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@ Multidimensional Reflected Brownian Motion (RBM): What is it and
why do we care?

@ Exact Sampling of RBM
© A Remark about Sampling of Multidimensional SDEs
@ Multilevel Monte Carlo for steady-state analysis of RBM

Jose Blanchet (Columbia) Exact sampling and Steady-state Simulation ¢ 02/2015 3/34



Outline

© Multidimensional RBM: What is it?
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@ Multidimensional RBM: solution to a certain SDE with constraints.
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Multidimensional RBM?

@ Multidimensional RBM: solution to a certain SDE with constraints.

o Input Data:

@ (X (t):t > 0) Brownian Motion drift 1 covariance o.
@ Matrix R =1 — QT where Q is a substochastic matrix and zeroes in
the diagonal.
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Multidimensional RBM?

@ Multidimensional RBM: solution to a certain SDE with constraints.

o Input Data:

@ (X (t):t > 0) Brownian Motion drift 1 covariance o.
@ Matrix R =1 — QT where Q is a substochastic matrix and zeroes in
the diagonal.

e Model: Solution to a pair (Y (-), L(-)) satisfying

dY (t) = dX (t) + RdL(t), Y (0) = yo
Y (t) > 0 componentwise
dL; (t) > 0 non-decreasing for j =1, ..., d
Y (t)dL; (t) =0 i.e. Lj increases only when Y; (t) =0
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Multidimensional RBM?

@ Multidimensional RBM: solution to a certain SDE with constraints.

o Input Data:

@ (X (t):t > 0) Brownian Motion drift 1 covariance o.
@ Matrix R =1 — QT where Q is a substochastic matrix and zeroes in
the diagonal.

@ Model: Solution to a pair (Y (-), L(-)) satisfying
Y (t) =dX (t)+ RdL(t), Y (0) =y
Y (t) 2
L; (t) > 0 non-decreasing for j =1, ..., d
Y; (¢ ) j ()

o Skorokhod problem: Existence and Uniqueness guaranteed
(Harrison-Reiman '81)

0 componentwise

0 i.e. L; increases only when Y; (t) =0
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Multidimensional RBM: What does it mean?

o Forget RBM for a moment let’s build intuition using Stochastic
Fluid Networks (Kella '96)
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Fluid Networks (Kella '96)

@ Let's model workload content of a queueing system:

@ d dimensional network of servers with routing matrix @
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o Forget RBM for a moment let’s build intuition using Stochastic
Fluid Networks (Kella '96)

@ Let's model workload content of a queueing system:

@ d dimensional network of servers with routing matrix @

@ N; (t): Arrivals to station i during time [0, t].

@ k-th service arriving in the i-th station: V; (k) (independent and
identically distributed for each station)
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Multidimensional RBM: What does it mean?

o Forget RBM for a moment let’s build intuition using Stochastic
Fluid Networks (Kella '96)

@ Let's model workload content of a queueing system:

@ d dimensional network of servers with routing matrix @

@ N; (t): Arrivals to station i during time [0, t].

@ k-th service arriving in the i-th station: V; (k) (independent and
identically distributed for each station)

@ Total jobs arriving at station /7 up to time t

/ 34
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Multidimensional RBM: What does it mean?

@ Assume service rate r; at the j-th server.
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Multidimensional RBM: What does it mean?

@ Assume service rate r; at the j-th server.
o Y (t) € RY: System workload at time t

d
dY; (t) = dJ; (t) — ridt + Y Q;,irjdt
j=1

+ril(Y;(t)=0)dt— i Qjiril (Yj(t) =0)dt
j=1
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Multidimensional RBM: What does it mean?

@ Assume service rate r; at the j-th server.
o Y (t) € RY: System workload at time t

d
dY; (t) = dJ; (t) — ridt + Y Q;,irjdt
j=1

FRLY(8) = 0)dt— 3" Quil (% (1) = 0) e
j=1

e In matrix notation X (t) = J(t) — (I — QT )rt
dY (t) = dX (t)+ (I — QT)dL(t),
Li (t) = r,-/ot/(Y,- (s) = 0)ds.
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Multidimensional RBM: What does it mean?

@ Assume service rate r; at the j-th server.
o Y (t) € RY: System workload at time t

d
dY; (t) = dJ; (t) — ridt + Y Q;,irjdt
j=1

FRLY(8) = 0)dt— 3" Quil (% (1) = 0) e
j=1

e In matrix notation X (t) = J(t) — (I — QT )rt
dY (t) = dX (t)+ (I — QT)dL(t),
Li (t) = r,-/ot/(Y,- (s) = 0)ds.

e This is a Skorokhod problem with input data X ().
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Multidimensional RBM: Why do we care?

e FACT 1 (Harrison - Reiman ’81)
Y (+) is Lipschitz continuous function of X (-) in uniform norm. WE'LL
WRITE Y(-; X)

CONSEQUENCE: By CLT (functional) a really large class of queueing
systems can be approximated by RBM

RBM is one of the most important models in stochastic Operations
Research!
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Multidimensional RBM: Open problems and what we do

@ Open Problems:

@ Can one evaluate the transition distribution of RBM?
@ Can one evaluate the steady-state distribution of RBM?

Our Contributions:
1) First exact sampler for RBM

2) Unbiased steady-state estimation
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© Exact Simulation of RBM

Jose Blanchet (Columbia) Exact sampling and Steady-state Simulation ¢



Exact Simulation of Diffusions: Why standard approach

doesn’t work

@ Beskos & Roberts '04, Beskos, Roberts, and Papaspiliopoulos '06,
Chen and Huang '12

dY (t) = Vu (Y () dt+dB(t), Y (0) =y
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Exact Simulation of Diffusions: Why standard approach

doesn’t work

@ Beskos & Roberts '04, Beskos, Roberts, and Papaspiliopoulos '06,
Chen and Huang '12

dY (t) = Vu (Y () dt+dB(t), Y (0) =y

o KEY ASSUMPTION: Drift term Vu (Y (t)) dt CAN'T deal with
dL (t).
o Etoréa & Martinez (2011): One dimensional reflected diffusions.
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Exact Simulation of Diffusions: Our contribution here

Theorem (B. and Murthy '14)

One can sample exactly Y (t) for a multidimensional RBM with finite
termination time.

@ Remark 1: Methodology extends to multidimensional reflected
diffusions of the form

dY (t) =Vu(Y (t))dt+dB(t)+dL(t), Y (0)=yo.

Jose Blanchet (Columbia)

Exact sampling and Steady-state Simulation ¢ 02/2015
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Forget about RBM and let's explain the key idea...

@ Sample Y = Z + A, with Z and A independent.
@ Suppose Z's density is NOT known.

@ Suppose that Z, can be simulated so that |Z, — Z| < 1/n with
probability 1.

@ Suppose A has Lipschitz continuous density fa (-) with support on
[—a,al.
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Exact Simulation of RBM: Use Following Facts

e FACT 1: Y(-;X) is Lipschitz in X (-). Thatis for K >0
computable

Y(t: X)=Y(t: X)| < K X (t) — X' (t)].
T Y (620 = Y(EX)] <K ma, X (0 =X 1)
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e FACT 1: Y(-;X) is Lipschitz in X (-). Thatis for K >0
computable

Y(t: X)=Y(t: X)| < K X (t) — X' (t)].
T Y (620 = Y(EX)] <K ma, X (0 =X 1)

o FACT 2: P (Y (t) > 0) =1 (deterministic t) and Y () is
continuous.
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Exact Simulation of RBM: Use Following Facts

e FACT 1: Y(-;X) is Lipschitz in X (-). Thatis for K >0

computable
max | Y (t; X) = Y(t;: X')| < K max |X (t) — X' (1)].
t€[0,1] te(0,1]

o FACT 2: P (Y (t) > 0) =1 (deterministic t) and Y () is
continuous.

e FACT 3: (Beskos, Peluchetti, Roberts '12 & B. Chen '13): Can
simulate X; (-) piecewise linear such that with probability one

max |X (£) = X (1)) <
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Exact Simulation of RBM: Using uniform simulation

approximations

o Simulate by stopping times...

2e

E-E
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Exact Simulation of RBM: Using uniform simulation

approximations

o Simulate by stopping times...

’e /" %

qx® XX ()]<2e
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Exact Simulation of RBM: Using uniform simulation

approximations

o Simulate by stopping times...

3e

iy /'KE (t)
|
o’/

TE,-E{l} 1:E_-E(S:I tE,-E{B}
t

Moy IX(t)-X, (1) <2e
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Exact Simulation of RBM: Using uniform simulation

approximations

o Refining ¢/2: Sampling from conditional BESSEL BRIDGE <—
Known transition density!

X, (1) X(t)
e _b IX()-X, (t)[<2e
ef2 l
h// F
-gf2 1 Te (1)
| t
e — [X(t)-Xepa (1) [ <€
Xesa (t)
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Exact Simulation of RBM: Algorithm

o Simulate X;, (*), X, (+),-.. Xey (+), v =27V until Y;, (s) > 0 for all
seto, 4] &teto, Ty
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Exact Simulation of RBM: Algorithm

o Simulate X;, (*), X, (+),-.. Xey (+), v =27V until Y;, (s) > 0 for all
sefto, 1] &tet_, T4

@ Stop in finite time: By FACT 2, Y (t) > 0 almost surely & Y (+)
continuous.
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Exact Simulation of RBM: Algorithm

o Simulate X;, (*), X, (+),-.. Xey (+), v =27V until Y;, (s) > 0 for all
sefto, 1] &tet_, T4

@ Stop in finite time: By FACT 2, Y (t) > 0 almost surely & Y (+)
continuous.

@ Denote information Fp, (T—) = info. generated by
{Xep, (s) s <7}
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Exact Simulation of RBM: Algorithm

o Simulate X;, (*), X, (+),-.. Xey (+), v =27V until Y;, (s) > 0 for all
seto, 4] &teto, Ty

@ Stop in finite time: By FACT 2, Y (t) > 0 almost surely & Y (+)
continuous.

e Denote information Fy, (T—) = info. generated by
{Xep, (s) s <7}
o Note that

Y(t)=Y(T_)+X(t)—X(t_) AND

Jose Blanchet (Columbia) Exact sampling and Steady-state Simulation ¢ 02/2015 20 / 34



Exact Simulation of RBM: Algorithm

o Simulate X;, (*), X, (+),-.. Xey (+), v =27V until Y;, (s) > 0 for all
seto, 4] &teto, Ty

@ Stop in finite time: By FACT 2, Y (t) > 0 almost surely & Y (+)
continuous.

e Denote information Fy, (T—) = info. generated by
{Xep, (s) s <7}
o Note that

Y(t)=Y(T_)+X(t)—X(t_) AND

e A= X(t)— X (t-) is increment of conditional Bessel bridge so
KNOWN density fa (-)
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Exact Simulation of RBM: Algorithm

o Simulate X;, (*), X, (+),-.. Xey (+), v =27V until Y;, (s) > 0 for all
seto, 4] &teto, Ty

@ Stop in finite time: By FACT 2, Y (t) > 0 almost surely & Y (+)
continuous.

@ Denote information Fy, (T—) = info. generated by
{Xep, (s) s <7}
@ Note that

Y(t)=Y(T_)+X(t)—X(t_) AND

e A= X(t)— X (t-) is increment of conditional Bessel bridge so
KNOWN density fa (-)

e RESULT: f, (-) is Lipschitz continuous with support inside
[_27N0+1, 27N0+1].
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Exact Simulation of RBM: Algorithm

o Apply acceptance rejection: Let fy ;) (+) be density of Y (t) given
]:No (T*)
friey(2) =fa(z=Y(1-)).
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Exact Simulation of RBM: Algorithm

o Apply acceptance rejection: Let fy ;) (+) be density of Y (t) given
]:No (T*)
friey(2) =fa(z=Y(1-)).

o We know that Y (t) € [Ye, (T_) — K2~M, Y, (T_) + K2~M] for

En

computable K (FACT 1: Lipschitz continuity of Skorokhod map)
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Exact Simulation of RBM: Algorithm

o Apply acceptance rejection: Let fy ;) (+) be density of Y (t) given
]:No (T*)
friey(2) =fa(z=Y(1-)).
o We know that Y (t) € [Ye, (T—-) — K27, Y, (T_) + K27 M] for
computable K (FACT 1: Lipschitz continuity of Skorokhod map)

o Propose Z from uniformly on [Ye, () — K27, Y, (t_) + K2~ ]
then accept Z as a sample from fy () (+) IF

ve 1

< C(No)fA (Z-Y (7)),

where V is U (0,1) independent of everything.
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Exact Simulation of RBM: Algorithm

o Apply acceptance rejection: Let fy ;) (+) be density of Y (t) given
]:No (T*)
friey(2) =fa(z=Y(1-)).
o We know that Y (t) € [Ye, (T—-) — K27, Y, (T_) + K27 M] for
computable K (FACT 1: Lipschitz continuity of Skorokhod map)
o Propose Z from uniformly on [Ye, () — K27, Y, (t_) + K2~ ]
then accept Z as a sample from fy () (+) IF

ve 1

< C(No)fA (Z-Y (7)),

where V is U (0,1) independent of everything.
@ BIG problem Y (7_) is unknown... is it really?
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Exact Simulation of RBM: Algorithm

o Key observations:
Law (Alo(Ur_p, Fi (T-))) = Law (A|Fp, (T-))

and missing information to finally evaluate Y (7_) is inside
(Ui g Tk (7-))-
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Exact Simulation of RBM: Algorithm

o Key observations:
Law (Alo(Ur_p, Fi (T-))) = Law (A|Fp, (T-))

and missing information to finally evaluate Y (7_) is inside
(U ne Fie (T-))-

@ So, you can continue refining X\, ,, Xey ., .-.to get Yo, ., (T-),
Yenio (T=), Yen.s (T—)... using Lipschitz continuity of f5 (-)

eventually
Vv < L A (Z—Ye (T2)) — K g, —> ACCEPT
= (W) ® L C(No) "
OR
1
v > fa(Z—Ye (T_)) + g, —> REJECT
= C(No) A( SL( )) C(No) L
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Exact Simulation of RBM: Algorithm

o Key observations:
Law (Alo(Ur_p, Fi (T-))) = Law (A|Fp, (T-))

and missing information to finally evaluate Y (7_) is inside
(U ne Fie (T-))-

@ So, you can continue refining X\, ,, Xey ., .-.to get Yo, ., (T-),
Yenio (T=), Yen.s (T—)... using Lipschitz continuity of f5 (-)

eventually
Vv < L A (Z—Ye (T2)) — K g, —> ACCEPT
= (W) ® L C(No) "
OR
1
V. > ————A(Z-Y, (T_))+ g, —> REJECT
= C(No) A( SL( )) C(No) L

@ Since ¢, — oo, algorithm must finish in finite time!
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@ Remark on Multidimensional SDEs Sampling
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Remark on Multidimensional SDE Sampling

o Important open problem in theory of Monte Carlo: Sample
Y (1) where

dY (t) = u (Y (t))dt+o (Y (t))dB(t) € RY (1)
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Remark on Multidimensional SDE Sampling

o Important open problem in theory of Monte Carlo: Sample
Y (1) where

dY (t) = u (Y (t))dt+o (Y (t))dB(t) € RY (1)
@ Multidimensional RBM illustrates how

sup |Ye(s)—Y(s)| <e (2)
s€[0,1]

can be used to sample from Y (1) exactly.
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Remark on Multidimensional SDE Sampling

o Important open problem in theory of Monte Carlo: Sample
Y (1) where

dY (t) = u (Y (t))dt+o (Y (t))dB(t) € RY (1)
@ Multidimensional RBM illustrates how

sup |Ye(s)—Y(s)| <e (2)
s€[0,1]

can be used to sample from Y (1) exactly.

e B. Chen, and Dong (2015) provides the first algorithm that
achieves (2) for the SDE (1). Algorithms uses theory of rough
paths.
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© Unbiased Steady-state Estimation of RBM

Jose Blanchet (Columbia) Exact sampling and Steady-state Simulation ¢



Steady-state Simulation of RBM

e B. and Chen '14: Perfect simulation if X () is stochastic fluid
network (poly complexity as d — oo in light traffic).
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Steady-state Simulation of RBM

e B. and Chen '14: Perfect simulation if X () is stochastic fluid
network (poly complexity as d — oo in light traffic).

e B. and Chen '14: For RBM get Y; (c0) such that
[ Ve (00) = Y (e0)| <¢

with probability one.

26 / 34
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Steady-state Simulation of RBM

e B. and Chen '14: Perfect simulation if X () is stochastic fluid
network (poly complexity as d — oo in light traffic).

e B. and Chen '14: For RBM get Y; (c0) such that
[ Ve (00) = Y (e0)| <¢

with probability one.
o Complexity for RBM, fixed ¢, Q)(1/¢X) for k > 2.
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Steady-state Simulation of RBM

e B. and Chen '14: Perfect simulation if X () is stochastic fluid
network (poly complexity as d — oo in light traffic).

e B. and Chen '14: For RBM get Y; (c0) such that
[ Ve (00) = Y (e0)| <¢

with probability one.
o Complexity for RBM, fixed ¢, Q)(1/¢X) for k > 2.

e Budhiraja, Chen, and Rubenthaler '12, only for Ef (Z (o0)) with
smooth £ (+).
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Steady-state Simulation of RBM: Our contribution here

Theorem (B., Chen, and Glynn '15)

Assume (1 — QT)_1 EX (1) < 0 (stability). Let f (-) be Lipschitz
continuous we construct an estimator Z such that

EZ = Ef (Y (c0))

and Var (Z) < oo. Moreover, the complexity of providing confidence
intervals for Ef (Y (c0)) with € error and & confidence is

1 1\? 1
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Steady-state Simulation of RBM: How we do it?

t Y (t, y0; Xo.t) = value of RBM at t given Y (0) = yp. Suppose
Y (0) =0 and f(0) = 0.

E(f(Y (n + 1, yo; XO:n+1) - f(Y (n,yo; XO:n))

m
~<
2

I
e

3
Il
o

I
e

E(f(Y (n Y (1); Xy:n) — (Y (0, y0; X1:n))

3
Il

(Y (M, Y (1) Xpm) — (Y (nyle:M))
p (M)

(HY (M' Y (1) ;XI:M) B Y(nyO;Xle)H)
p (M) '

where M is a r.v. with probability mass function p (m).

[\
=

I
m
m _—©°
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Steady-state Simulation of RBM: How we do it?

t Y (t, y0; Xo.t) = value of RBM at t given Y (0) = yp. Suppose
Y (0) =0 and f(0) = 0.

E(f(Y (n + 1, yo; XO:n+1) - f(Y (n,yo; XO:n))

m
~<
2

I
e

3
Il
o

I
e

E(f(Y (n Y (1); Xy:n) — (Y (0, y0; X1:n))

3
Il

(Y (M, Y (1) Xpm) — (Y (nyle:M))
p (M)

(HY (M' Y (1) ;XI:M) B Y(nyO;Xle)H)
p (M) '

where M is a r.v. with probability mass function p (m).
e Randomized multilevel MC (McLeish '2011, Glynn & Rhee '2013).

[\
=

I
m
m _—©°
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Steady-state Simulation of RBM: A key result

Lemma

Assume that Q irreducible (substochastic) and that (I — QT)fl u<o,
then

” Y (nv Y (1) ;Xl:n) -Y (nvyO; Xl:n)“ < PN(n)y

for p € (0,1) (depending on Q) and N (n) = number of completed full
cycles to zero in [0, n] for process Y (-).
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Steady-state Simulation of RBM: How we do it?

Example showing N(n) =2

Y (1)

I time
n
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Steady-state Simulation of RBM: Key insight in the proof

[Proof Sketch] It turns out (Mandelbaum and Ramanan (2010) that

HDon(nyyo:Xlzn)TH < ||DyD;,Dy,...0; || ,

where D;,'s looks like (for iy = 2)

1 0 0
Dr=1| Q1 2 3
0 0 1

The order i1 — i» — ... — i, are visits to zero of ANY of the coordinates.
Result follows from @" — 0 as n — oo. O

i
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Steady-state Simulation of RBM: Final Considerations

@ Currently investigating the following
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Steady-state Simulation of RBM: Final Considerations

@ Currently investigating the following
@ Application of coupling used here to other processes

@ Rates of convergence to stationarity and connections to product of
random matrices
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Outline

@ Conclusions

et (Columbia) Exact sampling and Steady-state Simulation ¢



Conclusions

@ Presented first exact sampler for multidimensional RBM.
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Conclusions

Presented first exact sampler for multidimensional RBM.

Key idea builds on e-approximations with path space with probability
1.

First unbiased estimator for steady-state distributin of RBM.

Key coupling connects to Lyapunov exponents and products of
random matrices.
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