Exact Sampling and Steady-state Simulation of Reflected Brownian Motion

Jose Blanchet (joint work with X. Chen, P. Glynn, and K. Murthy)

Columbia University

February, 2015

Outline

Agenda

- 2 Multidimensional RBM: What is it?
- 3 Exact Simulation of RBM
- 4 Remark on Multidimensional SDEs Sampling
- 5 Unbiased Steady-state Estimation of RBM
- 6 Conclusions

Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?

- Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
- Exact Sampling of RBM

- Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
- Exact Sampling of RBM
- S A Remark about Sampling of Multidimensional SDEs

- Multidimensional Reflected Brownian Motion (RBM): What is it and why do we care?
- Exact Sampling of RBM
- A Remark about Sampling of Multidimensional SDEs
- Multilevel Monte Carlo for steady-state analysis of RBM

1) Agenda

2 Multidimensional RBM: What is it?

3 Exact Simulation of RBM

- Provide the second state of the second stat
- 5 Unbiased Steady-state Estimation of RBM

6 Conclusions

• Multidimensional RBM: solution to a certain SDE with constraints.

- Multidimensional RBM: solution to a certain SDE with constraints.
- Input Data:

- Multidimensional RBM: solution to a certain SDE with constraints.
- Input Data:
- $(X(t): t \ge 0)$ Brownian Motion drift μ covariance σ .

- Multidimensional RBM: solution to a certain SDE with constraints.
- Input Data:
- $(X(t): t \ge 0)$ Brownian Motion drift μ covariance σ .
- Solution Matrix $R = I Q^T$ where Q is a substochastic matrix and zeroes in the diagonal.

- Multidimensional RBM: solution to a certain SDE with constraints.
- Input Data:
- $(X(t): t \ge 0)$ Brownian Motion drift μ covariance σ .
- Solution Matrix $R = I Q^T$ where Q is a substochastic matrix and zeroes in the diagonal.
 - Model: Solution to a pair $(Y(\cdot), L(\cdot))$ satisfying

$$\begin{aligned} dY\left(t\right) &= dX\left(t\right) + RdL\left(t\right), \ Y\left(0\right) = y_{0} \\ Y\left(t\right) &\geq 0 \text{ componentwise} \\ dL_{j}\left(t\right) &\geq 0 \text{ non-decreasing for } j = 1, ..., d \\ Y_{j}\left(t\right) dL_{j}\left(t\right) &= 0 \text{ i.e. } L_{j} \text{ increases only when } Y_{j}\left(t\right) = 0 \end{aligned}$$

- Multidimensional RBM: solution to a certain SDE with constraints.
- Input Data:
- $(X(t): t \ge 0)$ Brownian Motion drift μ covariance σ .
- Matrix $R = I Q^T$ where Q is a substochastic matrix and zeroes in the diagonal.
 - Model: Solution to a pair $(Y(\cdot), L(\cdot))$ satisfying

 $\begin{aligned} dY\left(t\right) &= dX\left(t\right) + RdL\left(t\right), \; Y\left(0\right) = y_{0} \\ Y\left(t\right) &\geq 0 \text{ componentwise} \\ dL_{j}\left(t\right) &\geq 0 \text{ non-decreasing for } j = 1, ..., d \\ Y_{j}\left(t\right) dL_{j}\left(t\right) &= 0 \text{ i.e. } L_{j} \text{ increases only when } Y_{j}\left(t\right) = 0 \end{aligned}$

• **Skorokhod problem**: Existence and Uniqueness guaranteed (Harrison-Reiman '81)

• Forget RBM for a moment let's build intuition using Stochastic Fluid Networks (Kella '96)

- Forget RBM for a moment let's build intuition using Stochastic Fluid Networks (Kella '96)
- Let's model workload content of a queueing system:

- Forget RBM for a moment let's build intuition using Stochastic Fluid Networks (Kella '96)
- Let's model workload content of a queueing system:
- **(**) d dimensional network of servers with routing matrix Q

- Forget RBM for a moment let's build intuition using Stochastic Fluid Networks (Kella '96)
- Let's model workload content of a queueing system:
- d dimensional network of servers with routing matrix Q
- **2** $N_i(t)$: Arrivals to station *i* during time [0, t].

- Forget RBM for a moment let's build intuition using Stochastic Fluid Networks (Kella '96)
- Let's model workload content of a queueing system:
- \bigcirc d dimensional network of servers with routing matrix Q
- **2** $N_i(t)$: Arrivals to station *i* during time [0, t].
- k-th service arriving in the *i*-th station: $V_i(k)$ (independent and identically distributed for each station)

- Forget RBM for a moment let's build intuition using Stochastic Fluid Networks (Kella '96)
- Let's model workload content of a queueing system:
- \bigcirc d dimensional network of servers with routing matrix Q
- **2** $N_i(t)$: Arrivals to station *i* during time [0, t].
- k-th service arriving in the *i*-th station: $V_i(k)$ (independent and identically distributed for each station)
- Total jobs arriving at station i up to time t

$$J_{i}\left(t\right):=\sum_{k=1}^{N_{i}\left(t\right)}V_{i}\left(k\right)$$

• Assume service rate r_i at the *i*-th server.

- Assume service rate r_i at the *i*-th server.
- $Y\left(t
 ight)\in\mathbb{R}_{+}^{d}$: System workload at time t

$$dY_{i}(t) = dJ_{i}(t) - r_{i}dt + \sum_{j=1}^{d} Q_{j,i}r_{j}dt + r_{i}I(Y_{i}(t) = 0) dt - \sum_{j=1}^{d} Q_{j,i}r_{j}I(Y_{j}(t) = 0) dt$$

- Assume service rate r_i at the *i*-th server.
- $Y\left(t
 ight)\in\mathbb{R}_{+}^{d}$: System workload at time t

$$dY_{i}(t) = dJ_{i}(t) - r_{i}dt + \sum_{j=1}^{d} Q_{j,i}r_{j}dt + r_{i}I(Y_{i}(t) = 0) dt - \sum_{j=1}^{d} Q_{j,i}r_{j}I(Y_{j}(t) = 0) dt$$

• In matrix notation $X(t) = J(t) - (I - Q^T)rt$

$$dY(t) = dX(t) + (I - Q^{T})dL(t),$$

$$L_{i}(t) = r_{i} \int_{0}^{t} I(Y_{i}(s) = 0)ds.$$

- Assume service rate r_i at the *i*-th server.
- $Y\left(t
 ight)\in\mathbb{R}_{+}^{d}$: System workload at time t

$$dY_{i}(t) = dJ_{i}(t) - r_{i}dt + \sum_{j=1}^{d} Q_{j,i}r_{j}dt + r_{i}I(Y_{i}(t) = 0) dt - \sum_{j=1}^{d} Q_{j,i}r_{j}I(Y_{j}(t) = 0) dt$$

• In matrix notation $X(t) = J(t) - (I - Q^T)rt$

$$dY(t) = dX(t) + (I - Q^{T})dL(t),$$

$$L_{i}(t) = r_{i} \int_{0}^{t} I(Y_{i}(s) = 0)ds.$$

• This is a Skorokhod problem with input data $X(\cdot)$.

• FACT 1 (Harrison - Reiman '81)

 $Y(\cdot)$ is Lipschitz continuous function of $X(\cdot)$ in uniform norm. WE'LL WRITE $Y(\cdot; X)$

CONSEQUENCE: By CLT (functional) a *really* large class of queueing systems can be approximated by RBM

RBM is one of the most important models in stochastic Operations Research!

- Open Problems:
- San one evaluate the transition distribution of RBM?
- ② Can one evaluate the steady-state distribution of RBM?

Our Contributions:

1) First exact sampler for RBM

2) Unbiased steady-state estimation

- 2 Multidimensional RBM: What is it?
- Exact Simulation of RBM
 - 4 Remark on Multidimensional SDEs Sampling
- 5 Unbiased Steady-state Estimation of RBM
- 6 Conclusions

Exact Simulation of Diffusions: Why standard approach doesn't work

 Beskos & Roberts '04, Beskos, Roberts, and Papaspiliopoulos '06, Chen and Huang '12

$$dY(t) = \nabla u(Y(t)) dt + dB(t), \quad Y(0) = y_0$$

Exact Simulation of Diffusions: Why standard approach doesn't work

 Beskos & Roberts '04, Beskos, Roberts, and Papaspiliopoulos '06, Chen and Huang '12

$$dY(t) = \nabla u(Y(t)) dt + dB(t), \quad Y(0) = y_0$$

• KEY ASSUMPTION: Drift term $\nabla u(Y(t)) dt$ CAN'T deal with dL(t).

Exact Simulation of Diffusions: Why standard approach doesn't work

 Beskos & Roberts '04, Beskos, Roberts, and Papaspiliopoulos '06, Chen and Huang '12

$$dY(t) = \nabla u(Y(t)) dt + dB(t), \quad Y(0) = y_0$$

- KEY ASSUMPTION: Drift term $\nabla u(Y(t)) dt$ CAN'T deal with dL(t).
- Étoréa & Martinez (2011): One dimensional reflected diffusions.

Theorem (B. and Murthy '14)

One can sample exactly Y(t) for a multidimensional RBM with finite termination time.

• **Remark 1:** Methodology extends to multidimensional reflected diffusions of the form

$$dY(t) =
abla u(Y(t)) dt + dB(t) + dL(t), \quad Y(0) = y_0.$$

- Sample $Y = Z + \Delta$, with Z and Δ independent.
- Suppose Z's density is NOT known.
- Suppose that Z_n can be simulated so that $|Z_n Z| < 1/n$ with probability 1.
- Suppose Δ has Lipschitz continuous density $f_{\Delta}(\cdot)$ with support on [-a, a].

Exact Simulation of RBM: Use Following Facts

FACT 1: Y(·;X) is Lipschitz in X (·). That is for K > 0 computable

$$\max_{t \in [0,1]} |Y(t;X) - Y(t;X')| \le K \max_{t \in [0,1]} |X(t) - X'(t)|.$$

Exact Simulation of RBM: Use Following Facts

FACT 1: Y(·; X) is Lipschitz in X (·). That is for K > 0 computable

$$\max_{t\in[0,1]}\left|Y(t;X)-Y(t;X')\right|\leq K\max_{t\in[0,1]}\left|X\left(t\right)-X'\left(t\right)\right|.$$

• FACT 2: P(Y(t) > 0) = 1 (deterministic t) and $Y(\cdot)$ is continuous.

Exact Simulation of RBM: Use Following Facts

FACT 1: Y(·; X) is Lipschitz in X (·). That is for K > 0 computable

$$\max_{t \in [0,1]} |Y(t;X) - Y(t;X')| \le K \max_{t \in [0,1]} |X(t) - X'(t)|.$$

- FACT 2: P(Y(t) > 0) = 1 (deterministic t) and $Y(\cdot)$ is continuous.
- FACT 3: (Beskos, Peluchetti, Roberts '12 & B. Chen '13): Can simulate $X_{\varepsilon}(\cdot)$ piecewise linear such that with probability one

$$\max_{t\in[0,1]}|X(t)-X_{\varepsilon}(t)|<\varepsilon.$$

Exact Simulation of RBM: Using uniform simulation approximations

• Simulate by stopping times...

Exact Simulation of RBM: Using uniform simulation approximations

• Simulate by stopping times...

Exact Simulation of RBM: Using uniform simulation approximations

• Simulate by stopping times...

Exact Simulation of RBM: Using uniform simulation approximations

• Simulate by stopping times...

Exact Simulation of RBM: Using uniform simulation approximations

• Simulate $X_{\varepsilon_1}(\cdot)$, $X_{\varepsilon_2}(\cdot)$,..., $X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.

- Simulate $X_{\varepsilon_1}(\cdot)$, $X_{\varepsilon_2}(\cdot)$,..., $X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.
- Stop in finite time: By FACT 2, Y(t) > 0 almost surely & $Y(\cdot)$ continuous.

- Simulate $X_{\varepsilon_1}(\cdot)$, $X_{\varepsilon_2}(\cdot)$,..., $X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.
- Stop in finite time: By FACT 2, Y(t) > 0 almost surely & $Y(\cdot)$ continuous.
- Denote information $\mathcal{F}_{N_{0}}(\tau_{-}) = \text{info.}$ generated by $\{X_{\epsilon_{N_{0}}}(s) : s \leq \tau_{-}\}.$

- Simulate $X_{\varepsilon_1}(\cdot)$, $X_{\varepsilon_2}(\cdot)$,..., $X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.
- Stop in finite time: By FACT 2, Y(t) > 0 almost surely & $Y(\cdot)$ continuous.
- Denote information $\mathcal{F}_{N_0}(\tau_-) = \text{info.}$ generated by $\{X_{\epsilon_{N_0}}(s) : s \leq \tau_-\}.$
- Note that

$$Y(t) = Y(\tau_{-}) + X(t) - X(\tau_{-})$$
 AND

- Simulate $X_{\varepsilon_1}(\cdot)$, $X_{\varepsilon_2}(\cdot)$,..., $X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.
- Stop in finite time: By FACT 2, Y(t) > 0 almost surely & $Y(\cdot)$ continuous.
- Denote information $\mathcal{F}_{N_0}(\tau_-) = \text{info.}$ generated by $\{X_{\epsilon_{N_0}}(s) : s \leq \tau_-\}.$
- Note that

$$Y(t) = Y(\tau_{-}) + X(t) - X(\tau_{-})$$
 AND

• $\Delta = X(t) - X(\tau_{-})$ is increment of conditional Bessel bridge so KNOWN density $f_{\Delta}(\cdot)$

- Simulate $X_{\varepsilon_1}(\cdot)$, $X_{\varepsilon_2}(\cdot)$,..., $X_{\varepsilon_N}(\cdot)$, $\varepsilon_N = 2^{-N}$ until $Y_{\varepsilon_N}(s) > 0$ for all $s \in [\tau_-, \tau_+]$ & $t \in [\tau_-, \tau_+]$.
- Stop in finite time: By FACT 2, Y(t) > 0 almost surely & $Y(\cdot)$ continuous.
- Denote information $\mathcal{F}_{N_0}(\tau_-) = \text{info.}$ generated by $\{X_{\epsilon_{N_0}}(s) : s \leq \tau_-\}.$
- Note that

$$Y(t) = Y(\tau_{-}) + X(t) - X(\tau_{-})$$
 AND

- $\Delta = X(t) X(\tau_{-})$ is increment of conditional Bessel bridge so KNOWN density $f_{\Delta}(\cdot)$
- **RESULT:** $f_{\Delta}(\cdot)$ is Lipschitz continuous with support inside $[-2^{-N_0+1}, 2^{-N_0+1}]$.

• Apply acceptance rejection: Let $f_{Y(t)}(\cdot)$ be density of Y(t) given $\mathcal{F}_{N_{0}}(\tau_{-})$

$$f_{Y(t)}(z) = f_{\Delta}(z - Y(\tau_{-})).$$

• Apply acceptance rejection: Let $f_{Y(t)}(\cdot)$ be density of Y(t) given $\mathcal{F}_{N_{0}}(\tau_{-})$

$$f_{Y(t)}(z) = f_{\Delta}(z - Y(\tau_{-})).$$

• We know that $Y(t) \in [Y_{\varepsilon_N}(\tau_-) - K2^{-N_0}, Y_{\varepsilon_N}(\tau_-) + K2^{-N_0}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)

• Apply acceptance rejection: Let $f_{Y(t)}\left(\cdot\right)$ be density of $Y\left(t\right)$ given $\mathcal{F}_{N_{0}}\left(\tau_{-}\right)$

$$f_{Y(t)}(z) = f_{\Delta}(z - Y(\tau_{-})).$$

- We know that $Y(t) \in [Y_{\varepsilon_N}(\tau_-) K2^{-N_0}, Y_{\varepsilon_N}(\tau_-) + K2^{-N_0}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)
- Propose Z from uniformly on $[Y_{\varepsilon_N}(\tau_-) K2^{-N_0}, Y_{\varepsilon_N}(\tau_-) + K2^{-N_0}]$ then accept Z as a sample from $f_{Y(t)}(\cdot)$ IF

$$V \leq rac{1}{C(N_0)} f_\Delta \left(Z - Y(au_-)
ight)$$
 ,

where V is U(0,1) independent of everything.

• Apply acceptance rejection: Let $f_{Y(t)}\left(\cdot\right)$ be density of $Y\left(t\right)$ given $\mathcal{F}_{N_{0}}\left(\tau_{-}\right)$

$$f_{Y(t)}(z) = f_{\Delta}(z - Y(\tau_{-})).$$

- We know that $Y(t) \in [Y_{\varepsilon_N}(\tau_-) K2^{-N_0}, Y_{\varepsilon_N}(\tau_-) + K2^{-N_0}]$ for computable K (FACT 1: Lipschitz continuity of Skorokhod map)
- Propose Z from uniformly on $[Y_{\varepsilon_N}(\tau_-) K2^{-N_0}, Y_{\varepsilon_N}(\tau_-) + K2^{-N_0}]$ then accept Z as a sample from $f_{Y(t)}(\cdot)$ IF

$$V\leqrac{1}{C\left(N_{0}
ight) }f_{\Delta}\left(Z-Y\left(au_{-}
ight)
ight)$$
 ,

where V is U(0, 1) independent of everything.

• BIG problem $Y(\tau_{-})$ is unknown... is it really?

• Key observations:

$$\mathsf{Law}\left(\Delta | \sigma(\cup_{k=\mathsf{N}_{0}}^{\infty}\mathcal{F}_{k}\left(\tau_{-}\right))\right) = \mathsf{Law}\left(\Delta | \mathcal{F}_{\mathsf{N}_{0}}\left(\tau_{-}\right)\right)$$

and missing information to finally evaluate $Y(\tau_{-})$ is inside $\sigma(\cup_{k>N_{0}}^{\infty}\mathcal{F}_{k}(\tau_{-})).$

• Key observations:

$$\mathsf{Law}\left(\Delta | \sigma(\cup_{k=N_{0}}^{\infty} \mathcal{F}_{k}\left(\tau_{-}\right))\right) = \mathsf{Law}\left(\Delta | \mathcal{F}_{N_{0}}\left(\tau_{-}\right)\right)$$

and missing information to finally evaluate $Y(\tau_{-})$ is inside $\sigma(\cup_{k>N_{0}}^{\infty}\mathcal{F}_{k}(\tau_{-})).$

• So, you can continue refining $X_{\varepsilon_{N+1}}, X_{\varepsilon_{N+2}}, \dots$ to get $Y_{\varepsilon_{N+1}}(\tau_{-}), Y_{\varepsilon_{N+2}}(\tau_{-}), Y_{\varepsilon_{N+3}}(\tau_{-})\dots$ using Lipschitz continuity of $f_{\Delta}(\cdot)$ eventually

$$V \leq \frac{1}{C(N_{0})} f_{\Delta} \left(Z - Y_{\varepsilon_{L}} \left(\tau_{-} \right) \right) - \frac{\widetilde{K}}{C(N_{0})} \varepsilon_{L} \rightarrow \text{ACCEPT}$$

OR
$$V \geq \frac{1}{C(N_{0})} f_{\Delta} \left(Z - Y_{\varepsilon_{L}} \left(\tau_{-} \right) \right) + \frac{\widetilde{K}}{C(N_{0})} \varepsilon_{L} \rightarrow \text{REJECT}$$

• Key observations:

$$\mathsf{Law}\left(\Delta | \sigma(\cup_{k=N_0}^{\infty} \mathcal{F}_k\left(\tau_{-}\right))\right) = \mathsf{Law}\left(\Delta | \mathcal{F}_{N_0}\left(\tau_{-}\right)\right)$$

and missing information to finally evaluate $Y(\tau_{-})$ is inside $\sigma(\cup_{k>N_{0}}^{\infty}\mathcal{F}_{k}(\tau_{-})).$

• So, you can continue refining $X_{\varepsilon_{N+1}}, X_{\varepsilon_{N+2}}, \dots$ to get $Y_{\varepsilon_{N+1}}(\tau_{-}), Y_{\varepsilon_{N+2}}(\tau_{-}), Y_{\varepsilon_{N+3}}(\tau_{-})\dots$ using Lipschitz continuity of $f_{\Delta}(\cdot)$ eventually

$$V \leq \frac{1}{C(N_{0})} f_{\Delta} \left(Z - Y_{\varepsilon_{L}} \left(\tau_{-} \right) \right) - \frac{\widetilde{K}}{C(N_{0})} \varepsilon_{L} \rightarrow \text{ACCEPT}$$

OR
$$V \geq \frac{1}{C(N_{0})} f_{\Delta} \left(Z - Y_{\varepsilon_{L}} \left(\tau_{-} \right) \right) + \frac{\widetilde{K}}{C(N_{0})} \varepsilon_{L} \rightarrow \text{REJECT}$$

• Since $\varepsilon_n \to \infty$, algorithm must finish in finite time!

- 2 Multidimensional RBM: What is it?
- 3 Exact Simulation of RBM
- 4 Remark on Multidimensional SDEs Sampling
- 5 Unbiased Steady-state Estimation of RBM
- 6 Conclusions

Remark on Multidimensional SDE Sampling

• Important open problem in theory of Monte Carlo: Sample Y(1) where

$$dY(t) = \mu(Y(t)) dt + \sigma(Y(t)) dB(t) \in \mathbb{R}^{d}$$
(1)

Remark on Multidimensional SDE Sampling

• Important open problem in theory of Monte Carlo: Sample Y(1) where

$$dY(t) = \mu(Y(t)) dt + \sigma(Y(t)) dB(t) \in \mathbb{R}^{d}$$
(1)

• Multidimensional RBM illustrates how

$$\sup_{s\in[0,1]}|Y_{\varepsilon}(s)-Y(s)|\leq\varepsilon$$
(2)

can be used to sample from Y(1) exactly.

Remark on Multidimensional SDE Sampling

• Important open problem in theory of Monte Carlo: Sample Y(1) where

$$dY(t) = \mu(Y(t)) dt + \sigma(Y(t)) dB(t) \in \mathbb{R}^{d}$$
(1)

• Multidimensional RBM illustrates how

$$\sup_{s\in[0,1]}|Y_{\varepsilon}(s)-Y(s)|\leq\varepsilon$$
(2)

can be used to sample from Y(1) exactly.

• B. Chen, and Dong (2015) provides the first algorithm that achieves (2) for the SDE (1). Algorithms uses theory of rough paths.

- 2 Multidimensional RBM: What is it?
- 3 Exact Simulation of RBM
- 4 Remark on Multidimensional SDEs Sampling
- 5 Unbiased Steady-state Estimation of RBM

6 Conclusions

 B. and Chen '14: Perfect simulation if X (·) is stochastic fluid network (poly complexity as d → ∞ in light traffic).

- B. and Chen '14: Perfect simulation if X (·) is stochastic fluid network (poly complexity as d → ∞ in light traffic).
- B. and Chen '14: For RBM get $Y_{\varepsilon}\left(\infty
 ight)$ such that

$$|Y_{\varepsilon}(\infty) - Y(\infty)| \leq \varepsilon$$

with probability one.

- B. and Chen '14: Perfect simulation if X (·) is stochastic fluid network (poly complexity as d → ∞ in light traffic).
- B. and Chen '14: For RBM get $Y_{\varepsilon}\left(\infty
 ight)$ such that

$$|Y_{\varepsilon}(\infty) - Y(\infty)| \leq \varepsilon$$

with probability one.

• Complexity for RBM, fixed ε , $\Omega(1/\varepsilon^k)$ for k > 2.

- B. and Chen '14: Perfect simulation if X (·) is stochastic fluid network (poly complexity as d → ∞ in light traffic).
- B. and Chen '14: For RBM get $Y_{arepsilon}\left(\infty
 ight)$ such that

$$|Y_{\varepsilon}(\infty) - Y(\infty)| \leq \varepsilon$$

with probability one.

- Complexity for RBM, fixed ε , $\Omega(1/\varepsilon^k)$ for k > 2.
- Budhiraja, Chen, and Rubenthaler '12, only for Ef (Z (∞)) with smooth f (·).

Theorem (B., Chen, and Glynn '15)

Assume $(1 - Q^T)^{-1} EX(1) < 0$ (stability). Let $f(\cdot)$ be Lipschitz continuous we construct an estimator Z such that

 $EZ = Ef(Y(\infty))$

and Var $(Z) < \infty$. Moreover, the complexity of providing confidence intervals for Ef $(Y(\infty))$ with ε error and δ confidence is

$$O\left(\frac{1}{\varepsilon^2}\log\left(\frac{1}{\varepsilon}\right)^2 imes \frac{1}{\delta}
ight).$$

Steady-state Simulation of RBM: How we do it?

• Let $Y(t, y_0; X_{0:t})$ = value of RBM at t given $Y(0) = y_0$. Suppose Y(0) = 0 and f(0) = 0.

$$Ef(Y(\infty)) = \sum_{n=0}^{\infty} E(f(Y(n+1, y_0; X_{0:n+1}) - f(Y(n, y_0; X_{0:n})))$$

$$= \sum_{n=0}^{\infty} E(f(Y(n, Y(1); \mathbf{X}_{1:n}) - f(Y(n, y_0; \mathbf{X}_{1:n})))$$

$$= E\left(\frac{f(Y(M, Y(1); \mathbf{X}_{1:M}) - f(Y(M, y_0; \mathbf{X}_{1:M}))}{p(M)}\right)$$

$$\leq KE\left(\frac{\|Y(M, Y(1); X_{1:M}) - Y(M, y_0; X_{1:M})\|}{p(M)}\right),$$

where *M* is a r.v. with probability mass function p(m).

Steady-state Simulation of RBM: How we do it?

• Let $Y(t, y_0; X_{0:t})$ = value of RBM at t given $Y(0) = y_0$. Suppose Y(0) = 0 and f(0) = 0.

$$Ef(Y(\infty)) = \sum_{n=0}^{\infty} E(f(Y(n+1, y_0; X_{0:n+1}) - f(Y(n, y_0; X_{0:n})))$$

$$= \sum_{n=0}^{\infty} E(f(Y(n, Y(1); \mathbf{X}_{1:n}) - f(Y(n, y_0; \mathbf{X}_{1:n})))$$

$$= E\left(\frac{f(Y(M, Y(1); \mathbf{X}_{1:M}) - f(Y(M, y_0; \mathbf{X}_{1:M}))}{p(M)}\right)$$

$$\leq KE\left(\frac{\|Y(M, Y(1); X_{1:M}) - Y(M, y_0; X_{1:M})\|}{p(M)}\right),$$

where *M* is a r.v. with probability mass function p(m).

• Randomized multilevel MC (McLeish '2011, Glynn & Rhee '2013).

Lemma

Assume that Q irreducible (substochastic) and that $(I - Q^T)^{-1} \mu < 0$, then

$$|Y(n, Y(1); X_{1:n}) - Y(n, y_0; X_{1:n})|| \le \rho^{N(n)},$$

for $\rho \in (0, 1)$ (depending on Q) and N (n) = number of completed full cycles to zero in [0, n] for process Y (·).

Steady-state Simulation of RBM: How we do it?

Proof.

[Proof Sketch] It turns out (Mandelbaum and Ramanan (2010) that

$$\left\| D_{y_0} Y(n, y_0; X_{1:n})^T \right\| \le \| D_{i_1} D_{i_2} D_{i_3} ... D_{i_n} \|,$$

where D_{i_k} 's looks like (for $i_k = 2$)

$$\mathcal{D}_2 = \left(egin{array}{ccc} 1 & 0 & 0 \ Q_{2,1} & Q_{2,2} & Q_{2,3} \ 0 & 0 & 1 \end{array}
ight),$$

The order $i_1 \rightarrow i_2 \rightarrow ... \rightarrow i_n$ are visits to zero of ANY of the coordinates. Result follows from $Q^n \rightarrow 0$ as $n \rightarrow \infty$.

Steady-state Simulation of RBM: Final Considerations

• Currently investigating the following

- Currently investigating the following
- Application of coupling used here to other processes

- Currently investigating the following
- Application of coupling used here to other processes
- Rates of convergence to stationarity and connections to product of random matrices

1 Agenda

- 2 Multidimensional RBM: What is it?
- 3 Exact Simulation of RBM
- 4 Remark on Multidimensional SDEs Sampling
- 5 Unbiased Steady-state Estimation of RBM
- 6 Conclusions

• Presented first exact sampler for multidimensional RBM.
- Presented first exact sampler for multidimensional RBM.
- Key idea builds on *ɛ*-approximations with path space with probability 1.

- Presented first exact sampler for multidimensional RBM.
- Key idea builds on *ɛ*-approximations with path space with probability 1.
- First unbiased estimator for steady-state distributin of RBM.

- Presented first exact sampler for multidimensional RBM.
- Key idea builds on ε -approximations with path space with probability 1.
- First unbiased estimator for steady-state distributin of RBM.
- Key coupling connects to Lyapunov exponents and products of random matrices.