator \(Z\) such that

\[
EZ = Ef(Y(\infty))
\]

and \(\text{Var}(Z) < \infty\). Moreover, the complexity of providing confidence intervals for \(Ef(Y(\infty))\) with \(\varepsilon\) error and \(\delta\) confidence is

\[
O \left(\frac{1}{\varepsilon^2} \log \left(\frac{1}{\varepsilon} \right)^2 \times \frac{1}{\delta} \right).
\]
Let $Y(t, y_0; X_{0:t}) = \text{value of RBM at } t \text{ given } Y(0) = y_0$. Suppose $Y(0) = 0$ and $f(0) = 0$.

\[
Ef(Y(\infty)) = \sum_{n=0}^{\infty} E(f(Y(n+1, y_0; X_{0:n+1}) - f(Y(n, y_0; X_{0:n})))
\]

\[
= \sum_{n=0}^{\infty} E(f(Y(n, Y(1); X_{1:n}) - f(Y(n, y_0; X_{1:n})))
\]

\[
= E\left(\frac{f(Y(M, Y(1); X_{1:M}) - f(Y(M, y_0; X_{1:M}))}{p(M)} \right)
\]

\[
\leq KE\left(\frac{\|Y(M, Y(1); X_{1:M}) - Y(M, y_0; X_{1:M})\|}{p(M)} \right)
\]

where M is a r.v. with probability mass function $p(m)$.

Randomized multilevel MC (McLeish '2011, Glynn & Rhee '2013).
Let \(Y(t, y_0; X_{0:t}) = \text{value of RBM at } t \text{ given } Y(0) = y_0 \). Suppose \(Y(0) = 0 \) and \(f(0) = 0 \).

\[
Ef(Y(\infty)) = \sum_{n=0}^{\infty} E(f(Y(n+1, y_0; X_{0:n+1}) - f(Y(n, y_0; X_{0:n})))
\]
\[
= \sum_{n=0}^{\infty} E(f(Y(n, Y(1); X_{1:n}) - f(Y(n, y_0; X_{1:n})))
\]
\[
= E\left(\frac{f(Y(M, Y(1); X_{1:M}) - f(Y(M, y_0; X_{1:M}))}{p(M)} \right)
\]
\[
\leq KE\left(\frac{\|Y(M, Y(1); X_{1:M}) - Y(M, y_0; X_{1:M})\|}{p(M)} \right),
\]

where \(M \) is a r.v. with probability mass function \(p(m) \).

- Randomized multilevel MC (McLeish ’2011, Glynn & Rhee ’2013).
Lemma

Assume that Q irreducible (substochastic) and that $(I - Q^T)^{-1} \mu < 0$, then

$$\| Y(n, Y(1); X_{1:n}) - Y(n, y_0; X_{1:n}) \| \leq \rho^{N(n)},$$

for $\rho \in (0, 1)$ (depending on Q) and $N(n) =$ number of completed full cycles to zero in $[0, n]$ for process $Y(\cdot)$.
Example showing $N(n) = 2$
Proof.

[Proof Sketch] It turns out (Mandelbaum and Ramanan (2010) that

$$\| D_{y_0} Y (n, y_0; X_{1:n})^T \| \leq \| D_{i_1} D_{i_2} D_{i_3} \ldots D_{i_n} \|,$$

where D_{i_k}’s looks like (for $i_k = 2$)

$$D_2 = \begin{pmatrix} 1 & 0 & 0 \\ Q_{2,1} & Q_{2,2} & Q_{2,3} \\ 0 & 0 & 1 \end{pmatrix}.$$

The order $i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_n$ are visits to zero of ANY of the coordinates. Result follows from $Q^n \rightarrow 0$ as $n \rightarrow \infty$.

[QED]
Currently investigating the following

1. Application of coupling used here to other processes
2. Rates of convergence to stationarity and connections to product of random matrices
Currently investigating the following

Application of coupling used here to other processes
Currently investigating the following

- Application of coupling used here to other processes
- Rates of convergence to stationarity and connections to product of random matrices
Outline

1. Agenda
2. Multidimensional RBM: What is it?
3. Exact Simulation of RBM
4. Remark on Multidimensional SDEs Sampling
5. Unbiased Steady-state Estimation of RBM
6. Conclusions
Presented first exact sampler for multidimensional RBM.
Conclusions

- Presented first exact sampler for multidimensional RBM.
- Key idea builds on ε-approximations with path space with probability 1.
Conclusions

- Presented first exact sampler for multidimensional RBM.
- Key idea builds on ε-approximations with path space with probability 1.
- First unbiased estimator for steady-state distribution of RBM.
Conclusions

- Presented first exact sampler for multidimensional RBM.
- Key idea builds on ε-approximations with path space with probability 1.
- First unbiased estimator for steady-state distribution of RBM.
- Key coupling connects to Lyapunov exponents and products of random matrices.