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Multidimensional RBM?

Multidimensional RBM: solution to a certain SDE with constraints.

Input Data:

1 (X (t) : t ≥ 0) Brownian Motion drift µ covariance σ.
2 Matrix R = I −QT where Q is a substochastic matrix and zeroes in
the diagonal.

Model: Solution to a pair (Y (·), L (·)) satisfying

dY (t) = dX (t) + RdL (t) , Y (0) = y0
Y (t) ≥ 0 componentwise
dLj (t) ≥ 0 non-decreasing for j = 1, ..., d

Yj (t) dLj (t) = 0 i.e. Lj increases only when Yj (t) = 0

Skorokhod problem: Existence and Uniqueness guaranteed
(Harrison-Reiman ’81)
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Multidimensional RBM: What does it mean?

Forget RBM for a moment let’s build intuition using Stochastic
Fluid Networks (Kella ’96)

Let’s model workload content of a queueing system:

1 d dimensional network of servers with routing matrix Q
2 Ni (t): Arrivals to station i during time [0, t].
3 k-th service arriving in the i-th station: Vi (k) (independent and
identically distributed for each station)

4 Total jobs arriving at station i up to time t

Ji (t) :=
Ni (t)

∑
k=1

Vi (k)
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Multidimensional RBM: What does it mean?

Assume service rate ri at the i-th server.

Y (t) ∈ Rd
+: System workload at time t

dYi (t) = dJi (t)− ridt +
d

∑
j=1
Qj ,i rjdt

+ ri I (Yi (t) = 0) dt −
d

∑
j=1
Qj ,i rj I (Yj (t) = 0) dt

In matrix notation X (t) = J (t)− (I −QT )rt

dY (t) = dX (t) + (I −QT )dL (t) ,

Li (t) = ri
∫ t

0
I (Yi (s) = 0)ds.

This is a Skorokhod problem with input data X (·).
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Multidimensional RBM: Why do we care?

FACT 1 (Harrison - Reiman ’81)

Y (·) is Lipschitz continuous function of X (·) in uniform norm. WE’LL
WRITE Y (· ; X )

CONSEQUENCE: By CLT (functional) a really large class of queueing
systems can be approximated by RBM

RBM is one of the most important models in stochastic Operations
Research!
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Multidimensional RBM: Open problems and what we do

Open Problems:

1 Can one evaluate the transition distribution of RBM?
2 Can one evaluate the steady-state distribution of RBM?

Our Contributions:

1) First exact sampler for RBM

2) Unbiased steady-state estimation
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Exact Simulation of Diffusions: Why standard approach
doesn’t work

Beskos & Roberts ’04, Beskos, Roberts, and Papaspiliopoulos ’06,
Chen and Huang ’12

dY (t) = ∇u (Y (t)) dt + dB (t) , Y (0) = y0

KEY ASSUMPTION: Drift term ∇u (Y (t)) dt CAN’T deal with
dL (t).

Étoréa & Martinez (2011): One dimensional reflected diffusions.
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Exact Simulation of Diffusions: Our contribution here

Theorem (B. and Murthy ’14)

One can sample exactly Y (t) for a multidimensional RBM with finite
termination time.

Remark 1: Methodology extends to multidimensional reflected
diffusions of the form

dY (t) = ∇u (Y (t)) dt + dB (t) + dL (t) , Y (0) = y0.
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Forget about RBM and let’s explain the key idea...

Sample Y = Z + ∆, with Z and ∆ independent.

Suppose Z’s density is NOT known.

Suppose that Zn can be simulated so that |Zn − Z | < 1/n with
probability 1.

Suppose ∆ has Lipschitz continuous density f∆ (·) with support on
[−a, a].
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Exact Simulation of RBM: Use Following Facts

FACT 1: Y (· ;X ) is Lipschitz in X (·). That is for K > 0
computable

max
t∈[0,1]

∣∣Y (t;X )− Y (t;X ′)∣∣ ≤ K max
t∈[0,1]

∣∣X (t)− X ′ (t)∣∣ .

FACT 2: P (Y (t) > 0) = 1 (deterministic t) and Y (·) is
continuous.

FACT 3: (Beskos, Peluchetti, Roberts ’12 & B. Chen ’13): Can
simulate Xε (·) piecewise linear such that with probability one

max
t∈[0,1]

|X (t)− Xε (t)| < ε.
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Exact Simulation of RBM: Using uniform simulation
approximations

Simulate by stopping times...
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Exact Simulation of RBM: Using uniform simulation
approximations

Refining ε/2: Sampling from conditional BESSEL BRIDGE <–
Known transition density!
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Exact Simulation of RBM: Algorithm

Simulate Xε1 (·), Xε2 (·),...,XεN (·), εN = 2−N until YεN (s) > 0 for all
s ∈ [τ−, τ+] & t ∈ [τ−, τ+].

Stop in finite time: By FACT 2, Y (t) > 0 almost surely & Y (·)
continuous.

Denote information FN0 (τ−) = info. generated by
{XεN0

(s) : s ≤ τ−}.
Note that

Y (t) = Y (τ−) + X (t)− X (τ−) AND

∆ = X (t)− X (τ−) is increment of conditional Bessel bridge so
KNOWN density f∆ (·)
RESULT: f∆ (·) is Lipschitz continuous with support inside
[−2−N0+1, 2−N0+1].
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Exact Simulation of RBM: Algorithm

Apply acceptance rejection: Let fY (t) (·) be density of Y (t) given
FN0 (τ−)

fY (t) (z) = f∆ (z − Y (τ−)) .

We know that Y (t) ∈ [YεN (τ−)−K2−N0 ,YεN (τ−) +K2
−N0 ] for

computable K (FACT 1: Lipschitz continuity of Skorokhod map)

Propose Z from uniformly on [YεN (τ−)−K2−N0 ,YεN (τ−) +K2
−N0 ]

then accept Z as a sample from fY (t) (·) IF

V ≤ 1
C (N0)

f∆ (Z − Y (τ−)) ,

where V is U (0, 1) independent of everything.

BIG problem Y (τ−) is unknown... is it really?
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then accept Z as a sample from fY (t) (·) IF

V ≤ 1
C (N0)

f∆ (Z − Y (τ−)) ,

where V is U (0, 1) independent of everything.

BIG problem Y (τ−) is unknown... is it really?
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Exact Simulation of RBM: Algorithm

Key observations:

Law
(
∆|σ(∪∞

k=N0Fk (τ−))
)
= Law (∆|FN0 (τ−))

and missing information to finally evaluate Y (τ−) is inside
σ(∪∞

k>N0Fk (τ−)).

So, you can continue refining XεN+1 ,XεN+2 , ...to get YεN+1 (τ−),
YεN+2 (τ−), YεN+3 (τ−)... using Lipschitz continuity of f∆ (·)
eventually

V ≤ 1
C (N0)

f∆ (Z − YεL (τ−))−
K̃

C (N0)
εL —> ACCEPT

OR

V ≥ 1
C (N0)

f∆ (Z − YεL (τ−)) +
K̃

C (N0)
εL —> REJECT

Since εn → ∞, algorithm must finish in finite time!
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Remark on Multidimensional SDE Sampling

Important open problem in theory of Monte Carlo: Sample
Y (1) where

dY (t) = µ (Y (t)) dt + σ (Y (t)) dB (t) ∈ Rd (1)

Multidimensional RBM illustrates how

sup
s∈[0,1]

|Yε (s)− Y (s)| ≤ ε (2)

can be used to sample from Y (1) exactly.

B. Chen, and Dong (2015) provides the first algorithm that
achieves (2) for the SDE (1). Algorithms uses theory of rough
paths.
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Steady-state Simulation of RBM

B. and Chen ’14: Perfect simulation if X (·) is stochastic fluid
network (poly complexity as d → ∞ in light traffi c).

B. and Chen ’14: For RBM get Yε (∞) such that

|Yε (∞)− Y (∞)| ≤ ε

with probability one.

Complexity for RBM, fixed ε, Ω(1/εk ) for k > 2.

Budhiraja, Chen, and Rubenthaler ’12, only for Ef (Z (∞)) with
smooth f (·).
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Steady-state Simulation of RBM: Our contribution here

Theorem (B., Chen, and Glynn ’15)

Assume
(
1−QT

)−1
EX (1) < 0 (stability). Let f (·) be Lipschitz

continuous we construct an estimator Z such that

EZ = Ef (Y (∞))

and Var (Z ) < ∞. Moreover, the complexity of providing confidence
intervals for Ef (Y (∞)) with ε error and δ confidence is

O

(
1
ε2
log
(
1
ε

)2
× 1

δ

)
.
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Steady-state Simulation of RBM: How we do it?

Let Y (t, y0;X0:t ) = value of RBM at t given Y (0) = y0. Suppose
Y (0) = 0 and f (0) = 0.

Ef (Y (∞)) =
∞

∑
n=0

E (f (Y (n+ 1, y0;X0:n+1)− f (Y (n, y0;X0:n))

=
∞

∑
n=0

E (f (Y (n,Y (1) ;X1:n)− f (Y (n, y0;X1:n))

= E
(
f (Y (M,Y (1) ;X1:M )− f (Y (M, y0;X1:M )

p (M)

)
≤ KE

(
‖Y (M,Y (1) ;X1:M )− Y (M, y0;X1:M )‖

p (M)

)
,

where M is a r.v. with probability mass function p (m).

Randomized multilevel MC (McLeish ’2011, Glynn & Rhee ’2013).
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Steady-state Simulation of RBM: A key result

Lemma

Assume that Q irreducible (substochastic) and that
(
I −QT

)−1
µ < 0,

then
‖Y (n,Y (1) ;X1:n)− Y (n, y0;X1:n)‖ ≤ ρN (n),

for ρ ∈ (0, 1) (depending on Q) and N (n) = number of completed full
cycles to zero in [0, n] for process Y (·).
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Steady-state Simulation of RBM: Key insight in the proof

Proof.
[Proof Sketch] It turns out (Mandelbaum and Ramanan (2010) that∥∥∥Dy0Y (n, y0;X1:n)

T
∥∥∥ ≤ ‖Di1Di2Di3 ...Din‖ ,

where Dik’s looks like (for ik = 2)

D2 =

 1 0 0
Q2,1 Q2,2 Q2,3
0 0 1

 .
The order i1 → i2 → ...→ in are visits to zero of ANY of the coordinates.
Result follows from Qn → 0 as n→ ∞.
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Steady-state Simulation of RBM: Final Considerations

Currently investigating the following

Application of coupling used here to other processes

Rates of convergence to stationarity and connections to product of
random matrices
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Conclusions

Presented first exact sampler for multidimensional RBM.

Key idea builds on ε-approximations with path space with probability
1.

First unbiased estimator for steady-state distributin of RBM.

Key coupling connects to Lyapunov exponents and products of
random matrices.
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